This fixes some issues that are cropping up where some syntax will get phased out in 2021
1396 lines
45 KiB
Rust
1396 lines
45 KiB
Rust
use cranelift_codegen_shared::condcodes::IntCC;
|
|
use cranelift_entity::{entity_impl, PrimaryMap};
|
|
|
|
use std::collections::HashMap;
|
|
use std::fmt;
|
|
use std::fmt::{Display, Error, Formatter};
|
|
use std::rc::Rc;
|
|
|
|
use crate::cdsl::camel_case;
|
|
use crate::cdsl::formats::{FormatField, InstructionFormat};
|
|
use crate::cdsl::operands::Operand;
|
|
use crate::cdsl::type_inference::Constraint;
|
|
use crate::cdsl::types::{LaneType, ReferenceType, ValueType, VectorType};
|
|
use crate::cdsl::typevar::TypeVar;
|
|
|
|
use crate::shared::formats::Formats;
|
|
use crate::shared::types::{Bool, Float, Int, Reference};
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
|
|
pub(crate) struct OpcodeNumber(u32);
|
|
entity_impl!(OpcodeNumber);
|
|
|
|
pub(crate) type AllInstructions = PrimaryMap<OpcodeNumber, Instruction>;
|
|
|
|
pub(crate) struct InstructionGroupBuilder<'all_inst> {
|
|
all_instructions: &'all_inst mut AllInstructions,
|
|
own_instructions: Vec<Instruction>,
|
|
}
|
|
|
|
impl<'all_inst> InstructionGroupBuilder<'all_inst> {
|
|
pub fn new(all_instructions: &'all_inst mut AllInstructions) -> Self {
|
|
Self {
|
|
all_instructions,
|
|
own_instructions: Vec::new(),
|
|
}
|
|
}
|
|
|
|
pub fn push(&mut self, builder: InstructionBuilder) {
|
|
let opcode_number = OpcodeNumber(self.all_instructions.next_key().as_u32());
|
|
let inst = builder.build(opcode_number);
|
|
// Note this clone is cheap, since Instruction is a Rc<> wrapper for InstructionContent.
|
|
self.own_instructions.push(inst.clone());
|
|
self.all_instructions.push(inst);
|
|
}
|
|
|
|
pub fn build(self) -> InstructionGroup {
|
|
InstructionGroup {
|
|
instructions: self.own_instructions,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Every instruction must belong to exactly one instruction group. A given
|
|
/// target architecture can support instructions from multiple groups, and it
|
|
/// does not necessarily support all instructions in a group.
|
|
pub(crate) struct InstructionGroup {
|
|
instructions: Vec<Instruction>,
|
|
}
|
|
|
|
impl InstructionGroup {
|
|
pub fn by_name(&self, name: &'static str) -> &Instruction {
|
|
self.instructions
|
|
.iter()
|
|
.find(|inst| inst.name == name)
|
|
.unwrap_or_else(|| panic!("instruction with name '{}' does not exist", name))
|
|
}
|
|
}
|
|
|
|
/// Instructions can have parameters bound to them to specialize them for more specific encodings
|
|
/// (e.g. the encoding for adding two float types may be different than that of adding two
|
|
/// integer types)
|
|
pub(crate) trait Bindable {
|
|
/// Bind a parameter to an instruction
|
|
fn bind(&self, parameter: impl Into<BindParameter>) -> BoundInstruction;
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub(crate) struct PolymorphicInfo {
|
|
pub use_typevar_operand: bool,
|
|
pub ctrl_typevar: TypeVar,
|
|
pub other_typevars: Vec<TypeVar>,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub(crate) struct InstructionContent {
|
|
/// Instruction mnemonic, also becomes opcode name.
|
|
pub name: String,
|
|
pub camel_name: String,
|
|
pub opcode_number: OpcodeNumber,
|
|
|
|
/// Documentation string.
|
|
pub doc: String,
|
|
|
|
/// Input operands. This can be a mix of SSA value operands and other operand kinds.
|
|
pub operands_in: Vec<Operand>,
|
|
/// Output operands. The output operands must be SSA values or `variable_args`.
|
|
pub operands_out: Vec<Operand>,
|
|
/// Instruction-specific TypeConstraints.
|
|
pub constraints: Vec<Constraint>,
|
|
|
|
/// Instruction format, automatically derived from the input operands.
|
|
pub format: Rc<InstructionFormat>,
|
|
|
|
/// One of the input or output operands is a free type variable. None if the instruction is not
|
|
/// polymorphic, set otherwise.
|
|
pub polymorphic_info: Option<PolymorphicInfo>,
|
|
|
|
/// Indices in operands_in of input operands that are values.
|
|
pub value_opnums: Vec<usize>,
|
|
/// Indices in operands_in of input operands that are immediates or entities.
|
|
pub imm_opnums: Vec<usize>,
|
|
/// Indices in operands_out of output operands that are values.
|
|
pub value_results: Vec<usize>,
|
|
|
|
/// True for instructions that terminate the block.
|
|
pub is_terminator: bool,
|
|
/// True for all branch or jump instructions.
|
|
pub is_branch: bool,
|
|
/// True for all indirect branch or jump instructions.',
|
|
pub is_indirect_branch: bool,
|
|
/// Is this a call instruction?
|
|
pub is_call: bool,
|
|
/// Is this a return instruction?
|
|
pub is_return: bool,
|
|
/// Is this a ghost instruction?
|
|
pub is_ghost: bool,
|
|
/// Can this instruction read from memory?
|
|
pub can_load: bool,
|
|
/// Can this instruction write to memory?
|
|
pub can_store: bool,
|
|
/// Can this instruction cause a trap?
|
|
pub can_trap: bool,
|
|
/// Does this instruction have other side effects besides can_* flags?
|
|
pub other_side_effects: bool,
|
|
/// Does this instruction write to CPU flags?
|
|
pub writes_cpu_flags: bool,
|
|
/// Should this opcode be considered to clobber all live registers, during regalloc?
|
|
pub clobbers_all_regs: bool,
|
|
}
|
|
|
|
impl InstructionContent {
|
|
pub fn snake_name(&self) -> &str {
|
|
if &self.name == "return" {
|
|
"return_"
|
|
} else {
|
|
&self.name
|
|
}
|
|
}
|
|
|
|
pub fn all_typevars(&self) -> Vec<&TypeVar> {
|
|
match &self.polymorphic_info {
|
|
Some(poly) => {
|
|
let mut result = vec![&poly.ctrl_typevar];
|
|
result.extend(&poly.other_typevars);
|
|
result
|
|
}
|
|
None => Vec::new(),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(crate) type Instruction = Rc<InstructionContent>;
|
|
|
|
impl Bindable for Instruction {
|
|
fn bind(&self, parameter: impl Into<BindParameter>) -> BoundInstruction {
|
|
BoundInstruction::new(self).bind(parameter)
|
|
}
|
|
}
|
|
|
|
impl fmt::Display for InstructionContent {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
|
if !self.operands_out.is_empty() {
|
|
let operands_out = self
|
|
.operands_out
|
|
.iter()
|
|
.map(|op| op.name)
|
|
.collect::<Vec<_>>()
|
|
.join(", ");
|
|
fmt.write_str(&operands_out)?;
|
|
fmt.write_str(" = ")?;
|
|
}
|
|
|
|
fmt.write_str(&self.name)?;
|
|
|
|
if !self.operands_in.is_empty() {
|
|
let operands_in = self
|
|
.operands_in
|
|
.iter()
|
|
.map(|op| op.name)
|
|
.collect::<Vec<_>>()
|
|
.join(", ");
|
|
fmt.write_str(" ")?;
|
|
fmt.write_str(&operands_in)?;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
pub(crate) struct InstructionBuilder {
|
|
name: String,
|
|
doc: String,
|
|
format: Rc<InstructionFormat>,
|
|
operands_in: Option<Vec<Operand>>,
|
|
operands_out: Option<Vec<Operand>>,
|
|
constraints: Option<Vec<Constraint>>,
|
|
|
|
// See Instruction comments for the meaning of these fields.
|
|
is_terminator: bool,
|
|
is_branch: bool,
|
|
is_indirect_branch: bool,
|
|
is_call: bool,
|
|
is_return: bool,
|
|
is_ghost: bool,
|
|
can_load: bool,
|
|
can_store: bool,
|
|
can_trap: bool,
|
|
other_side_effects: bool,
|
|
clobbers_all_regs: bool,
|
|
}
|
|
|
|
impl InstructionBuilder {
|
|
pub fn new<S: Into<String>>(name: S, doc: S, format: &Rc<InstructionFormat>) -> Self {
|
|
Self {
|
|
name: name.into(),
|
|
doc: doc.into(),
|
|
format: format.clone(),
|
|
operands_in: None,
|
|
operands_out: None,
|
|
constraints: None,
|
|
|
|
is_terminator: false,
|
|
is_branch: false,
|
|
is_indirect_branch: false,
|
|
is_call: false,
|
|
is_return: false,
|
|
is_ghost: false,
|
|
can_load: false,
|
|
can_store: false,
|
|
can_trap: false,
|
|
other_side_effects: false,
|
|
clobbers_all_regs: false,
|
|
}
|
|
}
|
|
|
|
pub fn operands_in(mut self, operands: Vec<&Operand>) -> Self {
|
|
assert!(self.operands_in.is_none());
|
|
self.operands_in = Some(operands.iter().map(|x| (*x).clone()).collect());
|
|
self
|
|
}
|
|
|
|
pub fn operands_out(mut self, operands: Vec<&Operand>) -> Self {
|
|
assert!(self.operands_out.is_none());
|
|
self.operands_out = Some(operands.iter().map(|x| (*x).clone()).collect());
|
|
self
|
|
}
|
|
|
|
pub fn constraints(mut self, constraints: Vec<Constraint>) -> Self {
|
|
assert!(self.constraints.is_none());
|
|
self.constraints = Some(constraints);
|
|
self
|
|
}
|
|
|
|
#[allow(clippy::wrong_self_convention)]
|
|
pub fn is_terminator(mut self, val: bool) -> Self {
|
|
self.is_terminator = val;
|
|
self
|
|
}
|
|
|
|
#[allow(clippy::wrong_self_convention)]
|
|
pub fn is_branch(mut self, val: bool) -> Self {
|
|
self.is_branch = val;
|
|
self
|
|
}
|
|
|
|
#[allow(clippy::wrong_self_convention)]
|
|
pub fn is_indirect_branch(mut self, val: bool) -> Self {
|
|
self.is_indirect_branch = val;
|
|
self
|
|
}
|
|
|
|
#[allow(clippy::wrong_self_convention)]
|
|
pub fn is_call(mut self, val: bool) -> Self {
|
|
self.is_call = val;
|
|
self
|
|
}
|
|
|
|
#[allow(clippy::wrong_self_convention)]
|
|
pub fn is_return(mut self, val: bool) -> Self {
|
|
self.is_return = val;
|
|
self
|
|
}
|
|
|
|
#[allow(clippy::wrong_self_convention)]
|
|
pub fn is_ghost(mut self, val: bool) -> Self {
|
|
self.is_ghost = val;
|
|
self
|
|
}
|
|
|
|
pub fn can_load(mut self, val: bool) -> Self {
|
|
self.can_load = val;
|
|
self
|
|
}
|
|
|
|
pub fn can_store(mut self, val: bool) -> Self {
|
|
self.can_store = val;
|
|
self
|
|
}
|
|
|
|
pub fn can_trap(mut self, val: bool) -> Self {
|
|
self.can_trap = val;
|
|
self
|
|
}
|
|
|
|
pub fn other_side_effects(mut self, val: bool) -> Self {
|
|
self.other_side_effects = val;
|
|
self
|
|
}
|
|
|
|
pub fn clobbers_all_regs(mut self, val: bool) -> Self {
|
|
self.clobbers_all_regs = val;
|
|
self
|
|
}
|
|
|
|
fn build(self, opcode_number: OpcodeNumber) -> Instruction {
|
|
let operands_in = self.operands_in.unwrap_or_else(Vec::new);
|
|
let operands_out = self.operands_out.unwrap_or_else(Vec::new);
|
|
|
|
let mut value_opnums = Vec::new();
|
|
let mut imm_opnums = Vec::new();
|
|
for (i, op) in operands_in.iter().enumerate() {
|
|
if op.is_value() {
|
|
value_opnums.push(i);
|
|
} else if op.is_immediate_or_entityref() {
|
|
imm_opnums.push(i);
|
|
} else {
|
|
assert!(op.is_varargs());
|
|
}
|
|
}
|
|
|
|
let value_results = operands_out
|
|
.iter()
|
|
.enumerate()
|
|
.filter_map(|(i, op)| if op.is_value() { Some(i) } else { None })
|
|
.collect();
|
|
|
|
verify_format(&self.name, &operands_in, &self.format);
|
|
|
|
let polymorphic_info =
|
|
verify_polymorphic(&operands_in, &operands_out, &self.format, &value_opnums);
|
|
|
|
// Infer from output operands whether an instruction clobbers CPU flags or not.
|
|
let writes_cpu_flags = operands_out.iter().any(|op| op.is_cpu_flags());
|
|
|
|
let camel_name = camel_case(&self.name);
|
|
|
|
Rc::new(InstructionContent {
|
|
name: self.name,
|
|
camel_name,
|
|
opcode_number,
|
|
doc: self.doc,
|
|
operands_in,
|
|
operands_out,
|
|
constraints: self.constraints.unwrap_or_else(Vec::new),
|
|
format: self.format,
|
|
polymorphic_info,
|
|
value_opnums,
|
|
value_results,
|
|
imm_opnums,
|
|
is_terminator: self.is_terminator,
|
|
is_branch: self.is_branch,
|
|
is_indirect_branch: self.is_indirect_branch,
|
|
is_call: self.is_call,
|
|
is_return: self.is_return,
|
|
is_ghost: self.is_ghost,
|
|
can_load: self.can_load,
|
|
can_store: self.can_store,
|
|
can_trap: self.can_trap,
|
|
other_side_effects: self.other_side_effects,
|
|
writes_cpu_flags,
|
|
clobbers_all_regs: self.clobbers_all_regs,
|
|
})
|
|
}
|
|
}
|
|
|
|
/// A thin wrapper like Option<ValueType>, but with more precise semantics.
|
|
#[derive(Clone)]
|
|
pub(crate) enum ValueTypeOrAny {
|
|
ValueType(ValueType),
|
|
Any,
|
|
}
|
|
|
|
impl ValueTypeOrAny {
|
|
pub fn expect(self, msg: &str) -> ValueType {
|
|
match self {
|
|
ValueTypeOrAny::ValueType(vt) => vt,
|
|
ValueTypeOrAny::Any => panic!("Unexpected Any: {}", msg),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The number of bits in the vector
|
|
type VectorBitWidth = u64;
|
|
|
|
/// An parameter used for binding instructions to specific types or values
|
|
pub(crate) enum BindParameter {
|
|
Any,
|
|
Lane(LaneType),
|
|
Vector(LaneType, VectorBitWidth),
|
|
Reference(ReferenceType),
|
|
Immediate(Immediate),
|
|
}
|
|
|
|
/// Constructor for more easily building vector parameters from any lane type
|
|
pub(crate) fn vector(parameter: impl Into<LaneType>, vector_size: VectorBitWidth) -> BindParameter {
|
|
BindParameter::Vector(parameter.into(), vector_size)
|
|
}
|
|
|
|
impl From<Int> for BindParameter {
|
|
fn from(ty: Int) -> Self {
|
|
BindParameter::Lane(ty.into())
|
|
}
|
|
}
|
|
|
|
impl From<Bool> for BindParameter {
|
|
fn from(ty: Bool) -> Self {
|
|
BindParameter::Lane(ty.into())
|
|
}
|
|
}
|
|
|
|
impl From<Float> for BindParameter {
|
|
fn from(ty: Float) -> Self {
|
|
BindParameter::Lane(ty.into())
|
|
}
|
|
}
|
|
|
|
impl From<LaneType> for BindParameter {
|
|
fn from(ty: LaneType) -> Self {
|
|
BindParameter::Lane(ty)
|
|
}
|
|
}
|
|
|
|
impl From<Reference> for BindParameter {
|
|
fn from(ty: Reference) -> Self {
|
|
BindParameter::Reference(ty.into())
|
|
}
|
|
}
|
|
|
|
impl From<Immediate> for BindParameter {
|
|
fn from(imm: Immediate) -> Self {
|
|
BindParameter::Immediate(imm)
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub(crate) enum Immediate {
|
|
// When needed, this enum should be expanded to include other immediate types (e.g. u8, u128).
|
|
IntCC(IntCC),
|
|
}
|
|
|
|
impl Display for Immediate {
|
|
fn fmt(&self, f: &mut Formatter) -> Result<(), Error> {
|
|
match self {
|
|
Immediate::IntCC(x) => write!(f, "IntCC::{:?}", x),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub(crate) struct BoundInstruction {
|
|
pub inst: Instruction,
|
|
pub value_types: Vec<ValueTypeOrAny>,
|
|
pub immediate_values: Vec<Immediate>,
|
|
}
|
|
|
|
impl BoundInstruction {
|
|
/// Construct a new bound instruction (with nothing bound yet) from an instruction
|
|
fn new(inst: &Instruction) -> Self {
|
|
BoundInstruction {
|
|
inst: inst.clone(),
|
|
value_types: vec![],
|
|
immediate_values: vec![],
|
|
}
|
|
}
|
|
|
|
/// Verify that the bindings for a BoundInstruction are correct.
|
|
fn verify_bindings(&self) -> Result<(), String> {
|
|
// Verify that binding types to the instruction does not violate the polymorphic rules.
|
|
if !self.value_types.is_empty() {
|
|
match &self.inst.polymorphic_info {
|
|
Some(poly) => {
|
|
if self.value_types.len() > 1 + poly.other_typevars.len() {
|
|
return Err(format!(
|
|
"trying to bind too many types for {}",
|
|
self.inst.name
|
|
));
|
|
}
|
|
}
|
|
None => {
|
|
return Err(format!(
|
|
"trying to bind a type for {} which is not a polymorphic instruction",
|
|
self.inst.name
|
|
));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify that only the right number of immediates are bound.
|
|
let immediate_count = self
|
|
.inst
|
|
.operands_in
|
|
.iter()
|
|
.filter(|o| o.is_immediate_or_entityref())
|
|
.count();
|
|
if self.immediate_values.len() > immediate_count {
|
|
return Err(format!(
|
|
"trying to bind too many immediates ({}) to instruction {} which only expects {} \
|
|
immediates",
|
|
self.immediate_values.len(),
|
|
self.inst.name,
|
|
immediate_count
|
|
));
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl Bindable for BoundInstruction {
|
|
fn bind(&self, parameter: impl Into<BindParameter>) -> BoundInstruction {
|
|
let mut modified = self.clone();
|
|
match parameter.into() {
|
|
BindParameter::Any => modified.value_types.push(ValueTypeOrAny::Any),
|
|
BindParameter::Lane(lane_type) => modified
|
|
.value_types
|
|
.push(ValueTypeOrAny::ValueType(lane_type.into())),
|
|
BindParameter::Vector(lane_type, vector_size_in_bits) => {
|
|
let num_lanes = vector_size_in_bits / lane_type.lane_bits();
|
|
assert!(
|
|
num_lanes >= 2,
|
|
"Minimum lane number for bind_vector is 2, found {}.",
|
|
num_lanes,
|
|
);
|
|
let vector_type = ValueType::Vector(VectorType::new(lane_type, num_lanes));
|
|
modified
|
|
.value_types
|
|
.push(ValueTypeOrAny::ValueType(vector_type));
|
|
}
|
|
BindParameter::Reference(reference_type) => {
|
|
modified
|
|
.value_types
|
|
.push(ValueTypeOrAny::ValueType(reference_type.into()));
|
|
}
|
|
BindParameter::Immediate(immediate) => modified.immediate_values.push(immediate),
|
|
}
|
|
modified.verify_bindings().unwrap();
|
|
modified
|
|
}
|
|
}
|
|
|
|
/// Checks that the input operands actually match the given format.
|
|
fn verify_format(inst_name: &str, operands_in: &[Operand], format: &InstructionFormat) {
|
|
// A format is defined by:
|
|
// - its number of input value operands,
|
|
// - its number and names of input immediate operands,
|
|
// - whether it has a value list or not.
|
|
let mut num_values = 0;
|
|
let mut num_immediates = 0;
|
|
|
|
for operand in operands_in.iter() {
|
|
if operand.is_varargs() {
|
|
assert!(
|
|
format.has_value_list,
|
|
"instruction {} has varargs, but its format {} doesn't have a value list; you may \
|
|
need to use a different format.",
|
|
inst_name, format.name
|
|
);
|
|
}
|
|
if operand.is_value() {
|
|
num_values += 1;
|
|
}
|
|
if operand.is_immediate_or_entityref() {
|
|
if let Some(format_field) = format.imm_fields.get(num_immediates) {
|
|
assert_eq!(
|
|
format_field.kind.rust_field_name,
|
|
operand.kind.rust_field_name,
|
|
"{}th operand of {} should be {} (according to format), not {} (according to \
|
|
inst definition). You may need to use a different format.",
|
|
num_immediates,
|
|
inst_name,
|
|
format_field.kind.rust_field_name,
|
|
operand.kind.rust_field_name
|
|
);
|
|
num_immediates += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert_eq!(
|
|
num_values, format.num_value_operands,
|
|
"inst {} doesn't have as many value input operands as its format {} declares; you may need \
|
|
to use a different format.",
|
|
inst_name, format.name
|
|
);
|
|
|
|
assert_eq!(
|
|
num_immediates,
|
|
format.imm_fields.len(),
|
|
"inst {} doesn't have as many immediate input \
|
|
operands as its format {} declares; you may need to use a different format.",
|
|
inst_name,
|
|
format.name
|
|
);
|
|
}
|
|
|
|
/// Check if this instruction is polymorphic, and verify its use of type variables.
|
|
fn verify_polymorphic(
|
|
operands_in: &[Operand],
|
|
operands_out: &[Operand],
|
|
format: &InstructionFormat,
|
|
value_opnums: &[usize],
|
|
) -> Option<PolymorphicInfo> {
|
|
// The instruction is polymorphic if it has one free input or output operand.
|
|
let is_polymorphic = operands_in
|
|
.iter()
|
|
.any(|op| op.is_value() && op.type_var().unwrap().free_typevar().is_some())
|
|
|| operands_out
|
|
.iter()
|
|
.any(|op| op.is_value() && op.type_var().unwrap().free_typevar().is_some());
|
|
|
|
if !is_polymorphic {
|
|
return None;
|
|
}
|
|
|
|
// Verify the use of type variables.
|
|
let tv_op = format.typevar_operand;
|
|
let mut maybe_error_message = None;
|
|
if let Some(tv_op) = tv_op {
|
|
if tv_op < value_opnums.len() {
|
|
let op_num = value_opnums[tv_op];
|
|
let tv = operands_in[op_num].type_var().unwrap();
|
|
let free_typevar = tv.free_typevar();
|
|
if (free_typevar.is_some() && tv == &free_typevar.unwrap())
|
|
|| tv.singleton_type().is_some()
|
|
{
|
|
match is_ctrl_typevar_candidate(tv, &operands_in, &operands_out) {
|
|
Ok(other_typevars) => {
|
|
return Some(PolymorphicInfo {
|
|
use_typevar_operand: true,
|
|
ctrl_typevar: tv.clone(),
|
|
other_typevars,
|
|
});
|
|
}
|
|
Err(error_message) => {
|
|
maybe_error_message = Some(error_message);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
// If we reached here, it means the type variable indicated as the typevar operand couldn't
|
|
// control every other input and output type variable. We need to look at the result type
|
|
// variables.
|
|
if operands_out.is_empty() {
|
|
// No result means no other possible type variable, so it's a type inference failure.
|
|
match maybe_error_message {
|
|
Some(msg) => panic!("{}", msg),
|
|
None => panic!("typevar_operand must be a free type variable"),
|
|
}
|
|
}
|
|
|
|
// Otherwise, try to infer the controlling type variable by looking at the first result.
|
|
let tv = operands_out[0].type_var().unwrap();
|
|
let free_typevar = tv.free_typevar();
|
|
if free_typevar.is_some() && tv != &free_typevar.unwrap() {
|
|
panic!("first result must be a free type variable");
|
|
}
|
|
|
|
// At this point, if the next unwrap() fails, it means the output type couldn't be used as a
|
|
// controlling type variable either; panicking is the right behavior.
|
|
let other_typevars = is_ctrl_typevar_candidate(tv, &operands_in, &operands_out).unwrap();
|
|
|
|
Some(PolymorphicInfo {
|
|
use_typevar_operand: false,
|
|
ctrl_typevar: tv.clone(),
|
|
other_typevars,
|
|
})
|
|
}
|
|
|
|
/// Verify that the use of TypeVars is consistent with `ctrl_typevar` as the controlling type
|
|
/// variable.
|
|
///
|
|
/// All polymorhic inputs must either be derived from `ctrl_typevar` or be independent free type
|
|
/// variables only used once.
|
|
///
|
|
/// All polymorphic results must be derived from `ctrl_typevar`.
|
|
///
|
|
/// Return a vector of other type variables used, or a string explaining what went wrong.
|
|
fn is_ctrl_typevar_candidate(
|
|
ctrl_typevar: &TypeVar,
|
|
operands_in: &[Operand],
|
|
operands_out: &[Operand],
|
|
) -> Result<Vec<TypeVar>, String> {
|
|
let mut other_typevars = Vec::new();
|
|
|
|
// Check value inputs.
|
|
for input in operands_in {
|
|
if !input.is_value() {
|
|
continue;
|
|
}
|
|
|
|
let typ = input.type_var().unwrap();
|
|
let free_typevar = typ.free_typevar();
|
|
|
|
// Non-polymorphic or derived from ctrl_typevar is OK.
|
|
if free_typevar.is_none() {
|
|
continue;
|
|
}
|
|
let free_typevar = free_typevar.unwrap();
|
|
if &free_typevar == ctrl_typevar {
|
|
continue;
|
|
}
|
|
|
|
// No other derived typevars allowed.
|
|
if typ != &free_typevar {
|
|
return Err(format!(
|
|
"{:?}: type variable {} must be derived from {:?} while it is derived from {:?}",
|
|
input, typ.name, ctrl_typevar, free_typevar
|
|
));
|
|
}
|
|
|
|
// Other free type variables can only be used once each.
|
|
for other_tv in &other_typevars {
|
|
if &free_typevar == other_tv {
|
|
return Err(format!(
|
|
"non-controlling type variable {} can't be used more than once",
|
|
free_typevar.name
|
|
));
|
|
}
|
|
}
|
|
|
|
other_typevars.push(free_typevar);
|
|
}
|
|
|
|
// Check outputs.
|
|
for result in operands_out {
|
|
if !result.is_value() {
|
|
continue;
|
|
}
|
|
|
|
let typ = result.type_var().unwrap();
|
|
let free_typevar = typ.free_typevar();
|
|
|
|
// Non-polymorphic or derived from ctrl_typevar is OK.
|
|
if free_typevar.is_none() || &free_typevar.unwrap() == ctrl_typevar {
|
|
continue;
|
|
}
|
|
|
|
return Err("type variable in output not derived from ctrl_typevar".into());
|
|
}
|
|
|
|
Ok(other_typevars)
|
|
}
|
|
|
|
#[derive(Clone, Hash, PartialEq, Eq)]
|
|
pub(crate) enum FormatPredicateKind {
|
|
/// Is the field member equal to the expected value (stored here)?
|
|
IsEqual(String),
|
|
|
|
/// Is the immediate instruction format field representable as an n-bit two's complement
|
|
/// integer? (with width: first member, scale: second member).
|
|
/// The predicate is true if the field is in the range: `-2^(width-1) -- 2^(width-1)-1` and a
|
|
/// multiple of `2^scale`.
|
|
IsSignedInt(usize, usize),
|
|
|
|
/// Is the immediate instruction format field representable as an n-bit unsigned integer? (with
|
|
/// width: first member, scale: second member).
|
|
/// The predicate is true if the field is in the range: `0 -- 2^width - 1` and a multiple of
|
|
/// `2^scale`.
|
|
IsUnsignedInt(usize, usize),
|
|
|
|
/// Is the immediate format field member an integer equal to zero?
|
|
IsZeroInt,
|
|
/// Is the immediate format field member equal to zero? (float32 version)
|
|
IsZero32BitFloat,
|
|
|
|
/// Is the immediate format field member equal to zero? (float64 version)
|
|
IsZero64BitFloat,
|
|
|
|
/// Is the immediate format field member equal zero in all lanes?
|
|
IsAllZeroes,
|
|
|
|
/// Does the immediate format field member have ones in all bits of all lanes?
|
|
IsAllOnes,
|
|
|
|
/// Has the value list (in member_name) the size specified in parameter?
|
|
LengthEquals(usize),
|
|
|
|
/// Is the referenced function colocated?
|
|
IsColocatedFunc,
|
|
|
|
/// Is the referenced data object colocated?
|
|
IsColocatedData,
|
|
}
|
|
|
|
#[derive(Clone, Hash, PartialEq, Eq)]
|
|
pub(crate) struct FormatPredicateNode {
|
|
format_name: &'static str,
|
|
member_name: &'static str,
|
|
kind: FormatPredicateKind,
|
|
}
|
|
|
|
impl FormatPredicateNode {
|
|
fn new(
|
|
format: &InstructionFormat,
|
|
field_name: &'static str,
|
|
kind: FormatPredicateKind,
|
|
) -> Self {
|
|
let member_name = format.imm_by_name(field_name).member;
|
|
Self {
|
|
format_name: format.name,
|
|
member_name,
|
|
kind,
|
|
}
|
|
}
|
|
|
|
fn new_raw(
|
|
format: &InstructionFormat,
|
|
member_name: &'static str,
|
|
kind: FormatPredicateKind,
|
|
) -> Self {
|
|
Self {
|
|
format_name: format.name,
|
|
member_name,
|
|
kind,
|
|
}
|
|
}
|
|
|
|
fn destructuring_member_name(&self) -> &'static str {
|
|
match &self.kind {
|
|
FormatPredicateKind::LengthEquals(_) => {
|
|
// Length operates on the argument value list.
|
|
assert!(self.member_name == "args");
|
|
"ref args"
|
|
}
|
|
_ => self.member_name,
|
|
}
|
|
}
|
|
|
|
fn rust_predicate(&self) -> String {
|
|
match &self.kind {
|
|
FormatPredicateKind::IsEqual(arg) => {
|
|
format!("predicates::is_equal({}, {})", self.member_name, arg)
|
|
}
|
|
FormatPredicateKind::IsSignedInt(width, scale) => format!(
|
|
"predicates::is_signed_int({}, {}, {})",
|
|
self.member_name, width, scale
|
|
),
|
|
FormatPredicateKind::IsUnsignedInt(width, scale) => format!(
|
|
"predicates::is_unsigned_int({}, {}, {})",
|
|
self.member_name, width, scale
|
|
),
|
|
FormatPredicateKind::IsZeroInt => {
|
|
format!("predicates::is_zero_int({})", self.member_name)
|
|
}
|
|
FormatPredicateKind::IsZero32BitFloat => {
|
|
format!("predicates::is_zero_32_bit_float({})", self.member_name)
|
|
}
|
|
FormatPredicateKind::IsZero64BitFloat => {
|
|
format!("predicates::is_zero_64_bit_float({})", self.member_name)
|
|
}
|
|
FormatPredicateKind::IsAllZeroes => format!(
|
|
"predicates::is_all_zeroes(func.dfg.constants.get({}))",
|
|
self.member_name
|
|
),
|
|
FormatPredicateKind::IsAllOnes => format!(
|
|
"predicates::is_all_ones(func.dfg.constants.get({}))",
|
|
self.member_name
|
|
),
|
|
FormatPredicateKind::LengthEquals(num) => format!(
|
|
"predicates::has_length_of({}, {}, func)",
|
|
self.member_name, num
|
|
),
|
|
FormatPredicateKind::IsColocatedFunc => {
|
|
format!("predicates::is_colocated_func({}, func)", self.member_name,)
|
|
}
|
|
FormatPredicateKind::IsColocatedData => {
|
|
format!("predicates::is_colocated_data({}, func)", self.member_name)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Hash, PartialEq, Eq)]
|
|
pub(crate) enum TypePredicateNode {
|
|
/// Is the value argument (at the index designated by the first member) the same type as the
|
|
/// type name (second member)?
|
|
TypeVarCheck(usize, String),
|
|
|
|
/// Is the controlling type variable the same type as the one designated by the type name
|
|
/// (only member)?
|
|
CtrlTypeVarCheck(String),
|
|
}
|
|
|
|
impl TypePredicateNode {
|
|
fn rust_predicate(&self, func_str: &str) -> String {
|
|
match self {
|
|
TypePredicateNode::TypeVarCheck(index, value_type_name) => format!(
|
|
"{}.dfg.value_type(args[{}]) == {}",
|
|
func_str, index, value_type_name
|
|
),
|
|
TypePredicateNode::CtrlTypeVarCheck(value_type_name) => {
|
|
format!("{}.dfg.ctrl_typevar(inst) == {}", func_str, value_type_name)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A basic node in an instruction predicate: either an atom, or an AND of two conditions.
|
|
#[derive(Clone, Hash, PartialEq, Eq)]
|
|
pub(crate) enum InstructionPredicateNode {
|
|
FormatPredicate(FormatPredicateNode),
|
|
|
|
TypePredicate(TypePredicateNode),
|
|
|
|
/// An AND-combination of two or more other predicates.
|
|
And(Vec<InstructionPredicateNode>),
|
|
|
|
/// An OR-combination of two or more other predicates.
|
|
Or(Vec<InstructionPredicateNode>),
|
|
}
|
|
|
|
impl InstructionPredicateNode {
|
|
fn rust_predicate(&self, func_str: &str) -> String {
|
|
match self {
|
|
InstructionPredicateNode::FormatPredicate(node) => node.rust_predicate(),
|
|
InstructionPredicateNode::TypePredicate(node) => node.rust_predicate(func_str),
|
|
InstructionPredicateNode::And(nodes) => nodes
|
|
.iter()
|
|
.map(|x| x.rust_predicate(func_str))
|
|
.collect::<Vec<_>>()
|
|
.join(" && "),
|
|
InstructionPredicateNode::Or(nodes) => nodes
|
|
.iter()
|
|
.map(|x| x.rust_predicate(func_str))
|
|
.collect::<Vec<_>>()
|
|
.join(" || "),
|
|
}
|
|
}
|
|
|
|
pub fn format_destructuring_member_name(&self) -> &str {
|
|
match self {
|
|
InstructionPredicateNode::FormatPredicate(format_pred) => {
|
|
format_pred.destructuring_member_name()
|
|
}
|
|
_ => panic!("Only for leaf format predicates"),
|
|
}
|
|
}
|
|
|
|
pub fn format_name(&self) -> &str {
|
|
match self {
|
|
InstructionPredicateNode::FormatPredicate(format_pred) => format_pred.format_name,
|
|
_ => panic!("Only for leaf format predicates"),
|
|
}
|
|
}
|
|
|
|
pub fn is_type_predicate(&self) -> bool {
|
|
match self {
|
|
InstructionPredicateNode::FormatPredicate(_)
|
|
| InstructionPredicateNode::And(_)
|
|
| InstructionPredicateNode::Or(_) => false,
|
|
InstructionPredicateNode::TypePredicate(_) => true,
|
|
}
|
|
}
|
|
|
|
fn collect_leaves(&self) -> Vec<&InstructionPredicateNode> {
|
|
let mut ret = Vec::new();
|
|
match self {
|
|
InstructionPredicateNode::And(nodes) | InstructionPredicateNode::Or(nodes) => {
|
|
for node in nodes {
|
|
ret.extend(node.collect_leaves());
|
|
}
|
|
}
|
|
_ => ret.push(self),
|
|
}
|
|
ret
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Hash, PartialEq, Eq)]
|
|
pub(crate) struct InstructionPredicate {
|
|
node: Option<InstructionPredicateNode>,
|
|
}
|
|
|
|
impl Into<InstructionPredicate> for InstructionPredicateNode {
|
|
fn into(self) -> InstructionPredicate {
|
|
InstructionPredicate { node: Some(self) }
|
|
}
|
|
}
|
|
|
|
impl InstructionPredicate {
|
|
pub fn new() -> Self {
|
|
Self { node: None }
|
|
}
|
|
|
|
pub fn unwrap(self) -> InstructionPredicateNode {
|
|
self.node.unwrap()
|
|
}
|
|
|
|
pub fn new_typevar_check(
|
|
inst: &Instruction,
|
|
type_var: &TypeVar,
|
|
value_type: &ValueType,
|
|
) -> InstructionPredicateNode {
|
|
let index = inst
|
|
.value_opnums
|
|
.iter()
|
|
.enumerate()
|
|
.find(|(_, &op_num)| inst.operands_in[op_num].type_var().unwrap() == type_var)
|
|
.unwrap()
|
|
.0;
|
|
InstructionPredicateNode::TypePredicate(TypePredicateNode::TypeVarCheck(
|
|
index,
|
|
value_type.rust_name(),
|
|
))
|
|
}
|
|
|
|
pub fn new_ctrl_typevar_check(value_type: &ValueType) -> InstructionPredicateNode {
|
|
InstructionPredicateNode::TypePredicate(TypePredicateNode::CtrlTypeVarCheck(
|
|
value_type.rust_name(),
|
|
))
|
|
}
|
|
|
|
pub fn new_is_field_equal(
|
|
format: &InstructionFormat,
|
|
field_name: &'static str,
|
|
imm_value: String,
|
|
) -> InstructionPredicateNode {
|
|
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
|
|
format,
|
|
field_name,
|
|
FormatPredicateKind::IsEqual(imm_value),
|
|
))
|
|
}
|
|
|
|
/// Used only for the AST module, which directly passes in the format field.
|
|
pub fn new_is_field_equal_ast(
|
|
format: &InstructionFormat,
|
|
field: &FormatField,
|
|
imm_value: String,
|
|
) -> InstructionPredicateNode {
|
|
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new_raw(
|
|
format,
|
|
field.member,
|
|
FormatPredicateKind::IsEqual(imm_value),
|
|
))
|
|
}
|
|
|
|
pub fn new_is_signed_int(
|
|
format: &InstructionFormat,
|
|
field_name: &'static str,
|
|
width: usize,
|
|
scale: usize,
|
|
) -> InstructionPredicateNode {
|
|
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
|
|
format,
|
|
field_name,
|
|
FormatPredicateKind::IsSignedInt(width, scale),
|
|
))
|
|
}
|
|
|
|
pub fn new_is_unsigned_int(
|
|
format: &InstructionFormat,
|
|
field_name: &'static str,
|
|
width: usize,
|
|
scale: usize,
|
|
) -> InstructionPredicateNode {
|
|
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
|
|
format,
|
|
field_name,
|
|
FormatPredicateKind::IsUnsignedInt(width, scale),
|
|
))
|
|
}
|
|
|
|
pub fn new_is_zero_int(
|
|
format: &InstructionFormat,
|
|
field_name: &'static str,
|
|
) -> InstructionPredicateNode {
|
|
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
|
|
format,
|
|
field_name,
|
|
FormatPredicateKind::IsZeroInt,
|
|
))
|
|
}
|
|
|
|
pub fn new_is_zero_32bit_float(
|
|
format: &InstructionFormat,
|
|
field_name: &'static str,
|
|
) -> InstructionPredicateNode {
|
|
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
|
|
format,
|
|
field_name,
|
|
FormatPredicateKind::IsZero32BitFloat,
|
|
))
|
|
}
|
|
|
|
pub fn new_is_zero_64bit_float(
|
|
format: &InstructionFormat,
|
|
field_name: &'static str,
|
|
) -> InstructionPredicateNode {
|
|
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
|
|
format,
|
|
field_name,
|
|
FormatPredicateKind::IsZero64BitFloat,
|
|
))
|
|
}
|
|
|
|
pub fn new_is_all_zeroes(
|
|
format: &InstructionFormat,
|
|
field_name: &'static str,
|
|
) -> InstructionPredicateNode {
|
|
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
|
|
format,
|
|
field_name,
|
|
FormatPredicateKind::IsAllZeroes,
|
|
))
|
|
}
|
|
|
|
pub fn new_is_all_ones(
|
|
format: &InstructionFormat,
|
|
field_name: &'static str,
|
|
) -> InstructionPredicateNode {
|
|
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
|
|
format,
|
|
field_name,
|
|
FormatPredicateKind::IsAllOnes,
|
|
))
|
|
}
|
|
|
|
pub fn new_length_equals(format: &InstructionFormat, size: usize) -> InstructionPredicateNode {
|
|
assert!(
|
|
format.has_value_list,
|
|
"the format must be variadic in number of arguments"
|
|
);
|
|
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new_raw(
|
|
format,
|
|
"args",
|
|
FormatPredicateKind::LengthEquals(size),
|
|
))
|
|
}
|
|
|
|
pub fn new_is_colocated_func(
|
|
format: &InstructionFormat,
|
|
field_name: &'static str,
|
|
) -> InstructionPredicateNode {
|
|
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
|
|
format,
|
|
field_name,
|
|
FormatPredicateKind::IsColocatedFunc,
|
|
))
|
|
}
|
|
|
|
pub fn new_is_colocated_data(formats: &Formats) -> InstructionPredicateNode {
|
|
let format = &formats.unary_global_value;
|
|
InstructionPredicateNode::FormatPredicate(FormatPredicateNode::new(
|
|
&*format,
|
|
"global_value",
|
|
FormatPredicateKind::IsColocatedData,
|
|
))
|
|
}
|
|
|
|
pub fn and(mut self, new_node: InstructionPredicateNode) -> Self {
|
|
let node = self.node;
|
|
let mut and_nodes = match node {
|
|
Some(node) => match node {
|
|
InstructionPredicateNode::And(nodes) => nodes,
|
|
InstructionPredicateNode::Or(_) => {
|
|
panic!("Can't mix and/or without implementing operator precedence!")
|
|
}
|
|
_ => vec![node],
|
|
},
|
|
_ => Vec::new(),
|
|
};
|
|
and_nodes.push(new_node);
|
|
self.node = Some(InstructionPredicateNode::And(and_nodes));
|
|
self
|
|
}
|
|
|
|
pub fn or(mut self, new_node: InstructionPredicateNode) -> Self {
|
|
let node = self.node;
|
|
let mut or_nodes = match node {
|
|
Some(node) => match node {
|
|
InstructionPredicateNode::Or(nodes) => nodes,
|
|
InstructionPredicateNode::And(_) => {
|
|
panic!("Can't mix and/or without implementing operator precedence!")
|
|
}
|
|
_ => vec![node],
|
|
},
|
|
_ => Vec::new(),
|
|
};
|
|
or_nodes.push(new_node);
|
|
self.node = Some(InstructionPredicateNode::Or(or_nodes));
|
|
self
|
|
}
|
|
|
|
pub fn rust_predicate(&self, func_str: &str) -> Option<String> {
|
|
self.node.as_ref().map(|root| root.rust_predicate(func_str))
|
|
}
|
|
|
|
/// Returns the type predicate if this is one, or None otherwise.
|
|
pub fn type_predicate(&self, func_str: &str) -> Option<String> {
|
|
let node = self.node.as_ref().unwrap();
|
|
if node.is_type_predicate() {
|
|
Some(node.rust_predicate(func_str))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Returns references to all the nodes that are leaves in the condition (i.e. by flattening
|
|
/// AND/OR).
|
|
pub fn collect_leaves(&self) -> Vec<&InstructionPredicateNode> {
|
|
self.node.as_ref().unwrap().collect_leaves()
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
|
|
pub(crate) struct InstructionPredicateNumber(u32);
|
|
entity_impl!(InstructionPredicateNumber);
|
|
|
|
pub(crate) type InstructionPredicateMap =
|
|
PrimaryMap<InstructionPredicateNumber, InstructionPredicate>;
|
|
|
|
/// A registry of predicates to help deduplicating them, during Encodings construction. When the
|
|
/// construction process is over, it needs to be extracted with `extract` and associated to the
|
|
/// TargetIsa.
|
|
pub(crate) struct InstructionPredicateRegistry {
|
|
/// Maps a predicate number to its actual predicate.
|
|
map: InstructionPredicateMap,
|
|
|
|
/// Inverse map: maps a predicate to its predicate number. This is used before inserting a
|
|
/// predicate, to check whether it already exists.
|
|
inverted_map: HashMap<InstructionPredicate, InstructionPredicateNumber>,
|
|
}
|
|
|
|
impl InstructionPredicateRegistry {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
map: PrimaryMap::new(),
|
|
inverted_map: HashMap::new(),
|
|
}
|
|
}
|
|
pub fn insert(&mut self, predicate: InstructionPredicate) -> InstructionPredicateNumber {
|
|
match self.inverted_map.get(&predicate) {
|
|
Some(&found) => found,
|
|
None => {
|
|
let key = self.map.push(predicate.clone());
|
|
self.inverted_map.insert(predicate, key);
|
|
key
|
|
}
|
|
}
|
|
}
|
|
pub fn extract(self) -> InstructionPredicateMap {
|
|
self.map
|
|
}
|
|
}
|
|
|
|
/// An instruction specification, containing an instruction that has bound types or not.
|
|
pub(crate) enum InstSpec {
|
|
Inst(Instruction),
|
|
Bound(BoundInstruction),
|
|
}
|
|
|
|
impl InstSpec {
|
|
pub fn inst(&self) -> &Instruction {
|
|
match &self {
|
|
InstSpec::Inst(inst) => inst,
|
|
InstSpec::Bound(bound_inst) => &bound_inst.inst,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Bindable for InstSpec {
|
|
fn bind(&self, parameter: impl Into<BindParameter>) -> BoundInstruction {
|
|
match self {
|
|
InstSpec::Inst(inst) => inst.bind(parameter.into()),
|
|
InstSpec::Bound(inst) => inst.bind(parameter.into()),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Into<InstSpec> for &Instruction {
|
|
fn into(self) -> InstSpec {
|
|
InstSpec::Inst(self.clone())
|
|
}
|
|
}
|
|
|
|
impl Into<InstSpec> for BoundInstruction {
|
|
fn into(self) -> InstSpec {
|
|
InstSpec::Bound(self)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use super::*;
|
|
use crate::cdsl::formats::InstructionFormatBuilder;
|
|
use crate::cdsl::operands::{OperandKind, OperandKindFields};
|
|
use crate::cdsl::typevar::TypeSetBuilder;
|
|
use crate::shared::types::Int::{I32, I64};
|
|
|
|
fn field_to_operand(index: usize, field: OperandKindFields) -> Operand {
|
|
// Pretend the index string is &'static.
|
|
let name = Box::leak(index.to_string().into_boxed_str());
|
|
// Format's name / rust_type don't matter here.
|
|
let kind = OperandKind::new(name, name, field);
|
|
let operand = Operand::new(name, kind);
|
|
operand
|
|
}
|
|
|
|
fn field_to_operands(types: Vec<OperandKindFields>) -> Vec<Operand> {
|
|
types
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, f)| field_to_operand(i, f.clone()))
|
|
.collect()
|
|
}
|
|
|
|
fn build_fake_instruction(
|
|
inputs: Vec<OperandKindFields>,
|
|
outputs: Vec<OperandKindFields>,
|
|
) -> Instruction {
|
|
// Setup a format from the input operands.
|
|
let mut format = InstructionFormatBuilder::new("fake");
|
|
for (i, f) in inputs.iter().enumerate() {
|
|
match f {
|
|
OperandKindFields::TypeVar(_) => format = format.value(),
|
|
OperandKindFields::ImmValue => {
|
|
format = format.imm(&field_to_operand(i, f.clone()).kind)
|
|
}
|
|
_ => {}
|
|
};
|
|
}
|
|
let format = format.build();
|
|
|
|
// Create the fake instruction.
|
|
InstructionBuilder::new("fake", "A fake instruction for testing.", &format)
|
|
.operands_in(field_to_operands(inputs).iter().collect())
|
|
.operands_out(field_to_operands(outputs).iter().collect())
|
|
.build(OpcodeNumber(42))
|
|
}
|
|
|
|
#[test]
|
|
fn ensure_bound_instructions_can_bind_lane_types() {
|
|
let type1 = TypeSetBuilder::new().ints(8..64).build();
|
|
let in1 = OperandKindFields::TypeVar(TypeVar::new("a", "...", type1));
|
|
let inst = build_fake_instruction(vec![in1], vec![]);
|
|
inst.bind(LaneType::Int(I32));
|
|
}
|
|
|
|
#[test]
|
|
fn ensure_bound_instructions_can_bind_immediates() {
|
|
let inst = build_fake_instruction(vec![OperandKindFields::ImmValue], vec![]);
|
|
let bound_inst = inst.bind(Immediate::IntCC(IntCC::Equal));
|
|
assert!(bound_inst.verify_bindings().is_ok());
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn ensure_instructions_fail_to_bind() {
|
|
let inst = build_fake_instruction(vec![], vec![]);
|
|
inst.bind(BindParameter::Lane(LaneType::Int(I32)));
|
|
// Trying to bind to an instruction with no inputs should fail.
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn ensure_bound_instructions_fail_to_bind_too_many_types() {
|
|
let type1 = TypeSetBuilder::new().ints(8..64).build();
|
|
let in1 = OperandKindFields::TypeVar(TypeVar::new("a", "...", type1));
|
|
let inst = build_fake_instruction(vec![in1], vec![]);
|
|
inst.bind(LaneType::Int(I32)).bind(LaneType::Int(I64));
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn ensure_instructions_fail_to_bind_too_many_immediates() {
|
|
let inst = build_fake_instruction(vec![OperandKindFields::ImmValue], vec![]);
|
|
inst.bind(BindParameter::Immediate(Immediate::IntCC(IntCC::Equal)))
|
|
.bind(BindParameter::Immediate(Immediate::IntCC(IntCC::Equal)));
|
|
// Trying to bind too many immediates to an instruction should fail; note that the immediate
|
|
// values are nonsensical but irrelevant to the purpose of this test.
|
|
}
|
|
}
|