Files
wasmtime/lib/cretonne/src/ir/builder.rs
Jakob Stoklund Olesen f8e4d4e839 Speling.
2017-02-03 12:49:40 -08:00

212 lines
8.4 KiB
Rust

//! Cretonne instruction builder.
//!
//! A `Builder` provides a convenient interface for inserting instructions into a Cretonne
//! function. Many of its methods are generated from the meta language instruction definitions.
use ir::{types, instructions};
use ir::{InstructionData, DataFlowGraph, Cursor};
use ir::{Opcode, Type, Inst, Value, Ebb, JumpTable, VariableArgs, SigRef, FuncRef};
use ir::immediates::{Imm64, Uimm8, Ieee32, Ieee64, ImmVector};
use ir::condcodes::{IntCC, FloatCC};
/// Base trait for instruction builders.
///
/// The `InstBuilderBase` trait provides the basic functionality required by the methods of the
/// generated `InstBuilder` trait. These methods should not normally be used directly. Use the
/// methods in the `InstBuilder` trait instead.
///
/// Any data type that implements `InstBuilderBase` also gets all the methods of the `InstBuilder`
/// trait.
pub trait InstBuilderBase<'f>: Sized {
/// Get an immutable reference to the data flow graph that will hold the constructed
/// instructions.
fn data_flow_graph(&self) -> &DataFlowGraph;
/// Insert a simple instruction and return a reference to it.
///
/// A 'simple' instruction has at most one result, and the `data.ty` field must contain the
/// result type or `VOID` for an instruction with no result values.
fn simple_instruction(self, data: InstructionData) -> (Inst, &'f mut DataFlowGraph);
/// Insert a simple instruction and return a reference to it.
///
/// A 'complex' instruction may produce multiple results, and the result types may depend on a
/// controlling type variable. For non-polymorphic instructions with multiple results, pass
/// `VOID` for the `ctrl_typevar` argument.
fn complex_instruction(self,
data: InstructionData,
ctrl_typevar: Type)
-> (Inst, &'f mut DataFlowGraph);
}
// Include trait code generated by `lib/cretonne/meta/gen_instr.py`.
//
// This file defines the `InstBuilder` trait as an extension of `InstBuilderBase` with methods per
// instruction format and per opcode.
include!(concat!(env!("OUT_DIR"), "/builder.rs"));
/// Any type implementing `InstBuilderBase` gets all the `InstBuilder` methods for free.
impl<'f, T: InstBuilderBase<'f>> InstBuilder<'f> for T {}
/// Builder that inserts an instruction at the current cursor position.
///
/// An `InsertBuilder` holds mutable references to a data flow graph and a layout cursor. It
/// provides convenience methods for creating and inserting instructions at the current cursor
/// position.
pub struct InsertBuilder<'c, 'fc: 'c, 'fd> {
pos: &'c mut Cursor<'fc>,
dfg: &'fd mut DataFlowGraph,
}
impl<'c, 'fc, 'fd> InsertBuilder<'c, 'fc, 'fd> {
/// Create a new builder which inserts instructions at `pos`.
/// The `dfg` and `pos.layout` references should be from the same `Function`.
pub fn new(dfg: &'fd mut DataFlowGraph,
pos: &'c mut Cursor<'fc>)
-> InsertBuilder<'c, 'fc, 'fd> {
InsertBuilder {
dfg: dfg,
pos: pos,
}
}
}
impl<'c, 'fc, 'fd> InstBuilderBase<'fd> for InsertBuilder<'c, 'fc, 'fd> {
fn data_flow_graph(&self) -> &DataFlowGraph {
self.dfg
}
fn simple_instruction(self, data: InstructionData) -> (Inst, &'fd mut DataFlowGraph) {
let inst = self.dfg.make_inst(data);
self.pos.insert_inst(inst);
(inst, self.dfg)
}
fn complex_instruction(self,
data: InstructionData,
ctrl_typevar: Type)
-> (Inst, &'fd mut DataFlowGraph) {
let inst = self.dfg.make_inst(data);
self.dfg.make_inst_results(inst, ctrl_typevar);
self.pos.insert_inst(inst);
(inst, self.dfg)
}
}
/// Instruction builder that replaces an existing instruction.
///
/// The inserted instruction will have the same `Inst` number as the old one. This is the only way
/// of rewriting the first result value of an instruction since this is a `ExpandedValue::Direct`
/// variant which encodes the instruction number directly.
///
/// If the old instruction produced a value, the same value number will refer to the new
/// instruction's first result, so if that value has any uses the type should stay the same.
///
/// If the old instruction still has secondary result values attached, it is assumed that the new
/// instruction produces the same number and types of results. The old secondary values are
/// preserved. If the replacement instruction format does not support multiple results, the builder
/// panics. It is a bug to leave result values dangling.
///
/// If the old instruction was capable of producing secondary results, but the values have been
/// detached, new result values are generated by calling `DataFlowGraph::make_inst_results()`.
pub struct ReplaceBuilder<'f> {
dfg: &'f mut DataFlowGraph,
inst: Inst,
}
impl<'f> ReplaceBuilder<'f> {
/// Create a `ReplaceBuilder` that will overwrite `inst`.
pub fn new(dfg: &'f mut DataFlowGraph, inst: Inst) -> ReplaceBuilder {
ReplaceBuilder {
dfg: dfg,
inst: inst,
}
}
}
impl<'f> InstBuilderBase<'f> for ReplaceBuilder<'f> {
fn data_flow_graph(&self) -> &DataFlowGraph {
self.dfg
}
fn simple_instruction(self, data: InstructionData) -> (Inst, &'f mut DataFlowGraph) {
// The replacement instruction cannot generate multiple results, so verify that the old
// instruction's secondary results have been detached.
let old_second_value = self.dfg[self.inst].second_result();
assert_eq!(old_second_value,
None,
"Secondary result values {:?} would be left dangling by replacing {} with {}",
self.dfg.inst_results(self.inst).collect::<Vec<_>>(),
self.dfg[self.inst].opcode(),
data.opcode());
// Splat the new instruction on top of the old one.
self.dfg[self.inst] = data;
(self.inst, self.dfg)
}
fn complex_instruction(self,
data: InstructionData,
ctrl_typevar: Type)
-> (Inst, &'f mut DataFlowGraph) {
// If the old instruction still has secondary results attached, we'll keep them.
let old_second_value = self.dfg[self.inst].second_result();
// Splat the new instruction on top of the old one.
self.dfg[self.inst] = data;
if old_second_value.is_none() {
// The old secondary values were either detached or non-existent.
// Construct new ones and set the first result type too.
self.dfg.make_inst_results(self.inst, ctrl_typevar);
} else {
// Reattach the old secondary values.
if let Some(val_ref) = self.dfg[self.inst].second_result_mut() {
// Don't check types here. Leave that to the verifier.
*val_ref = old_second_value.into();
} else {
// Actually, this instruction format should have called `simple_instruction()`, but
// we don't have a rule against calling `complex_instruction()` even when it is
// overkill.
panic!("Secondary result values left dangling");
}
// Normally, make_inst_results() would also set the first result type, but we're not
// going to call that, so set it manually.
*self.dfg[self.inst].first_type_mut() =
self.dfg.compute_result_type(self.inst, 0, ctrl_typevar).unwrap_or_default();
}
(self.inst, self.dfg)
}
}
#[cfg(test)]
mod tests {
use ir::{Function, Cursor, InstBuilder};
use ir::types::*;
use ir::condcodes::*;
#[test]
fn types() {
let mut func = Function::new();
let dfg = &mut func.dfg;
let ebb0 = dfg.make_ebb();
let arg0 = dfg.append_ebb_arg(ebb0, I32);
let pos = &mut Cursor::new(&mut func.layout);
pos.insert_ebb(ebb0);
// Explicit types.
let v0 = dfg.ins(pos).iconst(I32, 3);
assert_eq!(dfg.value_type(v0), I32);
// Inferred from inputs.
let v1 = dfg.ins(pos).iadd(arg0, v0);
assert_eq!(dfg.value_type(v1), I32);
// Formula.
let cmp = dfg.ins(pos).icmp(IntCC::Equal, arg0, v0);
assert_eq!(dfg.value_type(cmp), B1);
}
}