Previously, getting or setting a value in a frame of the Cranelift interpreter involved a hash table lookup. Since the interpreter statically knows the number of slots necessary for each called frame, we can use a vector instead and save time on the hash lookup. This also has the advantage that we have a more stable ABI for switching between interpreted and code.
231 lines
9.2 KiB
Rust
231 lines
9.2 KiB
Rust
//! Implements a call frame (activation record) for the Cranelift interpreter.
|
|
|
|
use cranelift_codegen::data_value::DataValue;
|
|
use cranelift_codegen::ir::{Function, Value as ValueRef};
|
|
use cranelift_entity::EntityRef;
|
|
use log::trace;
|
|
|
|
/// The type used for ensuring [Frame](crate::frame::Frame) entries conform to the expected memory layout.
|
|
pub(crate) type Entries = Vec<Option<DataValue>>;
|
|
|
|
/// Holds the mutable elements of an interpreted function call.
|
|
#[derive(Debug)]
|
|
pub struct Frame<'a> {
|
|
/// The currently executing function.
|
|
pub(crate) function: &'a Function,
|
|
/// The current mapping of SSA value-references to their actual values. For efficiency, each SSA value is used as an
|
|
/// index into the Vec, meaning some slots may be unused.
|
|
registers: Entries,
|
|
}
|
|
|
|
impl<'a> Frame<'a> {
|
|
/// Construct a new [Frame] for a function. This allocates a slot in the hash map for each SSA `Value` (renamed to
|
|
/// `ValueRef` here) which should mean that no additional allocations are needed while interpreting the frame.
|
|
pub fn new(function: &'a Function) -> Self {
|
|
let num_slots = function.dfg.num_values();
|
|
trace!("Create new frame for function: {}", function.signature);
|
|
Self {
|
|
function,
|
|
registers: vec![None; num_slots],
|
|
}
|
|
}
|
|
|
|
/// Retrieve the actual value associated with an SSA reference.
|
|
#[inline]
|
|
pub fn get(&self, name: ValueRef) -> &DataValue {
|
|
assert!(name.index() < self.registers.len());
|
|
trace!("Get {}", name);
|
|
&self
|
|
.registers
|
|
.get(name.index())
|
|
.unwrap_or_else(|| panic!("unknown value: {}", name))
|
|
.as_ref()
|
|
.unwrap_or_else(|| panic!("empty slot: {}", name))
|
|
}
|
|
|
|
/// Retrieve multiple SSA references; see `get`.
|
|
pub fn get_all(&self, names: &[ValueRef]) -> Vec<DataValue> {
|
|
names.iter().map(|r| self.get(*r)).cloned().collect()
|
|
}
|
|
|
|
/// Assign `value` to the SSA reference `name`.
|
|
#[inline]
|
|
pub fn set(&mut self, name: ValueRef, value: DataValue) -> Option<DataValue> {
|
|
assert!(name.index() < self.registers.len());
|
|
trace!("Set {} -> {}", name, value);
|
|
std::mem::replace(&mut self.registers[name.index()], Some(value))
|
|
}
|
|
|
|
/// Assign to multiple SSA references; see `set`.
|
|
pub fn set_all(&mut self, names: &[ValueRef], values: Vec<DataValue>) {
|
|
assert_eq!(names.len(), values.len());
|
|
for (n, v) in names.iter().zip(values) {
|
|
self.set(*n, v);
|
|
}
|
|
}
|
|
|
|
/// Rename all of the SSA references in `old_names` to those in `new_names`. This will remove
|
|
/// any old references that are not in `old_names`. TODO This performs an extra allocation that
|
|
/// could be removed if we copied the values in the right order (i.e. when modifying in place,
|
|
/// we need to avoid changing a value before it is referenced).
|
|
pub fn rename(&mut self, old_names: &[ValueRef], new_names: &[ValueRef]) {
|
|
trace!("Renaming {:?} -> {:?}", old_names, new_names);
|
|
assert_eq!(old_names.len(), new_names.len());
|
|
let new_registers = vec![None; self.registers.len()];
|
|
let mut old_registers = std::mem::replace(&mut self.registers, new_registers);
|
|
self.registers = vec![None; self.registers.len()];
|
|
for (&on, &nn) in old_names.iter().zip(new_names) {
|
|
let value = std::mem::replace(&mut old_registers[on.index()], None);
|
|
self.registers[nn.index()] = value;
|
|
}
|
|
}
|
|
|
|
/// Accessor for the current entries in the frame.
|
|
pub fn entries_mut(&mut self) -> &mut [Option<DataValue>] {
|
|
&mut self.registers
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use cranelift_codegen::data_value::DataValue;
|
|
use cranelift_codegen::ir::immediates::{Ieee32, Ieee64};
|
|
use cranelift_codegen::ir::InstBuilder;
|
|
use cranelift_frontend::{FunctionBuilder, FunctionBuilderContext};
|
|
use cranelift_reader::parse_functions;
|
|
|
|
/// Helper to create a function from CLIF IR.
|
|
fn function(code: &str) -> Function {
|
|
parse_functions(code).unwrap().into_iter().next().unwrap()
|
|
}
|
|
|
|
/// Build an empty function with a single return.
|
|
fn empty_function() -> Function {
|
|
let mut func = Function::new();
|
|
let mut context = FunctionBuilderContext::new();
|
|
let mut builder = FunctionBuilder::new(&mut func, &mut context);
|
|
let block = builder.create_block();
|
|
builder.switch_to_block(block);
|
|
builder.ins().return_(&[]);
|
|
func
|
|
}
|
|
|
|
#[test]
|
|
fn construction() {
|
|
let func = empty_function();
|
|
// Construction should not fail.
|
|
Frame::new(&func);
|
|
}
|
|
|
|
#[test]
|
|
fn assignment_and_retrieval() {
|
|
let func = function("function %test(i32) -> i32 { block0(v0:i32): return v0 }");
|
|
let mut frame = Frame::new(&func);
|
|
let ssa_value_ref = ValueRef::from_u32(0);
|
|
let fortytwo = DataValue::I32(42);
|
|
|
|
// Verify that setting a valid SSA ref will make the value retrievable.
|
|
frame.set(ssa_value_ref, fortytwo.clone());
|
|
assert_eq!(frame.get(ssa_value_ref), &fortytwo);
|
|
}
|
|
|
|
#[test]
|
|
fn assignment_to_extra_slots() {
|
|
let func = function("function %test(i32) -> i32 { block0(v10:i32): return v10 }");
|
|
let mut frame = Frame::new(&func);
|
|
let ssa_value_ref = ValueRef::from_u32(5);
|
|
let fortytwo = DataValue::I32(42);
|
|
|
|
// Due to how Cranelift organizes its SSA values, the use of v10 defines 11 slots for values
|
|
// to fit in--the following should work.
|
|
frame.set(ssa_value_ref, fortytwo.clone());
|
|
assert_eq!(frame.get(ssa_value_ref), &fortytwo);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic(expected = "assertion failed: name.index() < self.registers.len()")]
|
|
fn invalid_assignment() {
|
|
let func = function("function %test(i32) -> i32 { block0(v10:i32): return v10 }");
|
|
let mut frame = Frame::new(&func);
|
|
let fortytwo = DataValue::I32(42);
|
|
|
|
// Since the SSA value ref points to 42 and the function only has 11 slots, this should
|
|
// fail. TODO currently this is a panic under the assumption we will not set indexes outside
|
|
// of the valid SSA value range but it might be better as a result.
|
|
frame.set(ValueRef::from_u32(11), fortytwo.clone());
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic(expected = "assertion failed: name.index() < self.registers.len()")]
|
|
fn retrieve_nonexistent_value() {
|
|
let func = empty_function();
|
|
let frame = Frame::new(&func);
|
|
let ssa_value_ref = ValueRef::from_u32(1);
|
|
|
|
// Retrieving a non-existent value should return an error.
|
|
frame.get(ssa_value_ref);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic(expected = "empty slot: v5")]
|
|
fn retrieve_and_assign_multiple_values() {
|
|
let func = function("function %test(i32) -> i32 { block0(v10:i32): return v10 }");
|
|
let mut frame = Frame::new(&func);
|
|
let ssa_value_refs = [
|
|
ValueRef::from_u32(2),
|
|
ValueRef::from_u32(4),
|
|
ValueRef::from_u32(6),
|
|
];
|
|
let values = vec![
|
|
DataValue::B(true),
|
|
DataValue::I8(42),
|
|
DataValue::F32(Ieee32::from(0.42)),
|
|
];
|
|
|
|
// We can assign and retrieve multiple (cloned) values.
|
|
frame.set_all(&ssa_value_refs, values.clone());
|
|
let retrieved_values = frame.get_all(&ssa_value_refs);
|
|
assert_eq!(values, retrieved_values);
|
|
|
|
// But if we attempt to retrieve an invalid value we should get an error:
|
|
frame.get_all(&[ValueRef::from_u32(2), ValueRef::from_u32(5)]);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic(expected = "empty slot: v10")]
|
|
fn rename() {
|
|
let func = function("function %test(i32) -> i32 { block0(v10:i32): return v10 }");
|
|
let mut frame = Frame::new(&func);
|
|
let old_ssa_value_refs = [ValueRef::from_u32(9), ValueRef::from_u32(10)];
|
|
let values = vec![DataValue::B(true), DataValue::F64(Ieee64::from(0.0))];
|
|
frame.set_all(&old_ssa_value_refs, values.clone());
|
|
|
|
// Rename the old SSA values to the new values.
|
|
let new_ssa_value_refs = [ValueRef::from_u32(4), ValueRef::from_u32(2)];
|
|
frame.rename(&old_ssa_value_refs, &new_ssa_value_refs);
|
|
|
|
// Now we should be able to retrieve new values and the old ones should fail.
|
|
assert_eq!(frame.get_all(&new_ssa_value_refs), values);
|
|
frame.get(ValueRef::from_u32(10));
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic(expected = "empty slot: v2")]
|
|
fn rename_duplicates_causes_inconsistency() {
|
|
let func = function("function %test(i32) -> i32 { block0(v10:i32): return v10 }");
|
|
let mut frame = Frame::new(&func);
|
|
let old_ssa_value_refs = [ValueRef::from_u32(1), ValueRef::from_u32(9)];
|
|
let values = vec![DataValue::B(true), DataValue::F64(Ieee64::from(f64::NAN))];
|
|
frame.set_all(&old_ssa_value_refs, values.clone());
|
|
|
|
// Rename the old SSA values to the new values.
|
|
let old_duplicated_ssa_value_refs = [ValueRef::from_u32(1), ValueRef::from_u32(1)];
|
|
let new_ssa_value_refs = [ValueRef::from_u32(4), ValueRef::from_u32(2)];
|
|
frame.rename(&old_duplicated_ssa_value_refs, &new_ssa_value_refs);
|
|
|
|
// If we use duplicates then subsequent renamings (v1 -> v2) will be empty.
|
|
frame.get(ValueRef::from_u32(2));
|
|
}
|
|
}
|