Files
wasmtime/lib/cretonne/src/licm.rs
Jakob Stoklund Olesen 921bcc6c25 Use the term "EBB parameter" everywhere.
Add EBB parameter and EBB argument to the langref glossary to clarify
the distinction between formal EBB parameter values and arguments passed
to branches.

- Replace "ebb_arg" with "ebb_param" in function names that deal with
  EBB parameters.
- Rename the ValueDef variants to Result and Param.
- A bunch of other small langref fixes.

No functional changes intended.
2017-10-19 16:17:09 -07:00

199 lines
7.5 KiB
Rust

//! A Loop Invariant Code Motion optimization pass
use cursor::{Cursor, FuncCursor};
use ir::{Function, Ebb, Inst, Value, Type, InstBuilder, Layout};
use flowgraph::ControlFlowGraph;
use std::collections::HashSet;
use dominator_tree::DominatorTree;
use entity::{EntityList, ListPool};
use loop_analysis::{Loop, LoopAnalysis};
/// Performs the LICM pass by detecting loops within the CFG and moving
/// loop-invariant instructions out of them.
/// Changes the CFG and domtree in-place during the operation.
pub fn do_licm(
func: &mut Function,
cfg: &mut ControlFlowGraph,
domtree: &mut DominatorTree,
loop_analysis: &mut LoopAnalysis,
) {
debug_assert!(cfg.is_valid());
debug_assert!(domtree.is_valid());
debug_assert!(loop_analysis.is_valid());
for lp in loop_analysis.loops() {
// For each loop that we want to optimize we determine the set of loop-invariant
// instructions
let invariant_inst = remove_loop_invariant_instructions(lp, func, cfg, loop_analysis);
// Then we create the loop's pre-header and fill it with the invariant instructions
// Then we remove the invariant instructions from the loop body
if !invariant_inst.is_empty() {
// If the loop has a natural pre-header we use it, otherwise we create it.
let mut pos;
match has_pre_header(&func.layout, cfg, domtree, loop_analysis.loop_header(lp)) {
None => {
let pre_header =
create_pre_header(loop_analysis.loop_header(lp), func, cfg, domtree);
pos = FuncCursor::new(func).at_last_inst(pre_header);
}
// If there is a natural pre-header we insert new instructions just before the
// related jumping instruction (which is not necessarily at the end).
Some((_, last_inst)) => {
pos = FuncCursor::new(func).at_inst(last_inst);
}
};
// The last instruction of the pre-header is the termination instruction (usually
// a jump) so we need to insert just before this.
for inst in invariant_inst {
pos.insert_inst(inst);
}
}
}
// We have to recompute the domtree to account for the changes
cfg.compute(func);
domtree.compute(func, cfg);
}
// Insert a pre-header before the header, modifying the function layout and CFG to reflect it.
// A jump instruction to the header is placed at the end of the pre-header.
fn create_pre_header(
header: Ebb,
func: &mut Function,
cfg: &mut ControlFlowGraph,
domtree: &DominatorTree,
) -> Ebb {
let pool = &mut ListPool::<Value>::new();
let header_args_values: Vec<Value> = func.dfg.ebb_params(header).into_iter().cloned().collect();
let header_args_types: Vec<Type> = header_args_values
.clone()
.into_iter()
.map(|val| func.dfg.value_type(val))
.collect();
let pre_header = func.dfg.make_ebb();
let mut pre_header_args_value: EntityList<Value> = EntityList::new();
for typ in header_args_types {
pre_header_args_value.push(func.dfg.append_ebb_param(pre_header, typ), pool);
}
for &(_, last_inst) in cfg.get_predecessors(header) {
// We only follow normal edges (not the back edges)
if !domtree.dominates(header, last_inst, &func.layout) {
change_branch_jump_destination(last_inst, pre_header, func);
}
}
{
let mut pos = FuncCursor::new(func).at_top(header);
// Inserts the pre-header at the right place in the layout.
pos.insert_ebb(pre_header);
pos.next_inst();
pos.ins().jump(header, pre_header_args_value.as_slice(pool));
}
pre_header
}
// Detects if a loop header has a natural pre-header.
//
// A loop header has a pre-header if there is only one predecessor that the header doesn't
// dominate.
// Returns the pre-header Ebb and the instruction jumping to the header.
fn has_pre_header(
layout: &Layout,
cfg: &ControlFlowGraph,
domtree: &DominatorTree,
header: Ebb,
) -> Option<(Ebb, Inst)> {
let mut result = None;
let mut found = false;
for &(pred_ebb, last_inst) in cfg.get_predecessors(header) {
// We only count normal edges (not the back edges)
if !domtree.dominates(header, last_inst, layout) {
if found {
// We have already found one, there are more than one
return None;
} else {
result = Some((pred_ebb, last_inst));
found = true;
}
}
}
result
}
// Change the destination of a jump or branch instruction. Does nothing if called with a non-jump
// or non-branch instruction.
fn change_branch_jump_destination(inst: Inst, new_ebb: Ebb, func: &mut Function) {
match func.dfg[inst].branch_destination_mut() {
None => (),
Some(instruction_dest) => *instruction_dest = new_ebb,
}
}
// Traverses a loop in reverse post-order from a header EBB and identify loop-invariant
// instructions. These loop-invariant instructions are then removed from the code and returned
// (in reverse post-order) for later use.
fn remove_loop_invariant_instructions(
lp: Loop,
func: &mut Function,
cfg: &ControlFlowGraph,
loop_analysis: &LoopAnalysis,
) -> Vec<Inst> {
let mut loop_values: HashSet<Value> = HashSet::new();
let mut invariant_inst: Vec<Inst> = Vec::new();
let mut pos = FuncCursor::new(func);
// We traverse the loop EBB in reverse post-order.
for ebb in postorder_ebbs_loop(loop_analysis, cfg, lp).iter().rev() {
// Arguments of the EBB are loop values
for val in pos.func.dfg.ebb_params(*ebb) {
loop_values.insert(*val);
}
pos.goto_top(*ebb);
while let Some(inst) = pos.next_inst() {
if pos.func.dfg.has_results(inst) &&
pos.func.dfg.inst_args(inst).into_iter().all(|arg| {
!loop_values.contains(arg)
})
{
// If all the instruction's argument are defined outside the loop
// then this instruction is loop-invariant
invariant_inst.push(inst);
// We remove it from the loop
pos.remove_inst_and_step_back();
} else {
// If the instruction is not loop-invariant we push its results in the set of
// loop values
for out in pos.func.dfg.inst_results(inst) {
loop_values.insert(*out);
}
}
}
}
invariant_inst
}
/// Return ebbs from a loop in post-order, starting from an entry point in the block.
fn postorder_ebbs_loop(loop_analysis: &LoopAnalysis, cfg: &ControlFlowGraph, lp: Loop) -> Vec<Ebb> {
let mut grey = HashSet::new();
let mut black = HashSet::new();
let mut stack = vec![loop_analysis.loop_header(lp)];
let mut postorder = Vec::new();
while !stack.is_empty() {
let node = stack.pop().unwrap();
if !grey.contains(&node) {
// This is a white node. Mark it as gray.
grey.insert(node);
stack.push(node);
// Get any children we've never seen before.
for child in cfg.get_successors(node) {
if loop_analysis.is_in_loop(*child, lp) && !grey.contains(child) {
stack.push(*child);
}
}
} else if !black.contains(&node) {
postorder.push(node);
black.insert(node);
}
}
postorder
}