Files
wasmtime/lib/cretonne/src/ir/dfg.rs
2017-09-21 13:30:00 -07:00

1097 lines
39 KiB
Rust

//! Data flow graph tracking Instructions, Values, and EBBs.
use entity::{PrimaryMap, EntityMap};
use isa::TargetIsa;
use ir::builder::{InsertBuilder, ReplaceBuilder};
use ir::extfunc::ExtFuncData;
use ir::instructions::{Opcode, InstructionData, CallInfo};
use ir::layout::{Cursor, LayoutCursorInserter};
use ir::types;
use ir::{Ebb, Inst, Value, Type, SigRef, Signature, FuncRef, ValueList, ValueListPool};
use write::write_operands;
use std::fmt;
use std::iter;
use std::mem;
use std::ops::{Index, IndexMut};
use std::u16;
/// A data flow graph defines all instructions and extended basic blocks in a function as well as
/// the data flow dependencies between them. The DFG also tracks values which can be either
/// instruction results or EBB arguments.
///
/// The layout of EBBs in the function and of instructions in each EBB is recorded by the
/// `FunctionLayout` data structure which form the other half of the function representation.
///
#[derive(Clone)]
pub struct DataFlowGraph {
/// Data about all of the instructions in the function, including opcodes and operands.
/// The instructions in this map are not in program order. That is tracked by `Layout`, along
/// with the EBB containing each instruction.
insts: PrimaryMap<Inst, InstructionData>,
/// List of result values for each instruction.
///
/// This map gets resized automatically by `make_inst()` so it is always in sync with the
/// primary `insts` map.
results: EntityMap<Inst, ValueList>,
/// Extended basic blocks in the function and their arguments.
/// This map is not in program order. That is handled by `Layout`, and so is the sequence of
/// instructions contained in each EBB.
ebbs: PrimaryMap<Ebb, EbbData>,
/// Memory pool of value lists.
///
/// The `ValueList` references into this pool appear in many places:
///
/// - Instructions in `insts` that don't have room for their entire argument list inline.
/// - Instruction result values in `results`.
/// - EBB arguments in `ebbs`.
pub value_lists: ValueListPool,
/// Primary value table with entries for all values.
values: PrimaryMap<Value, ValueData>,
/// Function signature table. These signatures are referenced by indirect call instructions as
/// well as the external function references.
pub signatures: PrimaryMap<SigRef, Signature>,
/// External function references. These are functions that can be called directly.
pub ext_funcs: PrimaryMap<FuncRef, ExtFuncData>,
}
impl DataFlowGraph {
/// Create a new empty `DataFlowGraph`.
pub fn new() -> DataFlowGraph {
DataFlowGraph {
insts: PrimaryMap::new(),
results: EntityMap::new(),
ebbs: PrimaryMap::new(),
value_lists: ValueListPool::new(),
values: PrimaryMap::new(),
signatures: PrimaryMap::new(),
ext_funcs: PrimaryMap::new(),
}
}
/// Clear everything.
pub fn clear(&mut self) {
self.insts.clear();
self.results.clear();
self.ebbs.clear();
self.value_lists.clear();
self.values.clear();
self.signatures.clear();
self.ext_funcs.clear();
}
/// Get the total number of instructions created in this function, whether they are currently
/// inserted in the layout or not.
///
/// This is intended for use with `EntityMap::with_capacity`.
pub fn num_insts(&self) -> usize {
self.insts.len()
}
/// Returns `true` if the given instruction reference is valid.
pub fn inst_is_valid(&self, inst: Inst) -> bool {
self.insts.is_valid(inst)
}
/// Get the total number of extended basic blocks created in this function, whether they are
/// currently inserted in the layout or not.
///
/// This is intended for use with `EntityMap::with_capacity`.
pub fn num_ebbs(&self) -> usize {
self.ebbs.len()
}
/// Returns `true` if the given ebb reference is valid.
pub fn ebb_is_valid(&self, ebb: Ebb) -> bool {
self.ebbs.is_valid(ebb)
}
/// Get the total number of values.
pub fn num_values(&self) -> usize {
self.values.len()
}
}
/// Resolve value aliases.
///
/// Find the original SSA value that `value` aliases.
fn resolve_aliases(values: &PrimaryMap<Value, ValueData>, value: Value) -> Value {
let mut v = value;
// Note that values may be empty here.
for _ in 0..1 + values.len() {
if let ValueData::Alias { original, .. } = values[v] {
v = original;
} else {
return v;
}
}
panic!("Value alias loop detected for {}", value);
}
/// Handling values.
///
/// Values are either EBB arguments or instruction results.
impl DataFlowGraph {
/// Allocate an extended value entry.
fn make_value(&mut self, data: ValueData) -> Value {
self.values.push(data)
}
/// Check if a value reference is valid.
pub fn value_is_valid(&self, v: Value) -> bool {
self.values.is_valid(v)
}
/// Get the type of a value.
pub fn value_type(&self, v: Value) -> Type {
match self.values[v] {
ValueData::Inst { ty, .. } |
ValueData::Arg { ty, .. } |
ValueData::Alias { ty, .. } => ty,
}
}
/// Get the definition of a value.
///
/// This is either the instruction that defined it or the Ebb that has the value as an
/// argument.
pub fn value_def(&self, v: Value) -> ValueDef {
match self.values[v] {
ValueData::Inst { inst, num, .. } => {
assert_eq!(
Some(v),
self.results[inst].get(num as usize, &self.value_lists),
"Dangling result value {}: {}",
v,
self.display_inst(inst, None)
);
ValueDef::Res(inst, num as usize)
}
ValueData::Arg { ebb, num, .. } => {
assert_eq!(
Some(v),
self.ebbs[ebb].args.get(num as usize, &self.value_lists),
"Dangling EBB argument value"
);
ValueDef::Arg(ebb, num as usize)
}
ValueData::Alias { original, .. } => {
// Make sure we only recurse one level. `resolve_aliases` has safeguards to
// detect alias loops without overrunning the stack.
self.value_def(self.resolve_aliases(original))
}
}
}
/// Determine if `v` is an attached instruction result / EBB argument.
///
/// An attached value can't be attached to something else without first being detached.
///
/// Value aliases are not considered to be attached to anything. Use `resolve_aliases()` to
/// determine if the original aliased value is attached.
pub fn value_is_attached(&self, v: Value) -> bool {
use self::ValueData::*;
match self.values[v] {
Inst { inst, num, .. } => Some(&v) == self.inst_results(inst).get(num as usize),
Arg { ebb, num, .. } => Some(&v) == self.ebb_args(ebb).get(num as usize),
Alias { .. } => false,
}
}
/// Resolve value aliases.
///
/// Find the original SSA value that `value` aliases.
pub fn resolve_aliases(&self, value: Value) -> Value {
resolve_aliases(&self.values, value)
}
/// Resolve value copies.
///
/// Find the original definition of a value, looking through value aliases as well as
/// copy/spill/fill instructions.
pub fn resolve_copies(&self, value: Value) -> Value {
let mut v = value;
for _ in 0..self.insts.len() {
v = self.resolve_aliases(v);
v = match self.value_def(v) {
ValueDef::Res(inst, 0) => {
match self[inst] {
InstructionData::Unary { opcode, arg, .. } => {
match opcode {
Opcode::Copy | Opcode::Spill | Opcode::Fill => arg,
_ => return v,
}
}
_ => return v,
}
}
_ => return v,
};
}
panic!("Copy loop detected for {}", value);
}
/// Resolve all aliases among inst's arguments.
///
/// For each argument of inst which is defined by an alias, replace the
/// alias with the aliased value.
pub fn resolve_aliases_in_arguments(&mut self, inst: Inst) {
for arg in self.insts[inst].arguments_mut(&mut self.value_lists) {
let resolved = resolve_aliases(&self.values, *arg);
if resolved != *arg {
*arg = resolved;
}
}
}
/// Turn a value into an alias of another.
///
/// Change the `dest` value to behave as an alias of `src`. This means that all uses of `dest`
/// will behave as if they used that value `src`.
///
/// The `dest` value can't be attached to an instruction or EBB.
pub fn change_to_alias(&mut self, dest: Value, src: Value) {
assert!(!self.value_is_attached(dest));
// Try to create short alias chains by finding the original source value.
// This also avoids the creation of loops.
let original = self.resolve_aliases(src);
assert_ne!(
dest,
original,
"Aliasing {} to {} would create a loop",
dest,
src
);
let ty = self.value_type(original);
assert_eq!(
self.value_type(dest),
ty,
"Aliasing {} to {} would change its type {} to {}",
dest,
src,
self.value_type(dest),
ty
);
self.values[dest] = ValueData::Alias { ty, original };
}
/// Replace the results of one instruction with aliases to the results of another.
///
/// Change all the results of `dest_inst` to behave as aliases of
/// corresponding results of `src_inst`, as if calling change_to_alias for
/// each.
///
/// After calling this instruction, `dest_inst` will have had its results
/// cleared, so it likely needs to be removed from the graph.
///
pub fn replace_with_aliases(&mut self, dest_inst: Inst, src_inst: Inst) {
debug_assert_ne!(
dest_inst,
src_inst,
"Replacing {} with itself would create a loop",
dest_inst
);
debug_assert_eq!(
self.results[dest_inst].len(&self.value_lists),
self.results[src_inst].len(&self.value_lists),
"Replacing {} with {} would produce a different number of results.",
dest_inst,
src_inst
);
for (&dest, &src) in self.results[dest_inst]
.as_slice(&self.value_lists)
.iter()
.zip(self.results[src_inst].as_slice(&self.value_lists))
{
let original = src;
let ty = self.value_type(original);
assert_eq!(
self.value_type(dest),
ty,
"Aliasing {} to {} would change its type {} to {}",
dest,
src,
self.value_type(dest),
ty
);
self.values[dest] = ValueData::Alias { ty, original };
}
self.clear_results(dest_inst);
}
/// Create a new value alias.
///
/// Note that this function should only be called by the parser.
pub fn make_value_alias(&mut self, src: Value) -> Value {
let ty = self.value_type(src);
let data = ValueData::Alias { ty, original: src };
self.make_value(data)
}
}
/// Where did a value come from?
#[derive(Debug, PartialEq, Eq)]
pub enum ValueDef {
/// Value is the n'th result of an instruction.
Res(Inst, usize),
/// Value is the n'th argument to an EBB.
Arg(Ebb, usize),
}
impl ValueDef {
/// Unwrap the instruction where the value was defined, or panic.
pub fn unwrap_inst(&self) -> Inst {
match *self {
ValueDef::Res(inst, _) => inst,
_ => panic!("Value is not an instruction result"),
}
}
}
// Internal table storage for extended values.
#[derive(Clone, Debug)]
enum ValueData {
// Value is defined by an instruction.
Inst { ty: Type, num: u16, inst: Inst },
// Value is an EBB argument.
Arg { ty: Type, num: u16, ebb: Ebb },
// Value is an alias of another value.
// An alias value can't be linked as an instruction result or EBB argument. It is used as a
// placeholder when the original instruction or EBB has been rewritten or modified.
Alias { ty: Type, original: Value },
}
/// Instructions.
///
impl DataFlowGraph {
/// Create a new instruction.
///
/// The type of the first result is indicated by `data.ty`. If the instruction produces
/// multiple results, also call `make_inst_results` to allocate value table entries.
pub fn make_inst(&mut self, data: InstructionData) -> Inst {
let n = self.num_insts() + 1;
self.results.resize(n);
self.insts.push(data)
}
/// Get the instruction reference that will be assigned to the next instruction created by
/// `make_inst`.
///
/// This is only really useful to the parser.
pub fn next_inst(&self) -> Inst {
self.insts.next_key()
}
/// Returns an object that displays `inst`.
pub fn display_inst<'a, I: Into<Option<&'a TargetIsa>>>(
&'a self,
inst: Inst,
isa: I,
) -> DisplayInst<'a> {
DisplayInst(self, isa.into(), inst)
}
/// Get all value arguments on `inst` as a slice.
pub fn inst_args(&self, inst: Inst) -> &[Value] {
self.insts[inst].arguments(&self.value_lists)
}
/// Get all value arguments on `inst` as a mutable slice.
pub fn inst_args_mut(&mut self, inst: Inst) -> &mut [Value] {
self.insts[inst].arguments_mut(&mut self.value_lists)
}
/// Get the fixed value arguments on `inst` as a slice.
pub fn inst_fixed_args(&self, inst: Inst) -> &[Value] {
let fixed_args = self[inst].opcode().constraints().fixed_value_arguments();
&self.inst_args(inst)[..fixed_args]
}
/// Get the fixed value arguments on `inst` as a mutable slice.
pub fn inst_fixed_args_mut(&mut self, inst: Inst) -> &mut [Value] {
let fixed_args = self[inst].opcode().constraints().fixed_value_arguments();
&mut self.inst_args_mut(inst)[..fixed_args]
}
/// Get the variable value arguments on `inst` as a slice.
pub fn inst_variable_args(&self, inst: Inst) -> &[Value] {
let fixed_args = self[inst].opcode().constraints().fixed_value_arguments();
&self.inst_args(inst)[fixed_args..]
}
/// Get the variable value arguments on `inst` as a mutable slice.
pub fn inst_variable_args_mut(&mut self, inst: Inst) -> &mut [Value] {
let fixed_args = self[inst].opcode().constraints().fixed_value_arguments();
&mut self.inst_args_mut(inst)[fixed_args..]
}
/// Create result values for an instruction that produces multiple results.
///
/// Instructions that produce no result values only need to be created with `make_inst`,
/// otherwise call `make_inst_results` to allocate value table entries for the results.
///
/// The result value types are determined from the instruction's value type constraints and the
/// provided `ctrl_typevar` type for polymorphic instructions. For non-polymorphic
/// instructions, `ctrl_typevar` is ignored, and `VOID` can be used.
///
/// The type of the first result value is also set, even if it was already set in the
/// `InstructionData` passed to `make_inst`. If this function is called with a single-result
/// instruction, that is the only effect.
pub fn make_inst_results(&mut self, inst: Inst, ctrl_typevar: Type) -> usize {
self.make_inst_results_reusing(inst, ctrl_typevar, iter::empty())
}
/// Create result values for `inst`, reusing the provided detached values.
///
/// Create a new set of result values for `inst` using `ctrl_typevar` to determine the result
/// types. Any values provided by `reuse` will be reused. When `reuse` is exhausted or when it
/// produces `None`, a new value is created.
pub fn make_inst_results_reusing<I>(
&mut self,
inst: Inst,
ctrl_typevar: Type,
reuse: I,
) -> usize
where
I: Iterator<Item = Option<Value>>,
{
let mut reuse = reuse.fuse();
let constraints = self.insts[inst].opcode().constraints();
let fixed_results = constraints.fixed_results();
let mut total_results = fixed_results;
self.results[inst].clear(&mut self.value_lists);
// The fixed results will appear at the front of the list.
for res_idx in 0..fixed_results {
let ty = constraints.result_type(res_idx, ctrl_typevar);
if let Some(Some(v)) = reuse.next() {
debug_assert_eq!(self.value_type(v), ty, "Reused {} is wrong type", ty);
self.attach_result(inst, v);
} else {
self.append_result(inst, ty);
}
}
// Get the call signature if this is a function call.
if let Some(sig) = self.call_signature(inst) {
// Create result values corresponding to the call return types.
let var_results = self.signatures[sig].return_types.len();
total_results += var_results;
for res_idx in 0..var_results {
let ty = self.signatures[sig].return_types[res_idx].value_type;
if let Some(Some(v)) = reuse.next() {
debug_assert_eq!(self.value_type(v), ty, "Reused {} is wrong type", ty);
self.attach_result(inst, v);
} else {
self.append_result(inst, ty);
}
}
}
total_results
}
/// Create an `InsertBuilder` that will insert an instruction at the cursor's current position.
pub fn ins<'c, 'fc: 'c, 'fd>(
&'fd mut self,
at: &'c mut Cursor<'fc>,
) -> InsertBuilder<'fd, LayoutCursorInserter<'c, 'fc, 'fd>> {
InsertBuilder::new(LayoutCursorInserter::new(at, self))
}
/// Create a `ReplaceBuilder` that will replace `inst` with a new instruction in place.
pub fn replace(&mut self, inst: Inst) -> ReplaceBuilder {
ReplaceBuilder::new(self, inst)
}
/// Detach the list of result values from `inst` and return it.
///
/// This leaves `inst` without any result values. New result values can be created by calling
/// `make_inst_results` or by using a `replace(inst)` builder.
pub fn detach_results(&mut self, inst: Inst) -> ValueList {
self.results[inst].take()
}
/// Clear the list of result values from `inst`.
///
/// This leaves `inst` without any result values. New result values can be created by calling
/// `make_inst_results` or by using a `replace(inst)` builder.
pub fn clear_results(&mut self, inst: Inst) {
self.results[inst].clear(&mut self.value_lists)
}
/// Attach an existing value to the result value list for `inst`.
///
/// The `res` value is appended to the end of the result list.
///
/// This is a very low-level operation. Usually, instruction results with the correct types are
/// created automatically. The `res` value must not be attached to anything else.
pub fn attach_result(&mut self, inst: Inst, res: Value) {
assert!(!self.value_is_attached(res));
let num = self.results[inst].push(res, &mut self.value_lists);
assert!(num <= u16::MAX as usize, "Too many result values");
let ty = self.value_type(res);
self.values[res] = ValueData::Inst {
ty,
num: num as u16,
inst,
};
}
/// Replace an instruction result with a new value of type `new_type`.
///
/// The `old_value` must be an attached instruction result.
///
/// The old value is left detached, so it should probably be changed into something else.
///
/// Returns the new value.
pub fn replace_result(&mut self, old_value: Value, new_type: Type) -> Value {
let (num, inst) = match self.values[old_value] {
ValueData::Inst { num, inst, .. } => (num, inst),
_ => panic!("{} is not an instruction result value", old_value),
};
let new_value = self.make_value(ValueData::Inst {
ty: new_type,
num,
inst,
});
let num = num as usize;
let attached = mem::replace(
self.results[inst]
.get_mut(num, &mut self.value_lists)
.expect("Replacing detached result"),
new_value,
);
assert_eq!(
attached,
old_value,
"{} wasn't detached from {}",
old_value,
self.display_inst(inst, None)
);
new_value
}
/// Append a new instruction result value to `inst`.
pub fn append_result(&mut self, inst: Inst, ty: Type) -> Value {
let res = self.values.next_key();
let num = self.results[inst].push(res, &mut self.value_lists);
assert!(num <= u16::MAX as usize, "Too many result values");
self.make_value(ValueData::Inst {
ty,
inst,
num: num as u16,
})
}
/// Append a new value argument to an instruction.
///
/// Panics if the instruction doesn't support arguments.
pub fn append_inst_arg(&mut self, inst: Inst, new_arg: Value) {
let mut branch_values = self.insts[inst].take_value_list().expect(
"the instruction doesn't have value arguments",
);
branch_values.push(new_arg, &mut self.value_lists);
self.insts[inst].put_value_list(branch_values)
}
/// Get the first result of an instruction.
///
/// This function panics if the instruction doesn't have any result.
pub fn first_result(&self, inst: Inst) -> Value {
self.results[inst].first(&self.value_lists).expect(
"Instruction has no results",
)
}
/// Test if `inst` has any result values currently.
pub fn has_results(&self, inst: Inst) -> bool {
!self.results[inst].is_empty()
}
/// Return all the results of an instruction.
pub fn inst_results(&self, inst: Inst) -> &[Value] {
self.results[inst].as_slice(&self.value_lists)
}
/// Get the call signature of a direct or indirect call instruction.
/// Returns `None` if `inst` is not a call instruction.
pub fn call_signature(&self, inst: Inst) -> Option<SigRef> {
match self.insts[inst].analyze_call(&self.value_lists) {
CallInfo::NotACall => None,
CallInfo::Direct(f, _) => Some(self.ext_funcs[f].signature),
CallInfo::Indirect(s, _) => Some(s),
}
}
/// Compute the type of an instruction result from opcode constraints and call signatures.
///
/// This computes the same sequence of result types that `make_inst_results()` above would
/// assign to the created result values, but it does not depend on `make_inst_results()` being
/// called first.
///
/// Returns `None` if asked about a result index that is too large.
pub fn compute_result_type(
&self,
inst: Inst,
result_idx: usize,
ctrl_typevar: Type,
) -> Option<Type> {
let constraints = self.insts[inst].opcode().constraints();
let fixed_results = constraints.fixed_results();
if result_idx < fixed_results {
return Some(constraints.result_type(result_idx, ctrl_typevar));
}
// Not a fixed result, try to extract a return type from the call signature.
self.call_signature(inst).and_then(|sigref| {
self.signatures[sigref]
.return_types
.get(result_idx - fixed_results)
.map(|&arg| arg.value_type)
})
}
/// Get the controlling type variable, or `VOID` if `inst` isn't polymorphic.
pub fn ctrl_typevar(&self, inst: Inst) -> Type {
let constraints = self[inst].opcode().constraints();
if !constraints.is_polymorphic() {
types::VOID
} else if constraints.requires_typevar_operand() {
// Not all instruction formats have a designated operand, but in that case
// `requires_typevar_operand()` should never be true.
self.value_type(self[inst].typevar_operand(&self.value_lists).expect(
"Instruction format doesn't have a designated operand, bad opcode.",
))
} else {
self.value_type(self.first_result(inst))
}
}
}
/// Allow immutable access to instructions via indexing.
impl Index<Inst> for DataFlowGraph {
type Output = InstructionData;
fn index<'a>(&'a self, inst: Inst) -> &'a InstructionData {
&self.insts[inst]
}
}
/// Allow mutable access to instructions via indexing.
impl IndexMut<Inst> for DataFlowGraph {
fn index_mut<'a>(&'a mut self, inst: Inst) -> &'a mut InstructionData {
&mut self.insts[inst]
}
}
/// Extended basic blocks.
impl DataFlowGraph {
/// Create a new basic block.
pub fn make_ebb(&mut self) -> Ebb {
self.ebbs.push(EbbData::new())
}
/// Get the number of arguments on `ebb`.
pub fn num_ebb_args(&self, ebb: Ebb) -> usize {
self.ebbs[ebb].args.len(&self.value_lists)
}
/// Get the arguments to an EBB.
pub fn ebb_args(&self, ebb: Ebb) -> &[Value] {
self.ebbs[ebb].args.as_slice(&self.value_lists)
}
/// Append an argument with type `ty` to `ebb`.
pub fn append_ebb_arg(&mut self, ebb: Ebb, ty: Type) -> Value {
let arg = self.values.next_key();
let num = self.ebbs[ebb].args.push(arg, &mut self.value_lists);
assert!(num <= u16::MAX as usize, "Too many arguments to EBB");
self.make_value(ValueData::Arg {
ty,
num: num as u16,
ebb,
})
}
/// Removes `val` from `ebb`'s argument by swapping it with the last argument of `ebb`.
/// Returns the position of `val` before removal.
///
/// *Important*: to ensure O(1) deletion, this method swaps the removed argument with the
/// last `Ebb` argument. This can disrupt all the branch instructions jumping to this
/// `Ebb` for which you have to change the jump argument order if necessary.
///
/// Panics if `val` is not an `Ebb` argument. Returns `true` if `Ebb` arguments have been
/// swapped.
pub fn swap_remove_ebb_arg(&mut self, val: Value) -> usize {
let (ebb, num) = if let ValueData::Arg { num, ebb, .. } = self.values[val] {
(ebb, num)
} else {
panic!("{} must be an EBB argument", val);
};
self.ebbs[ebb].args.swap_remove(
num as usize,
&mut self.value_lists,
);
if let Some(last_arg_val) = self.ebbs[ebb].args.get(num as usize, &self.value_lists) {
// We update the position of the old last arg.
if let ValueData::Arg { num: ref mut old_num, .. } = self.values[last_arg_val] {
*old_num = num;
} else {
panic!("{} should be an Ebb argument but is not", last_arg_val);
}
}
num as usize
}
/// Removes `val` from `ebb`'s arguments by a standard linear time list removal which preserves
/// ordering. Also updates the values' data.
pub fn remove_ebb_arg(&mut self, val: Value) {
let (ebb, num) = if let ValueData::Arg { num, ebb, .. } = self.values[val] {
(ebb, num)
} else {
panic!("{} must be an EBB argument", val);
};
self.ebbs[ebb].args.remove(
num as usize,
&mut self.value_lists,
);
for index in num..(self.ebb_args(ebb).len() as u16) {
match self.values[self.ebbs[ebb]
.args
.get(index as usize, &self.value_lists)
.unwrap()] {
ValueData::Arg { ref mut num, .. } => {
*num -= 1;
}
_ => {
panic!(
"{} must be an EBB argument",
self.ebbs[ebb]
.args
.get(index as usize, &self.value_lists)
.unwrap()
)
}
}
}
}
/// Append an existing argument value to `ebb`.
///
/// The appended value can't already be attached to something else.
///
/// In almost all cases, you should be using `append_ebb_arg()` instead of this method.
pub fn attach_ebb_arg(&mut self, ebb: Ebb, arg: Value) {
assert!(!self.value_is_attached(arg));
let num = self.ebbs[ebb].args.push(arg, &mut self.value_lists);
assert!(num <= u16::MAX as usize, "Too many arguments to EBB");
let ty = self.value_type(arg);
self.values[arg] = ValueData::Arg {
ty,
num: num as u16,
ebb,
};
}
/// Replace an EBB argument with a new value of type `ty`.
///
/// The `old_value` must be an attached EBB argument. It is removed from its place in the list
/// of arguments and replaced by a new value of type `new_type`. The new value gets the same
/// position in the list, and other arguments are not disturbed.
///
/// The old value is left detached, so it should probably be changed into something else.
///
/// Returns the new value.
pub fn replace_ebb_arg(&mut self, old_arg: Value, new_type: Type) -> Value {
// Create new value identical to the old one except for the type.
let (ebb, num) = if let ValueData::Arg { num, ebb, .. } = self.values[old_arg] {
(ebb, num)
} else {
panic!("{} must be an EBB argument", old_arg);
};
let new_arg = self.make_value(ValueData::Arg {
ty: new_type,
num,
ebb,
});
self.ebbs[ebb].args.as_mut_slice(&mut self.value_lists)[num as usize] = new_arg;
new_arg
}
/// Detach all the arguments from `ebb` and return them as a `ValueList`.
///
/// This is a quite low-level operation. Sensible things to do with the detached EBB arguments
/// is to put them back on the same EBB with `attach_ebb_arg()` or change them into aliases
/// with `change_to_alias()`.
pub fn detach_ebb_args(&mut self, ebb: Ebb) -> ValueList {
self.ebbs[ebb].args.take()
}
}
// Contents of an extended basic block.
//
// Arguments for an extended basic block are values that dominate everything in the EBB. All
// branches to this EBB must provide matching arguments, and the arguments to the entry EBB must
// match the function arguments.
#[derive(Clone)]
struct EbbData {
// List of arguments to this EBB.
args: ValueList,
}
impl EbbData {
fn new() -> EbbData {
EbbData { args: ValueList::new() }
}
}
/// Object that can display an instruction.
pub struct DisplayInst<'a>(&'a DataFlowGraph, Option<&'a TargetIsa>, Inst);
impl<'a> fmt::Display for DisplayInst<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let dfg = self.0;
let isa = self.1;
let inst = self.2;
if let Some((first, rest)) = dfg.inst_results(inst).split_first() {
write!(f, "{}", first)?;
for v in rest {
write!(f, ", {}", v)?;
}
write!(f, " = ")?;
}
let typevar = dfg.ctrl_typevar(inst);
if typevar.is_void() {
write!(f, "{}", dfg[inst].opcode())?;
} else {
write!(f, "{}.{}", dfg[inst].opcode(), typevar)?;
}
write_operands(f, dfg, isa, inst)
}
}
#[cfg(test)]
mod tests {
use super::*;
use cursor::{Cursor, FuncCursor};
use ir::types;
use ir::{Function, Opcode, InstructionData, TrapCode};
#[test]
fn make_inst() {
let mut dfg = DataFlowGraph::new();
let idata = InstructionData::UnaryImm {
opcode: Opcode::Iconst,
imm: 0.into(),
};
let next = dfg.next_inst();
let inst = dfg.make_inst(idata);
assert_eq!(next, inst);
dfg.make_inst_results(inst, types::I32);
assert_eq!(inst.to_string(), "inst0");
assert_eq!(
dfg.display_inst(inst, None).to_string(),
"v0 = iconst.i32 0"
);
// Immutable reference resolution.
{
let immdfg = &dfg;
let ins = &immdfg[inst];
assert_eq!(ins.opcode(), Opcode::Iconst);
}
// Results.
let val = dfg.first_result(inst);
assert_eq!(dfg.inst_results(inst), &[val]);
assert_eq!(dfg.value_def(val), ValueDef::Res(inst, 0));
assert_eq!(dfg.value_type(val), types::I32);
// Replacing results.
assert!(dfg.value_is_attached(val));
let v2 = dfg.replace_result(val, types::F64);
assert!(!dfg.value_is_attached(val));
assert!(dfg.value_is_attached(v2));
assert_eq!(dfg.inst_results(inst), &[v2]);
assert_eq!(dfg.value_def(v2), ValueDef::Res(inst, 0));
assert_eq!(dfg.value_type(v2), types::F64);
}
#[test]
fn no_results() {
let mut dfg = DataFlowGraph::new();
let idata = InstructionData::Trap {
opcode: Opcode::Trap,
code: TrapCode::User(0),
};
let inst = dfg.make_inst(idata);
assert_eq!(dfg.display_inst(inst, None).to_string(), "trap user0");
// Result slice should be empty.
assert_eq!(dfg.inst_results(inst), &[]);
}
#[test]
fn ebb() {
let mut dfg = DataFlowGraph::new();
let ebb = dfg.make_ebb();
assert_eq!(ebb.to_string(), "ebb0");
assert_eq!(dfg.num_ebb_args(ebb), 0);
assert_eq!(dfg.ebb_args(ebb), &[]);
assert!(dfg.detach_ebb_args(ebb).is_empty());
assert_eq!(dfg.num_ebb_args(ebb), 0);
assert_eq!(dfg.ebb_args(ebb), &[]);
let arg1 = dfg.append_ebb_arg(ebb, types::F32);
assert_eq!(arg1.to_string(), "v0");
assert_eq!(dfg.num_ebb_args(ebb), 1);
assert_eq!(dfg.ebb_args(ebb), &[arg1]);
let arg2 = dfg.append_ebb_arg(ebb, types::I16);
assert_eq!(arg2.to_string(), "v1");
assert_eq!(dfg.num_ebb_args(ebb), 2);
assert_eq!(dfg.ebb_args(ebb), &[arg1, arg2]);
assert_eq!(dfg.value_def(arg1), ValueDef::Arg(ebb, 0));
assert_eq!(dfg.value_def(arg2), ValueDef::Arg(ebb, 1));
assert_eq!(dfg.value_type(arg1), types::F32);
assert_eq!(dfg.value_type(arg2), types::I16);
// Swap the two EBB arguments.
let vlist = dfg.detach_ebb_args(ebb);
assert_eq!(dfg.num_ebb_args(ebb), 0);
assert_eq!(dfg.ebb_args(ebb), &[]);
assert_eq!(vlist.as_slice(&dfg.value_lists), &[arg1, arg2]);
dfg.attach_ebb_arg(ebb, arg2);
let arg3 = dfg.append_ebb_arg(ebb, types::I32);
dfg.attach_ebb_arg(ebb, arg1);
assert_eq!(dfg.ebb_args(ebb), &[arg2, arg3, arg1]);
}
#[test]
fn replace_ebb_arguments() {
let mut dfg = DataFlowGraph::new();
let ebb = dfg.make_ebb();
let arg1 = dfg.append_ebb_arg(ebb, types::F32);
let new1 = dfg.replace_ebb_arg(arg1, types::I64);
assert_eq!(dfg.value_type(arg1), types::F32);
assert_eq!(dfg.value_type(new1), types::I64);
assert_eq!(dfg.ebb_args(ebb), &[new1]);
dfg.attach_ebb_arg(ebb, arg1);
assert_eq!(dfg.ebb_args(ebb), &[new1, arg1]);
let new2 = dfg.replace_ebb_arg(arg1, types::I8);
assert_eq!(dfg.value_type(arg1), types::F32);
assert_eq!(dfg.value_type(new2), types::I8);
assert_eq!(dfg.ebb_args(ebb), &[new1, new2]);
dfg.attach_ebb_arg(ebb, arg1);
assert_eq!(dfg.ebb_args(ebb), &[new1, new2, arg1]);
let new3 = dfg.replace_ebb_arg(new2, types::I16);
assert_eq!(dfg.value_type(new1), types::I64);
assert_eq!(dfg.value_type(new2), types::I8);
assert_eq!(dfg.value_type(new3), types::I16);
assert_eq!(dfg.ebb_args(ebb), &[new1, new3, arg1]);
}
#[test]
fn swap_remove_ebb_arguments() {
let mut dfg = DataFlowGraph::new();
let ebb = dfg.make_ebb();
let arg1 = dfg.append_ebb_arg(ebb, types::F32);
let arg2 = dfg.append_ebb_arg(ebb, types::F32);
let arg3 = dfg.append_ebb_arg(ebb, types::F32);
assert_eq!(dfg.ebb_args(ebb), &[arg1, arg2, arg3]);
dfg.swap_remove_ebb_arg(arg1);
assert_eq!(dfg.value_is_attached(arg1), false);
assert_eq!(dfg.value_is_attached(arg2), true);
assert_eq!(dfg.value_is_attached(arg3), true);
assert_eq!(dfg.ebb_args(ebb), &[arg3, arg2]);
dfg.swap_remove_ebb_arg(arg2);
assert_eq!(dfg.value_is_attached(arg2), false);
assert_eq!(dfg.value_is_attached(arg3), true);
assert_eq!(dfg.ebb_args(ebb), &[arg3]);
dfg.swap_remove_ebb_arg(arg3);
assert_eq!(dfg.value_is_attached(arg3), false);
assert_eq!(dfg.ebb_args(ebb), &[]);
}
#[test]
fn aliases() {
use ir::InstBuilder;
use ir::condcodes::IntCC;
let mut func = Function::new();
let ebb0 = func.dfg.make_ebb();
let mut pos = FuncCursor::new(&mut func);
pos.insert_ebb(ebb0);
// Build a little test program.
let v1 = pos.ins().iconst(types::I32, 42);
// Make sure we can resolve value aliases even when values is empty.
assert_eq!(pos.func.dfg.resolve_aliases(v1), v1);
let arg0 = pos.func.dfg.append_ebb_arg(ebb0, types::I32);
let (s, c) = pos.ins().iadd_cout(v1, arg0);
let iadd = match pos.func.dfg.value_def(s) {
ValueDef::Res(i, 0) => i,
_ => panic!(),
};
// Remove `c` from the result list.
pos.func.dfg.clear_results(iadd);
pos.func.dfg.attach_result(iadd, s);
// Replace `iadd_cout` with a normal `iadd` and an `icmp`.
pos.func.dfg.replace(iadd).iadd(v1, arg0);
let c2 = pos.ins().icmp(IntCC::UnsignedLessThan, s, v1);
pos.func.dfg.change_to_alias(c, c2);
assert_eq!(pos.func.dfg.resolve_aliases(c2), c2);
assert_eq!(pos.func.dfg.resolve_aliases(c), c2);
// Make a copy of the alias.
let c3 = pos.ins().copy(c);
// This does not see through copies.
assert_eq!(pos.func.dfg.resolve_aliases(c3), c3);
// But this goes through both copies and aliases.
assert_eq!(pos.func.dfg.resolve_copies(c3), c2);
}
}