Files
wasmtime/crates/jit/src/compiler.rs
iximeow 4cca510085 Windows FPRs preservation (#1216)
Preserve FPRs as required by the Windows fastcall calling convention.

This exposes an implementation limit due to Cranelift's approach to stack layout, which conflicts with expectations Windows makes in SEH layout - functions where the Cranelift user desires fastcall unwind information, that require preservation of an ABI-reserved FPR, that have a stack frame 240 bytes or larger, now produce an error when compiled. Several wasm spectests were disabled because they would trip this limit. This is a temporary constraint that should be fixed promptly.

Co-authored-by: bjorn3 <bjorn3@users.noreply.github.com>
2020-04-10 13:27:20 -07:00

469 lines
16 KiB
Rust

//! JIT compilation.
use crate::code_memory::CodeMemory;
use crate::instantiate::SetupError;
use cranelift_codegen::ir::ExternalName;
use cranelift_codegen::ir::InstBuilder;
use cranelift_codegen::print_errors::pretty_error;
use cranelift_codegen::Context;
use cranelift_codegen::{binemit, ir};
use cranelift_frontend::{FunctionBuilder, FunctionBuilderContext};
use std::collections::HashMap;
use std::convert::TryFrom;
use wasmtime_debug::{emit_debugsections_image, DebugInfoData};
use wasmtime_environ::entity::{EntityRef, PrimaryMap};
use wasmtime_environ::isa::{TargetFrontendConfig, TargetIsa};
use wasmtime_environ::wasm::{DefinedFuncIndex, DefinedMemoryIndex, MemoryIndex};
use wasmtime_environ::{
CacheConfig, CompileError, CompiledFunction, CompiledFunctionUnwindInfo, Compiler as _C,
ModuleMemoryOffset, ModuleTranslation, ModuleVmctxInfo, Relocation, RelocationTarget,
Relocations, Traps, Tunables, VMOffsets,
};
use wasmtime_runtime::{
InstantiationError, SignatureRegistry, TrapRegistration, TrapRegistry, VMFunctionBody,
VMSharedSignatureIndex, VMTrampoline,
};
/// Select which kind of compilation to use.
#[derive(Copy, Clone, Debug)]
pub enum CompilationStrategy {
/// Let Wasmtime pick the strategy.
Auto,
/// Compile all functions with Cranelift.
Cranelift,
/// Compile all functions with Lightbeam.
#[cfg(feature = "lightbeam")]
Lightbeam,
}
/// A WebAssembly code JIT compiler.
///
/// A `Compiler` instance owns the executable memory that it allocates.
///
/// TODO: Evolve this to support streaming rather than requiring a `&[u8]`
/// containing a whole wasm module at once.
///
/// TODO: Consider using cranelift-module.
pub struct Compiler {
isa: Box<dyn TargetIsa>,
code_memory: CodeMemory,
trap_registry: TrapRegistry,
signatures: SignatureRegistry,
strategy: CompilationStrategy,
cache_config: CacheConfig,
tunables: Tunables,
}
impl Compiler {
/// Construct a new `Compiler`.
pub fn new(
isa: Box<dyn TargetIsa>,
strategy: CompilationStrategy,
cache_config: CacheConfig,
tunables: Tunables,
) -> Self {
Self {
isa,
code_memory: CodeMemory::new(),
signatures: SignatureRegistry::new(),
strategy,
trap_registry: TrapRegistry::default(),
cache_config,
tunables,
}
}
}
#[allow(missing_docs)]
pub struct Compilation {
pub finished_functions: PrimaryMap<DefinedFuncIndex, *mut [VMFunctionBody]>,
pub relocations: Relocations,
pub trampolines: HashMap<VMSharedSignatureIndex, VMTrampoline>,
pub trampoline_relocations: HashMap<VMSharedSignatureIndex, Vec<Relocation>>,
pub jt_offsets: PrimaryMap<DefinedFuncIndex, ir::JumpTableOffsets>,
pub dbg_image: Option<Vec<u8>>,
pub trap_registration: TrapRegistration,
}
impl Compiler {
/// Return the target's frontend configuration settings.
pub fn frontend_config(&self) -> TargetFrontendConfig {
self.isa.frontend_config()
}
/// Return the tunables in use by this engine.
pub fn tunables(&self) -> &Tunables {
&self.tunables
}
/// Compile the given function bodies.
pub(crate) fn compile<'data>(
&mut self,
translation: &ModuleTranslation,
debug_data: Option<DebugInfoData>,
) -> Result<Compilation, SetupError> {
let (
compilation,
relocations,
address_transform,
value_ranges,
stack_slots,
traps,
frame_layouts,
) = match self.strategy {
// For now, interpret `Auto` as `Cranelift` since that's the most stable
// implementation.
CompilationStrategy::Auto | CompilationStrategy::Cranelift => {
wasmtime_environ::cranelift::Cranelift::compile_module(
translation,
&*self.isa,
&self.cache_config,
)
}
#[cfg(feature = "lightbeam")]
CompilationStrategy::Lightbeam => {
wasmtime_environ::lightbeam::Lightbeam::compile_module(
translation,
&*self.isa,
&self.cache_config,
)
}
}
.map_err(SetupError::Compile)?;
// Allocate all of the compiled functions into executable memory,
// copying over their contents.
let finished_functions =
allocate_functions(&mut self.code_memory, &compilation).map_err(|message| {
SetupError::Instantiate(InstantiationError::Resource(format!(
"failed to allocate memory for functions: {}",
message
)))
})?;
// Create a registration value for all traps in our allocated
// functions. This registration will allow us to map a trapping PC
// value to what the trap actually means if it came from JIT code.
let trap_registration = register_traps(&finished_functions, &traps, &self.trap_registry);
// Eagerly generate a entry trampoline for every type signature in the
// module. This should be "relatively lightweight" for most modules and
// guarantees that all functions (including indirect ones through
// tables) have a trampoline when invoked through the wasmtime API.
let mut cx = FunctionBuilderContext::new();
let mut trampolines = HashMap::new();
let mut trampoline_relocations = HashMap::new();
for sig in translation.module.local.signatures.values() {
let index = self.signatures.register(sig);
if trampolines.contains_key(&index) {
continue;
}
let (trampoline, relocations) = make_trampoline(
&*self.isa,
&mut self.code_memory,
&mut cx,
sig,
std::mem::size_of::<u128>(),
)?;
trampolines.insert(index, trampoline);
// Typically trampolines do not have relocations, so if one does
// show up be sure to log it in case anyone's listening and there's
// an accidental bug.
if relocations.len() > 0 {
log::info!("relocations found in trampoline for {:?}", sig);
trampoline_relocations.insert(index, relocations);
}
}
// Translate debug info (DWARF) only if at least one function is present.
let dbg_image = if debug_data.is_some() && !finished_functions.is_empty() {
let target_config = self.isa.frontend_config();
let ofs = VMOffsets::new(target_config.pointer_bytes(), &translation.module.local);
let mut funcs = Vec::new();
for (i, allocated) in finished_functions.into_iter() {
let ptr = (*allocated) as *const u8;
let body_len = compilation.get(i).body.len();
funcs.push((ptr, body_len));
}
let module_vmctx_info = {
ModuleVmctxInfo {
memory_offset: if ofs.num_imported_memories > 0 {
ModuleMemoryOffset::Imported(ofs.vmctx_vmmemory_import(MemoryIndex::new(0)))
} else if ofs.num_defined_memories > 0 {
ModuleMemoryOffset::Defined(
ofs.vmctx_vmmemory_definition_base(DefinedMemoryIndex::new(0)),
)
} else {
ModuleMemoryOffset::None
},
stack_slots,
}
};
let bytes = emit_debugsections_image(
&*self.isa,
debug_data.as_ref().unwrap(),
&module_vmctx_info,
&address_transform,
&value_ranges,
&frame_layouts,
&funcs,
)
.map_err(SetupError::DebugInfo)?;
Some(bytes)
} else {
None
};
let jt_offsets = compilation.get_jt_offsets();
Ok(Compilation {
finished_functions,
relocations,
trampolines,
trampoline_relocations,
jt_offsets,
dbg_image,
trap_registration,
})
}
/// Make memory containing compiled code executable.
pub(crate) fn publish_compiled_code(&mut self) {
self.code_memory.publish();
}
/// Shared signature registry.
pub fn signatures(&self) -> &SignatureRegistry {
&self.signatures
}
/// Shared registration of trap information
pub fn trap_registry(&self) -> &TrapRegistry {
&self.trap_registry
}
}
/// Create a trampoline for invoking a function.
pub fn make_trampoline(
isa: &dyn TargetIsa,
code_memory: &mut CodeMemory,
fn_builder_ctx: &mut FunctionBuilderContext,
signature: &ir::Signature,
value_size: usize,
) -> Result<(VMTrampoline, Vec<Relocation>), SetupError> {
let pointer_type = isa.pointer_type();
let mut wrapper_sig = ir::Signature::new(isa.frontend_config().default_call_conv);
// Add the callee `vmctx` parameter.
wrapper_sig.params.push(ir::AbiParam::special(
pointer_type,
ir::ArgumentPurpose::VMContext,
));
// Add the caller `vmctx` parameter.
wrapper_sig.params.push(ir::AbiParam::new(pointer_type));
// Add the `callee_address` parameter.
wrapper_sig.params.push(ir::AbiParam::new(pointer_type));
// Add the `values_vec` parameter.
wrapper_sig.params.push(ir::AbiParam::new(pointer_type));
let mut context = Context::new();
context.func = ir::Function::with_name_signature(ir::ExternalName::user(0, 0), wrapper_sig);
context.func.collect_frame_layout_info();
{
let mut builder = FunctionBuilder::new(&mut context.func, fn_builder_ctx);
let block0 = builder.create_block();
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
builder.seal_block(block0);
let (vmctx_ptr_val, caller_vmctx_ptr_val, callee_value, values_vec_ptr_val) = {
let params = builder.func.dfg.block_params(block0);
(params[0], params[1], params[2], params[3])
};
// Load the argument values out of `values_vec`.
let mflags = ir::MemFlags::trusted();
let callee_args = signature
.params
.iter()
.enumerate()
.map(|(i, r)| {
match i {
0 => vmctx_ptr_val,
1 => caller_vmctx_ptr_val,
_ =>
// i - 2 because vmctx and caller vmctx aren't passed through `values_vec`.
{
builder.ins().load(
r.value_type,
mflags,
values_vec_ptr_val,
((i - 2) * value_size) as i32,
)
}
}
})
.collect::<Vec<_>>();
let new_sig = builder.import_signature(signature.clone());
let call = builder
.ins()
.call_indirect(new_sig, callee_value, &callee_args);
let results = builder.func.dfg.inst_results(call).to_vec();
// Store the return values into `values_vec`.
let mflags = ir::MemFlags::trusted();
for (i, r) in results.iter().enumerate() {
builder
.ins()
.store(mflags, *r, values_vec_ptr_val, (i * value_size) as i32);
}
builder.ins().return_(&[]);
builder.finalize()
}
let mut code_buf = Vec::new();
let mut reloc_sink = RelocSink::default();
let mut trap_sink = binemit::NullTrapSink {};
let mut stackmap_sink = binemit::NullStackmapSink {};
context
.compile_and_emit(
isa,
&mut code_buf,
&mut reloc_sink,
&mut trap_sink,
&mut stackmap_sink,
)
.map_err(|error| {
SetupError::Compile(CompileError::Codegen(pretty_error(
&context.func,
Some(isa),
error,
)))
})?;
let unwind_info = CompiledFunctionUnwindInfo::new(isa, &context).map_err(|error| {
SetupError::Compile(CompileError::Codegen(pretty_error(
&context.func,
Some(isa),
error,
)))
})?;
let ptr = code_memory
.allocate_for_function(&CompiledFunction {
body: code_buf,
jt_offsets: context.func.jt_offsets,
unwind_info,
})
.map_err(|message| SetupError::Instantiate(InstantiationError::Resource(message)))?
.as_ptr();
Ok((
unsafe { std::mem::transmute::<*const VMFunctionBody, VMTrampoline>(ptr) },
reloc_sink.relocs,
))
}
fn allocate_functions(
code_memory: &mut CodeMemory,
compilation: &wasmtime_environ::Compilation,
) -> Result<PrimaryMap<DefinedFuncIndex, *mut [VMFunctionBody]>, String> {
let fat_ptrs = code_memory.allocate_for_compilation(compilation)?;
// Second, create a PrimaryMap from result vector of pointers.
let mut result = PrimaryMap::with_capacity(compilation.len());
for i in 0..fat_ptrs.len() {
let fat_ptr: *mut [VMFunctionBody] = fat_ptrs[i];
result.push(fat_ptr);
}
Ok(result)
}
fn register_traps(
allocated_functions: &PrimaryMap<DefinedFuncIndex, *mut [VMFunctionBody]>,
traps: &Traps,
registry: &TrapRegistry,
) -> TrapRegistration {
let traps =
allocated_functions
.values()
.zip(traps.values())
.flat_map(|(func_addr, func_traps)| {
func_traps.iter().map(move |trap_desc| {
let func_addr = *func_addr as *const u8 as usize;
let offset = usize::try_from(trap_desc.code_offset).unwrap();
let trap_addr = func_addr + offset;
(trap_addr, trap_desc.source_loc, trap_desc.trap_code)
})
});
registry.register_traps(traps)
}
/// We don't expect trampoline compilation to produce many relocations, so
/// this `RelocSink` just asserts that it doesn't recieve most of them, but
/// handles libcall ones.
#[derive(Default)]
struct RelocSink {
relocs: Vec<Relocation>,
}
impl binemit::RelocSink for RelocSink {
fn reloc_block(
&mut self,
_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_block_offset: binemit::CodeOffset,
) {
panic!("trampoline compilation should not produce block relocs");
}
fn reloc_external(
&mut self,
offset: binemit::CodeOffset,
_srcloc: ir::SourceLoc,
reloc: binemit::Reloc,
name: &ir::ExternalName,
addend: binemit::Addend,
) {
let reloc_target = if let ExternalName::LibCall(libcall) = *name {
RelocationTarget::LibCall(libcall)
} else {
panic!("unrecognized external name")
};
self.relocs.push(Relocation {
reloc,
reloc_target,
offset,
addend,
});
}
fn reloc_constant(
&mut self,
_code_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_constant_offset: ir::ConstantOffset,
) {
panic!("trampoline compilation should not produce constant relocs");
}
fn reloc_jt(
&mut self,
_offset: binemit::CodeOffset,
_reloc: binemit::Reloc,
_jt: ir::JumpTable,
) {
panic!("trampoline compilation should not produce jump table relocs");
}
}