Files
wasmtime/cranelift/codegen/src/context.rs
Chris Fallin 230e2135d6 Cranelift: remove non-egraphs optimization pipeline and use_egraphs option. (#6167)
* Cranelift: remove non-egraphs optimization pipeline and `use_egraphs` option.

This PR removes the LICM, GVN, and preopt passes, and associated support
pieces, from `cranelift-codegen`. Not to worry, we still have
optimizations: the egraph framework subsumes all of these, and has been
on by default since #5181.

A few decision points:

- Filetests for the legacy LICM, GVN and simple_preopt were removed too.
  As we built optimizations in the egraph framework we wrote new tests
  for the equivalent functionality, and many of the old tests were
  testing specific behaviors in the old implementations that may not be
  relevant anymore. However if folks prefer I could take a different
  approach here and try to port over all of the tests.

- The corresponding filetest modes (commands) were deleted too. The
  `test alias_analysis` mode remains, but no longer invokes a separate
  GVN first (since there is no separate GVN that will not also do alias
  analysis) so the tests were tweaked slightly to work with that. The
  egrpah testsuite also covers alias analysis.

- The `divconst_magic_numbers` module is removed since it's unused
  without `simple_preopt`, though this is the one remaining optimization
  we still need to build in the egraphs framework, pending #5908. The
  magic numbers will live forever in git history so removing this in the
  meantime is not a major issue IMHO.

- The `use_egraphs` setting itself was removed at both the Cranelift and
  Wasmtime levels. It has been marked deprecated for a few releases now
  (Wasmtime 6.0, 7.0, upcoming 8.0, and corresponding Cranelift
  versions) so I think this is probably OK. As an alternative if anyone
  feels strongly, we could leave the setting and make it a no-op.

* Update test outputs for remaining test differences.
2023-04-06 18:11:03 +00:00

369 lines
12 KiB
Rust

//! Cranelift compilation context and main entry point.
//!
//! When compiling many small functions, it is important to avoid repeatedly allocating and
//! deallocating the data structures needed for compilation. The `Context` struct is used to hold
//! on to memory allocations between function compilations.
//!
//! The context does not hold a `TargetIsa` instance which has to be provided as an argument
//! instead. This is because an ISA instance is immutable and can be used by multiple compilation
//! contexts concurrently. Typically, you would have one context per compilation thread and only a
//! single ISA instance.
use crate::alias_analysis::AliasAnalysis;
use crate::dce::do_dce;
use crate::dominator_tree::DominatorTree;
use crate::egraph::EgraphPass;
use crate::flowgraph::ControlFlowGraph;
use crate::ir::Function;
use crate::isa::TargetIsa;
use crate::legalizer::simple_legalize;
use crate::loop_analysis::LoopAnalysis;
use crate::machinst::{CompiledCode, CompiledCodeStencil};
use crate::nan_canonicalization::do_nan_canonicalization;
use crate::remove_constant_phis::do_remove_constant_phis;
use crate::result::{CodegenResult, CompileResult};
use crate::settings::{FlagsOrIsa, OptLevel};
use crate::trace;
use crate::unreachable_code::eliminate_unreachable_code;
use crate::verifier::{verify_context, VerifierErrors, VerifierResult};
use crate::{timing, CompileError};
#[cfg(feature = "souper-harvest")]
use alloc::string::String;
use alloc::vec::Vec;
use cranelift_control::ControlPlane;
#[cfg(feature = "souper-harvest")]
use crate::souper_harvest::do_souper_harvest;
/// Persistent data structures and compilation pipeline.
pub struct Context {
/// The function we're compiling.
pub func: Function,
/// The control flow graph of `func`.
pub cfg: ControlFlowGraph,
/// Dominator tree for `func`.
pub domtree: DominatorTree,
/// Loop analysis of `func`.
pub loop_analysis: LoopAnalysis,
/// Result of MachBackend compilation, if computed.
pub(crate) compiled_code: Option<CompiledCode>,
/// Flag: do we want a disassembly with the CompiledCode?
pub want_disasm: bool,
}
impl Context {
/// Allocate a new compilation context.
///
/// The returned instance should be reused for compiling multiple functions in order to avoid
/// needless allocator thrashing.
pub fn new() -> Self {
Self::for_function(Function::new())
}
/// Allocate a new compilation context with an existing Function.
///
/// The returned instance should be reused for compiling multiple functions in order to avoid
/// needless allocator thrashing.
pub fn for_function(func: Function) -> Self {
Self {
func,
cfg: ControlFlowGraph::new(),
domtree: DominatorTree::new(),
loop_analysis: LoopAnalysis::new(),
compiled_code: None,
want_disasm: false,
}
}
/// Clear all data structures in this context.
pub fn clear(&mut self) {
self.func.clear();
self.cfg.clear();
self.domtree.clear();
self.loop_analysis.clear();
self.compiled_code = None;
self.want_disasm = false;
}
/// Returns the compilation result for this function, available after any `compile` function
/// has been called.
pub fn compiled_code(&self) -> Option<&CompiledCode> {
self.compiled_code.as_ref()
}
/// Set the flag to request a disassembly when compiling with a
/// `MachBackend` backend.
pub fn set_disasm(&mut self, val: bool) {
self.want_disasm = val;
}
/// Compile the function, and emit machine code into a `Vec<u8>`.
///
/// Run the function through all the passes necessary to generate
/// code for the target ISA represented by `isa`, as well as the
/// final step of emitting machine code into a `Vec<u8>`. The
/// machine code is not relocated. Instead, any relocations can be
/// obtained from `compiled_code()`.
///
/// Performs any optimizations that are enabled, unless
/// `optimize()` was already invoked.
///
/// This function calls `compile`, taking care to resize `mem` as
/// needed.
///
/// Returns information about the function's code and read-only
/// data.
pub fn compile_and_emit(
&mut self,
isa: &dyn TargetIsa,
mem: &mut Vec<u8>,
ctrl_plane: &mut ControlPlane,
) -> CompileResult<&CompiledCode> {
let compiled_code = self.compile(isa, ctrl_plane)?;
mem.extend_from_slice(compiled_code.code_buffer());
Ok(compiled_code)
}
/// Internally compiles the function into a stencil.
///
/// Public only for testing and fuzzing purposes.
pub fn compile_stencil(
&mut self,
isa: &dyn TargetIsa,
ctrl_plane: &mut ControlPlane,
) -> CodegenResult<CompiledCodeStencil> {
let _tt = timing::compile();
self.verify_if(isa)?;
self.optimize(isa)?;
isa.compile_function(&self.func, &self.domtree, self.want_disasm, ctrl_plane)
}
/// Optimize the function, performing all compilation steps up to
/// but not including machine-code lowering and register
/// allocation.
///
/// Public only for testing purposes.
pub fn optimize(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
log::debug!(
"Number of CLIF instructions to optimize: {}",
self.func.dfg.num_insts()
);
log::debug!(
"Number of CLIF blocks to optimize: {}",
self.func.dfg.num_blocks()
);
let opt_level = isa.flags().opt_level();
crate::trace!(
"Optimizing (opt level {:?}):\n{}",
opt_level,
self.func.display()
);
self.compute_cfg();
if isa.flags().enable_nan_canonicalization() {
self.canonicalize_nans(isa)?;
}
self.legalize(isa)?;
self.compute_domtree();
self.eliminate_unreachable_code(isa)?;
if opt_level != OptLevel::None {
self.dce(isa)?;
}
self.remove_constant_phis(isa)?;
if opt_level != OptLevel::None {
self.egraph_pass()?;
}
Ok(())
}
/// Compile the function.
///
/// Run the function through all the passes necessary to generate code for the target ISA
/// represented by `isa`. This does not include the final step of emitting machine code into a
/// code sink.
///
/// Returns information about the function's code and read-only data.
pub fn compile(
&mut self,
isa: &dyn TargetIsa,
ctrl_plane: &mut ControlPlane,
) -> CompileResult<&CompiledCode> {
let stencil = self
.compile_stencil(isa, ctrl_plane)
.map_err(|error| CompileError {
inner: error,
func: &self.func,
})?;
Ok(self
.compiled_code
.insert(stencil.apply_params(&self.func.params)))
}
/// If available, return information about the code layout in the
/// final machine code: the offsets (in bytes) of each basic-block
/// start, and all basic-block edges.
#[deprecated = "use CompiledCode::get_code_bb_layout"]
pub fn get_code_bb_layout(&self) -> Option<(Vec<usize>, Vec<(usize, usize)>)> {
self.compiled_code().map(CompiledCode::get_code_bb_layout)
}
/// Creates unwind information for the function.
///
/// Returns `None` if the function has no unwind information.
#[cfg(feature = "unwind")]
#[deprecated = "use CompiledCode::create_unwind_info"]
pub fn create_unwind_info(
&self,
isa: &dyn TargetIsa,
) -> CodegenResult<Option<crate::isa::unwind::UnwindInfo>> {
self.compiled_code().unwrap().create_unwind_info(isa)
}
/// Run the verifier on the function.
///
/// Also check that the dominator tree and control flow graph are consistent with the function.
pub fn verify<'a, FOI: Into<FlagsOrIsa<'a>>>(&self, fisa: FOI) -> VerifierResult<()> {
let mut errors = VerifierErrors::default();
let _ = verify_context(&self.func, &self.cfg, &self.domtree, fisa, &mut errors);
if errors.is_empty() {
Ok(())
} else {
Err(errors)
}
}
/// Run the verifier only if the `enable_verifier` setting is true.
pub fn verify_if<'a, FOI: Into<FlagsOrIsa<'a>>>(&self, fisa: FOI) -> CodegenResult<()> {
let fisa = fisa.into();
if fisa.flags.enable_verifier() {
self.verify(fisa)?;
}
Ok(())
}
/// Perform dead-code elimination on the function.
pub fn dce<'a, FOI: Into<FlagsOrIsa<'a>>>(&mut self, fisa: FOI) -> CodegenResult<()> {
do_dce(&mut self.func, &mut self.domtree);
self.verify_if(fisa)?;
Ok(())
}
/// Perform constant-phi removal on the function.
pub fn remove_constant_phis<'a, FOI: Into<FlagsOrIsa<'a>>>(
&mut self,
fisa: FOI,
) -> CodegenResult<()> {
do_remove_constant_phis(&mut self.func, &mut self.domtree);
self.verify_if(fisa)?;
Ok(())
}
/// Perform NaN canonicalizing rewrites on the function.
pub fn canonicalize_nans(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
do_nan_canonicalization(&mut self.func);
self.verify_if(isa)
}
/// Run the legalizer for `isa` on the function.
pub fn legalize(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
// Legalization invalidates the domtree and loop_analysis by mutating the CFG.
// TODO: Avoid doing this when legalization doesn't actually mutate the CFG.
self.domtree.clear();
self.loop_analysis.clear();
// Run some specific legalizations only.
simple_legalize(&mut self.func, &mut self.cfg, isa);
self.verify_if(isa)
}
/// Compute the control flow graph.
pub fn compute_cfg(&mut self) {
self.cfg.compute(&self.func)
}
/// Compute dominator tree.
pub fn compute_domtree(&mut self) {
self.domtree.compute(&self.func, &self.cfg)
}
/// Compute the loop analysis.
pub fn compute_loop_analysis(&mut self) {
self.loop_analysis
.compute(&self.func, &self.cfg, &self.domtree)
}
/// Compute the control flow graph and dominator tree.
pub fn flowgraph(&mut self) {
self.compute_cfg();
self.compute_domtree()
}
/// Perform unreachable code elimination.
pub fn eliminate_unreachable_code<'a, FOI>(&mut self, fisa: FOI) -> CodegenResult<()>
where
FOI: Into<FlagsOrIsa<'a>>,
{
eliminate_unreachable_code(&mut self.func, &mut self.cfg, &self.domtree);
self.verify_if(fisa)
}
/// Replace all redundant loads with the known values in
/// memory. These are loads whose values were already loaded by
/// other loads earlier, as well as loads whose values were stored
/// by a store instruction to the same instruction (so-called
/// "store-to-load forwarding").
pub fn replace_redundant_loads(&mut self) -> CodegenResult<()> {
let mut analysis = AliasAnalysis::new(&self.func, &self.domtree);
analysis.compute_and_update_aliases(&mut self.func);
Ok(())
}
/// Harvest candidate left-hand sides for superoptimization with Souper.
#[cfg(feature = "souper-harvest")]
pub fn souper_harvest(
&mut self,
out: &mut std::sync::mpsc::Sender<String>,
) -> CodegenResult<()> {
do_souper_harvest(&self.func, out);
Ok(())
}
/// Run optimizations via the egraph infrastructure.
pub fn egraph_pass(&mut self) -> CodegenResult<()> {
let _tt = timing::egraph();
trace!(
"About to optimize with egraph phase:\n{}",
self.func.display()
);
self.compute_loop_analysis();
let mut alias_analysis = AliasAnalysis::new(&self.func, &self.domtree);
let mut pass = EgraphPass::new(
&mut self.func,
&self.domtree,
&self.loop_analysis,
&mut alias_analysis,
);
pass.run();
log::debug!("egraph stats: {:?}", pass.stats);
trace!("After egraph optimization:\n{}", self.func.display());
Ok(())
}
}