* Wasmtime: Add a pointer to `VMRuntimeLimits` in component contexts * Save exit Wasm FP and PC in component-to-host trampolines Fixes #4535 * Add comment about why we deref the trampoline's FP * Update some tests to use new `vmruntime_limits_*` methods
933 lines
34 KiB
Rust
933 lines
34 KiB
Rust
use crate::builder::LinkOptions;
|
|
use crate::debug::{DwarfSectionRelocTarget, ModuleMemoryOffset};
|
|
use crate::func_environ::{get_func_name, FuncEnvironment};
|
|
use crate::obj::ModuleTextBuilder;
|
|
use crate::{
|
|
blank_sig, func_signature, indirect_signature, value_type, wasmtime_call_conv,
|
|
CompiledFunction, CompiledFunctions, FunctionAddressMap, Relocation, RelocationTarget,
|
|
};
|
|
use anyhow::{Context as _, Result};
|
|
use cranelift_codegen::ir::{self, ExternalName, InstBuilder, MemFlags, Value};
|
|
use cranelift_codegen::isa::TargetIsa;
|
|
use cranelift_codegen::print_errors::pretty_error;
|
|
use cranelift_codegen::Context;
|
|
use cranelift_codegen::{settings, MachReloc, MachTrap};
|
|
use cranelift_codegen::{MachSrcLoc, MachStackMap};
|
|
use cranelift_entity::{EntityRef, PrimaryMap};
|
|
use cranelift_frontend::FunctionBuilder;
|
|
use cranelift_wasm::{
|
|
DefinedFuncIndex, FuncIndex, FuncTranslator, MemoryIndex, OwnedMemoryIndex, SignatureIndex,
|
|
WasmFuncType,
|
|
};
|
|
use object::write::{Object, StandardSegment, SymbolId};
|
|
use object::{RelocationEncoding, RelocationKind, SectionKind};
|
|
use std::any::Any;
|
|
use std::cmp;
|
|
use std::collections::BTreeMap;
|
|
use std::collections::HashMap;
|
|
use std::convert::TryFrom;
|
|
use std::mem;
|
|
use std::sync::Mutex;
|
|
use wasmtime_environ::{
|
|
AddressMapSection, CompileError, FilePos, FlagValue, FunctionBodyData, FunctionInfo,
|
|
InstructionAddressMap, Module, ModuleTranslation, ModuleTypes, PtrSize, StackMapInformation,
|
|
Trampoline, TrapCode, TrapEncodingBuilder, TrapInformation, Tunables, VMOffsets,
|
|
};
|
|
|
|
#[cfg(feature = "component-model")]
|
|
mod component;
|
|
|
|
struct CompilerContext {
|
|
func_translator: FuncTranslator,
|
|
codegen_context: Context,
|
|
}
|
|
|
|
impl Default for CompilerContext {
|
|
fn default() -> Self {
|
|
Self {
|
|
func_translator: FuncTranslator::new(),
|
|
codegen_context: Context::new(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A compiler that compiles a WebAssembly module with Compiler, translating
|
|
/// the Wasm to Compiler IR, optimizing it and then translating to assembly.
|
|
pub(crate) struct Compiler {
|
|
contexts: Mutex<Vec<CompilerContext>>,
|
|
isa: Box<dyn TargetIsa>,
|
|
linkopts: LinkOptions,
|
|
}
|
|
|
|
impl Compiler {
|
|
pub(crate) fn new(isa: Box<dyn TargetIsa>, linkopts: LinkOptions) -> Compiler {
|
|
Compiler {
|
|
contexts: Default::default(),
|
|
isa,
|
|
linkopts,
|
|
}
|
|
}
|
|
|
|
fn take_context(&self) -> CompilerContext {
|
|
let candidate = self.contexts.lock().unwrap().pop();
|
|
candidate
|
|
.map(|mut ctx| {
|
|
ctx.codegen_context.clear();
|
|
ctx
|
|
})
|
|
.unwrap_or_else(Default::default)
|
|
}
|
|
|
|
fn save_context(&self, ctx: CompilerContext) {
|
|
self.contexts.lock().unwrap().push(ctx);
|
|
}
|
|
|
|
fn get_function_address_map(
|
|
&self,
|
|
context: &Context,
|
|
data: &FunctionBodyData<'_>,
|
|
body_len: u32,
|
|
tunables: &Tunables,
|
|
) -> FunctionAddressMap {
|
|
// Generate artificial srcloc for function start/end to identify boundary
|
|
// within module.
|
|
let data = data.body.get_binary_reader();
|
|
let offset = data.original_position();
|
|
let len = data.bytes_remaining();
|
|
assert!((offset + len) <= u32::max_value() as usize);
|
|
let start_srcloc = FilePos::new(offset as u32);
|
|
let end_srcloc = FilePos::new((offset + len) as u32);
|
|
|
|
// New-style backend: we have a `CompiledCode` that will give us `MachSrcLoc` mapping
|
|
// tuples.
|
|
let instructions = if tunables.generate_address_map {
|
|
collect_address_maps(
|
|
body_len,
|
|
context
|
|
.compiled_code()
|
|
.unwrap()
|
|
.buffer
|
|
.get_srclocs_sorted()
|
|
.into_iter()
|
|
.map(|&MachSrcLoc { start, end, loc }| (loc, start, (end - start))),
|
|
)
|
|
} else {
|
|
Vec::new()
|
|
};
|
|
|
|
FunctionAddressMap {
|
|
instructions: instructions.into(),
|
|
start_srcloc,
|
|
end_srcloc,
|
|
body_offset: 0,
|
|
body_len,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl wasmtime_environ::Compiler for Compiler {
|
|
fn compile_function(
|
|
&self,
|
|
translation: &ModuleTranslation<'_>,
|
|
func_index: DefinedFuncIndex,
|
|
mut input: FunctionBodyData<'_>,
|
|
tunables: &Tunables,
|
|
types: &ModuleTypes,
|
|
) -> Result<Box<dyn Any + Send>, CompileError> {
|
|
let isa = &*self.isa;
|
|
let module = &translation.module;
|
|
let func_index = module.func_index(func_index);
|
|
|
|
let CompilerContext {
|
|
mut func_translator,
|
|
codegen_context: mut context,
|
|
} = self.take_context();
|
|
|
|
context.func.name = get_func_name(func_index);
|
|
context.func.signature = func_signature(isa, translation, types, func_index);
|
|
if tunables.generate_native_debuginfo {
|
|
context.func.collect_debug_info();
|
|
}
|
|
|
|
let mut func_env = FuncEnvironment::new(isa, translation, types, tunables);
|
|
|
|
// The `stack_limit` global value below is the implementation of stack
|
|
// overflow checks in Wasmtime.
|
|
//
|
|
// The Wasm spec defines that stack overflows will raise a trap, and
|
|
// there's also an added constraint where as an embedder you frequently
|
|
// are running host-provided code called from wasm. WebAssembly and
|
|
// native code currently share the same call stack, so Wasmtime needs to
|
|
// make sure that host-provided code will have enough call-stack
|
|
// available to it.
|
|
//
|
|
// The way that stack overflow is handled here is by adding a prologue
|
|
// check to all functions for how much native stack is remaining. The
|
|
// `VMContext` pointer is the first argument to all functions, and the
|
|
// first field of this structure is `*const VMRuntimeLimits` and the
|
|
// first field of that is the stack limit. Note that the stack limit in
|
|
// this case means "if the stack pointer goes below this, trap". Each
|
|
// function which consumes stack space or isn't a leaf function starts
|
|
// off by loading the stack limit, checking it against the stack
|
|
// pointer, and optionally traps.
|
|
//
|
|
// This manual check allows the embedder to give wasm a relatively
|
|
// precise amount of stack allocation. Using this scheme we reserve a
|
|
// chunk of stack for wasm code relative from where wasm code was
|
|
// called. This ensures that native code called by wasm should have
|
|
// native stack space to run, and the numbers of stack spaces here
|
|
// should all be configurable for various embeddings.
|
|
//
|
|
// Note that this check is independent of each thread's stack guard page
|
|
// here. If the stack guard page is reached that's still considered an
|
|
// abort for the whole program since the runtime limits configured by
|
|
// the embedder should cause wasm to trap before it reaches that
|
|
// (ensuring the host has enough space as well for its functionality).
|
|
let vmctx = context
|
|
.func
|
|
.create_global_value(ir::GlobalValueData::VMContext);
|
|
let interrupts_ptr = context.func.create_global_value(ir::GlobalValueData::Load {
|
|
base: vmctx,
|
|
offset: i32::try_from(func_env.offsets.vmctx_runtime_limits())
|
|
.unwrap()
|
|
.into(),
|
|
global_type: isa.pointer_type(),
|
|
readonly: true,
|
|
});
|
|
let stack_limit = context.func.create_global_value(ir::GlobalValueData::Load {
|
|
base: interrupts_ptr,
|
|
offset: i32::try_from(func_env.offsets.ptr.vmruntime_limits_stack_limit())
|
|
.unwrap()
|
|
.into(),
|
|
global_type: isa.pointer_type(),
|
|
readonly: false,
|
|
});
|
|
context.func.stack_limit = Some(stack_limit);
|
|
func_translator.translate_body(
|
|
&mut input.validator,
|
|
input.body.clone(),
|
|
&mut context.func,
|
|
&mut func_env,
|
|
)?;
|
|
|
|
let mut code_buf: Vec<u8> = Vec::new();
|
|
let compiled_code = context
|
|
.compile_and_emit(isa, &mut code_buf)
|
|
.map_err(|error| CompileError::Codegen(pretty_error(&error.func, error.inner)))?;
|
|
|
|
let func_relocs = compiled_code
|
|
.buffer
|
|
.relocs()
|
|
.into_iter()
|
|
.map(mach_reloc_to_reloc)
|
|
.collect::<Vec<_>>();
|
|
|
|
let traps = compiled_code
|
|
.buffer
|
|
.traps()
|
|
.into_iter()
|
|
.map(mach_trap_to_trap)
|
|
.collect::<Vec<_>>();
|
|
|
|
let stack_maps = mach_stack_maps_to_stack_maps(compiled_code.buffer.stack_maps());
|
|
|
|
let unwind_info = if isa.flags().unwind_info() {
|
|
context
|
|
.create_unwind_info(isa)
|
|
.map_err(|error| CompileError::Codegen(pretty_error(&context.func, error)))?
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let address_transform =
|
|
self.get_function_address_map(&context, &input, code_buf.len() as u32, tunables);
|
|
|
|
let ranges = if tunables.generate_native_debuginfo {
|
|
Some(context.compiled_code().unwrap().value_labels_ranges.clone())
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let timing = cranelift_codegen::timing::take_current();
|
|
log::debug!("{:?} translated in {:?}", func_index, timing.total());
|
|
log::trace!("{:?} timing info\n{}", func_index, timing);
|
|
|
|
let length = u32::try_from(code_buf.len()).unwrap();
|
|
|
|
let sized_stack_slots = std::mem::take(&mut context.func.sized_stack_slots);
|
|
|
|
self.save_context(CompilerContext {
|
|
func_translator,
|
|
codegen_context: context,
|
|
});
|
|
|
|
Ok(Box::new(CompiledFunction {
|
|
body: code_buf,
|
|
relocations: func_relocs,
|
|
value_labels_ranges: ranges.unwrap_or(Default::default()),
|
|
sized_stack_slots,
|
|
unwind_info,
|
|
traps,
|
|
info: FunctionInfo {
|
|
start_srcloc: address_transform.start_srcloc,
|
|
stack_maps,
|
|
start: 0,
|
|
length,
|
|
},
|
|
address_map: address_transform,
|
|
}))
|
|
}
|
|
|
|
fn compile_host_to_wasm_trampoline(
|
|
&self,
|
|
ty: &WasmFuncType,
|
|
) -> Result<Box<dyn Any + Send>, CompileError> {
|
|
self.host_to_wasm_trampoline(ty)
|
|
.map(|x| Box::new(x) as Box<_>)
|
|
}
|
|
|
|
fn emit_obj(
|
|
&self,
|
|
translation: &ModuleTranslation,
|
|
funcs: PrimaryMap<DefinedFuncIndex, Box<dyn Any + Send>>,
|
|
compiled_trampolines: Vec<Box<dyn Any + Send>>,
|
|
tunables: &Tunables,
|
|
obj: &mut Object<'static>,
|
|
) -> Result<(PrimaryMap<DefinedFuncIndex, FunctionInfo>, Vec<Trampoline>)> {
|
|
let funcs: CompiledFunctions = funcs
|
|
.into_iter()
|
|
.map(|(_i, f)| *f.downcast().unwrap())
|
|
.collect();
|
|
let compiled_trampolines: Vec<CompiledFunction> = compiled_trampolines
|
|
.into_iter()
|
|
.map(|f| *f.downcast().unwrap())
|
|
.collect();
|
|
|
|
let mut builder = ModuleTextBuilder::new(obj, &translation.module, &*self.isa);
|
|
if self.linkopts.force_jump_veneers {
|
|
builder.force_veneers();
|
|
}
|
|
let mut addrs = AddressMapSection::default();
|
|
let mut traps = TrapEncodingBuilder::default();
|
|
|
|
let mut func_starts = Vec::with_capacity(funcs.len());
|
|
for (i, func) in funcs.iter() {
|
|
let range = builder.func(i, func);
|
|
if tunables.generate_address_map {
|
|
addrs.push(range.clone(), &func.address_map.instructions);
|
|
}
|
|
traps.push(range.clone(), &func.traps);
|
|
func_starts.push(range.start);
|
|
builder.append_padding(self.linkopts.padding_between_functions);
|
|
}
|
|
|
|
// Build trampolines for every signature that can be used by this module.
|
|
assert_eq!(
|
|
translation.exported_signatures.len(),
|
|
compiled_trampolines.len()
|
|
);
|
|
let mut trampolines = Vec::with_capacity(translation.exported_signatures.len());
|
|
for (i, func) in translation
|
|
.exported_signatures
|
|
.iter()
|
|
.zip(&compiled_trampolines)
|
|
{
|
|
assert!(func.traps.is_empty());
|
|
trampolines.push(builder.trampoline(*i, &func));
|
|
}
|
|
|
|
let symbols = builder.finish()?;
|
|
|
|
self.append_dwarf(obj, translation, &funcs, tunables, &symbols)?;
|
|
if tunables.generate_address_map {
|
|
addrs.append_to(obj);
|
|
}
|
|
traps.append_to(obj);
|
|
|
|
Ok((
|
|
funcs
|
|
.into_iter()
|
|
.zip(func_starts)
|
|
.map(|((_, mut f), start)| {
|
|
f.info.start = start;
|
|
f.info
|
|
})
|
|
.collect(),
|
|
trampolines,
|
|
))
|
|
}
|
|
|
|
fn emit_trampoline_obj(
|
|
&self,
|
|
ty: &WasmFuncType,
|
|
host_fn: usize,
|
|
obj: &mut Object<'static>,
|
|
) -> Result<(Trampoline, Trampoline)> {
|
|
let host_to_wasm = self.host_to_wasm_trampoline(ty)?;
|
|
let wasm_to_host = self.wasm_to_host_trampoline(ty, host_fn)?;
|
|
let module = Module::new();
|
|
let mut builder = ModuleTextBuilder::new(obj, &module, &*self.isa);
|
|
let a = builder.trampoline(SignatureIndex::new(0), &host_to_wasm);
|
|
let b = builder.trampoline(SignatureIndex::new(1), &wasm_to_host);
|
|
builder.finish()?;
|
|
Ok((a, b))
|
|
}
|
|
|
|
fn triple(&self) -> &target_lexicon::Triple {
|
|
self.isa.triple()
|
|
}
|
|
|
|
fn page_size_align(&self) -> u64 {
|
|
self.isa.code_section_alignment()
|
|
}
|
|
|
|
fn flags(&self) -> BTreeMap<String, FlagValue> {
|
|
self.isa
|
|
.flags()
|
|
.iter()
|
|
.map(|val| (val.name.to_string(), to_flag_value(&val)))
|
|
.collect()
|
|
}
|
|
|
|
fn isa_flags(&self) -> BTreeMap<String, FlagValue> {
|
|
self.isa
|
|
.isa_flags()
|
|
.iter()
|
|
.map(|val| (val.name.to_string(), to_flag_value(val)))
|
|
.collect()
|
|
}
|
|
|
|
#[cfg(feature = "component-model")]
|
|
fn component_compiler(&self) -> &dyn wasmtime_environ::component::ComponentCompiler {
|
|
self
|
|
}
|
|
}
|
|
|
|
fn to_flag_value(v: &settings::Value) -> FlagValue {
|
|
match v.kind() {
|
|
settings::SettingKind::Enum => FlagValue::Enum(v.as_enum().unwrap().into()),
|
|
settings::SettingKind::Num => FlagValue::Num(v.as_num().unwrap()),
|
|
settings::SettingKind::Bool => FlagValue::Bool(v.as_bool().unwrap()),
|
|
settings::SettingKind::Preset => unreachable!(),
|
|
}
|
|
}
|
|
|
|
impl Compiler {
|
|
fn host_to_wasm_trampoline(&self, ty: &WasmFuncType) -> Result<CompiledFunction, CompileError> {
|
|
let isa = &*self.isa;
|
|
let value_size = mem::size_of::<u128>();
|
|
let pointer_type = isa.pointer_type();
|
|
|
|
// The wasm signature we're calling in this trampoline has the actual
|
|
// ABI of the function signature described by `ty`
|
|
let wasm_signature = indirect_signature(isa, ty);
|
|
|
|
// The host signature has the `VMTrampoline` signature where the ABI is
|
|
// fixed.
|
|
let mut host_signature = blank_sig(isa, wasmtime_call_conv(isa));
|
|
host_signature.params.push(ir::AbiParam::new(pointer_type));
|
|
host_signature.params.push(ir::AbiParam::new(pointer_type));
|
|
|
|
let CompilerContext {
|
|
mut func_translator,
|
|
codegen_context: mut context,
|
|
} = self.take_context();
|
|
|
|
context.func = ir::Function::with_name_signature(ExternalName::user(0, 0), host_signature);
|
|
|
|
// This trampoline will load all the parameters from the `values_vec`
|
|
// that is passed in and then call the real function (also passed
|
|
// indirectly) with the specified ABI.
|
|
//
|
|
// All the results are then stored into the same `values_vec`.
|
|
let mut builder = FunctionBuilder::new(&mut context.func, func_translator.context());
|
|
let block0 = builder.create_block();
|
|
|
|
builder.append_block_params_for_function_params(block0);
|
|
builder.switch_to_block(block0);
|
|
builder.seal_block(block0);
|
|
|
|
let (vmctx_ptr_val, caller_vmctx_ptr_val, callee_value, values_vec_ptr_val) = {
|
|
let params = builder.func.dfg.block_params(block0);
|
|
(params[0], params[1], params[2], params[3])
|
|
};
|
|
|
|
// Load the argument values out of `values_vec`.
|
|
let mut mflags = ir::MemFlags::trusted();
|
|
mflags.set_endianness(ir::Endianness::Little);
|
|
let callee_args = wasm_signature
|
|
.params
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, r)| {
|
|
match i {
|
|
0 => vmctx_ptr_val,
|
|
1 => caller_vmctx_ptr_val,
|
|
_ =>
|
|
// i - 2 because vmctx and caller vmctx aren't passed through `values_vec`.
|
|
{
|
|
builder.ins().load(
|
|
r.value_type,
|
|
mflags,
|
|
values_vec_ptr_val,
|
|
((i - 2) * value_size) as i32,
|
|
)
|
|
}
|
|
}
|
|
})
|
|
.collect::<Vec<_>>();
|
|
|
|
// Call the indirect function pointer we were given
|
|
let new_sig = builder.import_signature(wasm_signature);
|
|
let call = builder
|
|
.ins()
|
|
.call_indirect(new_sig, callee_value, &callee_args);
|
|
let results = builder.func.dfg.inst_results(call).to_vec();
|
|
|
|
// Store the return values into `values_vec`.
|
|
for (i, r) in results.iter().enumerate() {
|
|
builder
|
|
.ins()
|
|
.store(mflags, *r, values_vec_ptr_val, (i * value_size) as i32);
|
|
}
|
|
builder.ins().return_(&[]);
|
|
builder.finalize();
|
|
|
|
let func = self.finish_trampoline(&mut context, isa)?;
|
|
self.save_context(CompilerContext {
|
|
func_translator,
|
|
codegen_context: context,
|
|
});
|
|
Ok(func)
|
|
}
|
|
|
|
/// Creates a trampoline for WebAssembly calling into the host where all the
|
|
/// arguments are spilled to the stack and results are loaded from the
|
|
/// stack.
|
|
///
|
|
/// This style of trampoline is currently only used with the
|
|
/// `Func::new`-style created functions in the Wasmtime embedding API. The
|
|
/// generated trampoline has a function signature appropriate to the `ty`
|
|
/// specified (e.g. a System-V ABI) and will call a `host_fn` that has a
|
|
/// type signature of:
|
|
///
|
|
/// ```ignore
|
|
/// extern "C" fn(*mut VMContext, *mut VMContext, *mut ValRaw, usize)
|
|
/// ```
|
|
///
|
|
/// where the first two arguments are forwarded from the trampoline
|
|
/// generated here itself, and the second two arguments are a pointer/length
|
|
/// into stack-space of this trampoline with storage for both the arguments
|
|
/// to the function and the results.
|
|
///
|
|
/// Note that `host_fn` is an immediate which is an actual function pointer
|
|
/// in this process. As such this compiled trampoline is not suitable for
|
|
/// serialization.
|
|
fn wasm_to_host_trampoline(
|
|
&self,
|
|
ty: &WasmFuncType,
|
|
host_fn: usize,
|
|
) -> Result<CompiledFunction, CompileError> {
|
|
let isa = &*self.isa;
|
|
let pointer_type = isa.pointer_type();
|
|
let wasm_signature = indirect_signature(isa, ty);
|
|
let mut host_signature = blank_sig(isa, wasmtime_call_conv(isa));
|
|
// The host signature has an added parameter for the `values_vec`
|
|
// input/output buffer in addition to the size of the buffer, in units
|
|
// of `ValRaw`.
|
|
host_signature.params.push(ir::AbiParam::new(pointer_type));
|
|
host_signature.params.push(ir::AbiParam::new(pointer_type));
|
|
|
|
let CompilerContext {
|
|
mut func_translator,
|
|
codegen_context: mut context,
|
|
} = self.take_context();
|
|
|
|
context.func =
|
|
ir::Function::with_name_signature(ir::ExternalName::user(0, 0), wasm_signature);
|
|
|
|
let mut builder = FunctionBuilder::new(&mut context.func, func_translator.context());
|
|
let block0 = builder.create_block();
|
|
|
|
let (values_vec_ptr_val, values_vec_len) =
|
|
self.wasm_to_host_spill_args(ty, &mut builder, block0);
|
|
|
|
let block_params = builder.func.dfg.block_params(block0);
|
|
let callee_args = [
|
|
block_params[0],
|
|
block_params[1],
|
|
values_vec_ptr_val,
|
|
builder
|
|
.ins()
|
|
.iconst(pointer_type, i64::from(values_vec_len)),
|
|
];
|
|
|
|
let new_sig = builder.import_signature(host_signature);
|
|
let callee_value = builder.ins().iconst(pointer_type, host_fn as i64);
|
|
builder
|
|
.ins()
|
|
.call_indirect(new_sig, callee_value, &callee_args);
|
|
|
|
self.wasm_to_host_load_results(ty, &mut builder, values_vec_ptr_val);
|
|
|
|
let func = self.finish_trampoline(&mut context, isa)?;
|
|
self.save_context(CompilerContext {
|
|
func_translator,
|
|
codegen_context: context,
|
|
});
|
|
Ok(func)
|
|
}
|
|
|
|
/// Used for spilling arguments in wasm-to-host trampolines into the stack
|
|
/// of the function of `builder` specified.
|
|
///
|
|
/// The `block0` is the entry block of the function and `ty` is the wasm
|
|
/// signature of the trampoline generated. This function will allocate a
|
|
/// stack slot suitable for storing both the arguments and return values of
|
|
/// the function, and then the arguments will all be stored in this block.
|
|
///
|
|
/// The stack slot pointer is returned in addition to the size, in units of
|
|
/// `ValRaw`, of the stack slot.
|
|
fn wasm_to_host_spill_args(
|
|
&self,
|
|
ty: &WasmFuncType,
|
|
builder: &mut FunctionBuilder,
|
|
block0: ir::Block,
|
|
) -> (Value, u32) {
|
|
let isa = &*self.isa;
|
|
let pointer_type = isa.pointer_type();
|
|
|
|
// Compute the size of the values vector.
|
|
let value_size = mem::size_of::<u128>();
|
|
let values_vec_len = cmp::max(ty.params().len(), ty.returns().len());
|
|
let values_vec_byte_size = u32::try_from(value_size * values_vec_len).unwrap();
|
|
let values_vec_len = u32::try_from(values_vec_len).unwrap();
|
|
|
|
let ss = builder.func.create_sized_stack_slot(ir::StackSlotData::new(
|
|
ir::StackSlotKind::ExplicitSlot,
|
|
values_vec_byte_size,
|
|
));
|
|
|
|
builder.append_block_params_for_function_params(block0);
|
|
builder.switch_to_block(block0);
|
|
builder.seal_block(block0);
|
|
|
|
// Note that loads and stores are unconditionally done in the
|
|
// little-endian format rather than the host's native-endianness,
|
|
// despite this load/store being unrelated to execution in wasm itself.
|
|
// For more details on this see the `ValRaw` type in the
|
|
// `wasmtime-runtime` crate.
|
|
let mut mflags = MemFlags::trusted();
|
|
mflags.set_endianness(ir::Endianness::Little);
|
|
|
|
let values_vec_ptr_val = builder.ins().stack_addr(pointer_type, ss, 0);
|
|
for i in 0..ty.params().len() {
|
|
let val = builder.func.dfg.block_params(block0)[i + 2];
|
|
builder
|
|
.ins()
|
|
.store(mflags, val, values_vec_ptr_val, (i * value_size) as i32);
|
|
}
|
|
(values_vec_ptr_val, values_vec_len)
|
|
}
|
|
|
|
/// Use for loading the results of a host call from a trampoline's stack
|
|
/// space.
|
|
///
|
|
/// This is intended to be used with the stack space allocated by
|
|
/// `wasm_to_host_spill_args` above. This is called after the function call
|
|
/// is made which will load results from the stack space and then return
|
|
/// them with the appropriate ABI (e.g. System-V).
|
|
fn wasm_to_host_load_results(
|
|
&self,
|
|
ty: &WasmFuncType,
|
|
builder: &mut FunctionBuilder,
|
|
values_vec_ptr_val: Value,
|
|
) {
|
|
let isa = &*self.isa;
|
|
let value_size = mem::size_of::<u128>();
|
|
|
|
// Note that this is little-endian like `wasm_to_host_spill_args` above,
|
|
// see notes there for more information.
|
|
let mut mflags = MemFlags::trusted();
|
|
mflags.set_endianness(ir::Endianness::Little);
|
|
|
|
let mut results = Vec::new();
|
|
for (i, r) in ty.returns().iter().enumerate() {
|
|
let load = builder.ins().load(
|
|
value_type(isa, *r),
|
|
mflags,
|
|
values_vec_ptr_val,
|
|
(i * value_size) as i32,
|
|
);
|
|
results.push(load);
|
|
}
|
|
builder.ins().return_(&results);
|
|
builder.finalize();
|
|
}
|
|
|
|
fn finish_trampoline(
|
|
&self,
|
|
context: &mut Context,
|
|
isa: &dyn TargetIsa,
|
|
) -> Result<CompiledFunction, CompileError> {
|
|
let mut code_buf = Vec::new();
|
|
let compiled_code = context
|
|
.compile_and_emit(isa, &mut code_buf)
|
|
.map_err(|error| CompileError::Codegen(pretty_error(&error.func, error.inner)))?;
|
|
|
|
// Processing relocations isn't the hardest thing in the world here but
|
|
// no trampoline should currently generate a relocation, so assert that
|
|
// they're all empty and if this ever trips in the future then handling
|
|
// will need to be added here to ensure they make their way into the
|
|
// `CompiledFunction` below.
|
|
assert!(compiled_code.buffer.relocs().is_empty());
|
|
|
|
let traps = compiled_code
|
|
.buffer
|
|
.traps()
|
|
.into_iter()
|
|
.map(mach_trap_to_trap)
|
|
.collect::<Vec<_>>();
|
|
|
|
let unwind_info = if isa.flags().unwind_info() {
|
|
context
|
|
.create_unwind_info(isa)
|
|
.map_err(|error| CompileError::Codegen(pretty_error(&context.func, error)))?
|
|
} else {
|
|
None
|
|
};
|
|
|
|
Ok(CompiledFunction {
|
|
body: code_buf,
|
|
unwind_info,
|
|
relocations: Vec::new(),
|
|
sized_stack_slots: Default::default(),
|
|
value_labels_ranges: Default::default(),
|
|
info: Default::default(),
|
|
address_map: Default::default(),
|
|
traps,
|
|
})
|
|
}
|
|
|
|
pub fn append_dwarf(
|
|
&self,
|
|
obj: &mut Object<'_>,
|
|
translation: &ModuleTranslation<'_>,
|
|
funcs: &CompiledFunctions,
|
|
tunables: &Tunables,
|
|
func_symbols: &PrimaryMap<DefinedFuncIndex, SymbolId>,
|
|
) -> Result<()> {
|
|
if !tunables.generate_native_debuginfo || funcs.len() == 0 {
|
|
return Ok(());
|
|
}
|
|
let ofs = VMOffsets::new(
|
|
self.isa
|
|
.triple()
|
|
.architecture
|
|
.pointer_width()
|
|
.unwrap()
|
|
.bytes(),
|
|
&translation.module,
|
|
);
|
|
|
|
let memory_offset = if ofs.num_imported_memories > 0 {
|
|
ModuleMemoryOffset::Imported(ofs.vmctx_vmmemory_import(MemoryIndex::new(0)))
|
|
} else if ofs.num_defined_memories > 0 {
|
|
// The addition of shared memory makes the following assumption,
|
|
// "owned memory index = 0", possibly false. If the first memory
|
|
// is a shared memory, the base pointer will not be stored in
|
|
// the `owned_memories` array. The following code should
|
|
// eventually be fixed to not only handle shared memories but
|
|
// also multiple memories.
|
|
assert_eq!(
|
|
ofs.num_defined_memories, ofs.num_owned_memories,
|
|
"the memory base pointer may be incorrect due to sharing memory"
|
|
);
|
|
ModuleMemoryOffset::Defined(
|
|
ofs.vmctx_vmmemory_definition_base(OwnedMemoryIndex::new(0)),
|
|
)
|
|
} else {
|
|
ModuleMemoryOffset::None
|
|
};
|
|
let dwarf_sections =
|
|
crate::debug::emit_dwarf(&*self.isa, &translation.debuginfo, &funcs, &memory_offset)
|
|
.with_context(|| "failed to emit DWARF debug information")?;
|
|
|
|
let (debug_bodies, debug_relocs): (Vec<_>, Vec<_>) = dwarf_sections
|
|
.iter()
|
|
.map(|s| ((s.name, &s.body), (s.name, &s.relocs)))
|
|
.unzip();
|
|
let mut dwarf_sections_ids = HashMap::new();
|
|
for (name, body) in debug_bodies {
|
|
let segment = obj.segment_name(StandardSegment::Debug).to_vec();
|
|
let section_id = obj.add_section(segment, name.as_bytes().to_vec(), SectionKind::Debug);
|
|
dwarf_sections_ids.insert(name, section_id);
|
|
obj.append_section_data(section_id, &body, 1);
|
|
}
|
|
|
|
// Write all debug data relocations.
|
|
for (name, relocs) in debug_relocs {
|
|
let section_id = *dwarf_sections_ids.get(name).unwrap();
|
|
for reloc in relocs {
|
|
let target_symbol = match reloc.target {
|
|
DwarfSectionRelocTarget::Func(index) => {
|
|
func_symbols[DefinedFuncIndex::new(index)]
|
|
}
|
|
DwarfSectionRelocTarget::Section(name) => {
|
|
obj.section_symbol(dwarf_sections_ids[name])
|
|
}
|
|
};
|
|
obj.add_relocation(
|
|
section_id,
|
|
object::write::Relocation {
|
|
offset: u64::from(reloc.offset),
|
|
size: reloc.size << 3,
|
|
kind: RelocationKind::Absolute,
|
|
encoding: RelocationEncoding::Generic,
|
|
symbol: target_symbol,
|
|
addend: i64::from(reloc.addend),
|
|
},
|
|
)?;
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
// Collects an iterator of `InstructionAddressMap` into a `Vec` for insertion
|
|
// into a `FunctionAddressMap`. This will automatically coalesce adjacent
|
|
// instructions which map to the same original source position.
|
|
fn collect_address_maps(
|
|
code_size: u32,
|
|
iter: impl IntoIterator<Item = (ir::SourceLoc, u32, u32)>,
|
|
) -> Vec<InstructionAddressMap> {
|
|
let mut iter = iter.into_iter();
|
|
let (mut cur_loc, mut cur_offset, mut cur_len) = match iter.next() {
|
|
Some(i) => i,
|
|
None => return Vec::new(),
|
|
};
|
|
let mut ret = Vec::new();
|
|
for (loc, offset, len) in iter {
|
|
// If this instruction is adjacent to the previous and has the same
|
|
// source location then we can "coalesce" it with the current
|
|
// instruction.
|
|
if cur_offset + cur_len == offset && loc == cur_loc {
|
|
cur_len += len;
|
|
continue;
|
|
}
|
|
|
|
// Push an entry for the previous source item.
|
|
ret.push(InstructionAddressMap {
|
|
srcloc: cvt(cur_loc),
|
|
code_offset: cur_offset,
|
|
});
|
|
// And push a "dummy" entry if necessary to cover the span of ranges,
|
|
// if any, between the previous source offset and this one.
|
|
if cur_offset + cur_len != offset {
|
|
ret.push(InstructionAddressMap {
|
|
srcloc: FilePos::default(),
|
|
code_offset: cur_offset + cur_len,
|
|
});
|
|
}
|
|
// Update our current location to get extended later or pushed on at
|
|
// the end.
|
|
cur_loc = loc;
|
|
cur_offset = offset;
|
|
cur_len = len;
|
|
}
|
|
ret.push(InstructionAddressMap {
|
|
srcloc: cvt(cur_loc),
|
|
code_offset: cur_offset,
|
|
});
|
|
if cur_offset + cur_len != code_size {
|
|
ret.push(InstructionAddressMap {
|
|
srcloc: FilePos::default(),
|
|
code_offset: cur_offset + cur_len,
|
|
});
|
|
}
|
|
|
|
return ret;
|
|
|
|
fn cvt(loc: ir::SourceLoc) -> FilePos {
|
|
if loc.is_default() {
|
|
FilePos::default()
|
|
} else {
|
|
FilePos::new(loc.bits())
|
|
}
|
|
}
|
|
}
|
|
|
|
fn mach_reloc_to_reloc(reloc: &MachReloc) -> Relocation {
|
|
let &MachReloc {
|
|
offset,
|
|
kind,
|
|
ref name,
|
|
addend,
|
|
} = reloc;
|
|
let reloc_target = if let ExternalName::User { namespace, index } = *name {
|
|
debug_assert_eq!(namespace, 0);
|
|
RelocationTarget::UserFunc(FuncIndex::from_u32(index))
|
|
} else if let ExternalName::LibCall(libcall) = *name {
|
|
RelocationTarget::LibCall(libcall)
|
|
} else {
|
|
panic!("unrecognized external name")
|
|
};
|
|
Relocation {
|
|
reloc: kind,
|
|
reloc_target,
|
|
offset,
|
|
addend,
|
|
}
|
|
}
|
|
|
|
const ALWAYS_TRAP_CODE: u16 = 100;
|
|
|
|
fn mach_trap_to_trap(trap: &MachTrap) -> TrapInformation {
|
|
let &MachTrap { offset, code } = trap;
|
|
TrapInformation {
|
|
code_offset: offset,
|
|
trap_code: match code {
|
|
ir::TrapCode::StackOverflow => TrapCode::StackOverflow,
|
|
ir::TrapCode::HeapOutOfBounds => TrapCode::HeapOutOfBounds,
|
|
ir::TrapCode::HeapMisaligned => TrapCode::HeapMisaligned,
|
|
ir::TrapCode::TableOutOfBounds => TrapCode::TableOutOfBounds,
|
|
ir::TrapCode::IndirectCallToNull => TrapCode::IndirectCallToNull,
|
|
ir::TrapCode::BadSignature => TrapCode::BadSignature,
|
|
ir::TrapCode::IntegerOverflow => TrapCode::IntegerOverflow,
|
|
ir::TrapCode::IntegerDivisionByZero => TrapCode::IntegerDivisionByZero,
|
|
ir::TrapCode::BadConversionToInteger => TrapCode::BadConversionToInteger,
|
|
ir::TrapCode::UnreachableCodeReached => TrapCode::UnreachableCodeReached,
|
|
ir::TrapCode::Interrupt => TrapCode::Interrupt,
|
|
ir::TrapCode::User(ALWAYS_TRAP_CODE) => TrapCode::AlwaysTrapAdapter,
|
|
|
|
// these should never be emitted by wasmtime-cranelift
|
|
ir::TrapCode::User(_) => unreachable!(),
|
|
},
|
|
}
|
|
}
|
|
|
|
fn mach_stack_maps_to_stack_maps(mach_stack_maps: &[MachStackMap]) -> Vec<StackMapInformation> {
|
|
// This is converting from Cranelift's representation of a stack map to
|
|
// Wasmtime's representation. They happen to align today but that may
|
|
// not always be true in the future.
|
|
let mut stack_maps = Vec::new();
|
|
for &MachStackMap {
|
|
offset_end,
|
|
ref stack_map,
|
|
..
|
|
} in mach_stack_maps
|
|
{
|
|
let stack_map = wasmtime_environ::StackMap::new(
|
|
stack_map.mapped_words(),
|
|
stack_map.as_slice().iter().map(|a| a.0),
|
|
);
|
|
stack_maps.push(StackMapInformation {
|
|
code_offset: offset_end,
|
|
stack_map,
|
|
});
|
|
}
|
|
stack_maps.sort_unstable_by_key(|info| info.code_offset);
|
|
stack_maps
|
|
}
|