Register-style return is used by all RISC architectures, so it is natural to have a shared instruction representation.
1538 lines
60 KiB
Rust
1538 lines
60 KiB
Rust
|
|
// ====--------------------------------------------------------------------------------------====//
|
|
//
|
|
// Parser for .cton files.
|
|
//
|
|
// ====--------------------------------------------------------------------------------------====//
|
|
|
|
use std::str::FromStr;
|
|
use std::u32;
|
|
use std::mem;
|
|
use cretonne::ir::{Function, Ebb, Opcode, Value, Type, FunctionName, StackSlotData, JumpTable,
|
|
JumpTableData, Signature, ArgumentType, ArgumentExtension, ExtFuncData, SigRef,
|
|
FuncRef};
|
|
use cretonne::ir::types::VOID;
|
|
use cretonne::ir::immediates::{Imm64, Ieee32, Ieee64};
|
|
use cretonne::ir::entities::AnyEntity;
|
|
use cretonne::ir::instructions::{InstructionFormat, InstructionData, VariableArgs,
|
|
TernaryOverflowData, JumpData, BranchData, CallData,
|
|
IndirectCallData, ReturnData, ReturnRegData};
|
|
use cretonne::isa;
|
|
use cretonne::settings;
|
|
use testfile::{TestFile, Details, Comment};
|
|
use error::{Location, Error, Result};
|
|
use lexer::{self, Lexer, Token};
|
|
use testcommand::TestCommand;
|
|
use isaspec;
|
|
use sourcemap::{SourceMap, MutableSourceMap};
|
|
|
|
/// Parse the entire `text` into a list of functions.
|
|
///
|
|
/// Any test commands or ISA declarations are ignored.
|
|
pub fn parse_functions(text: &str) -> Result<Vec<Function>> {
|
|
parse_test(text).map(|file| file.functions.into_iter().map(|(func, _)| func).collect())
|
|
}
|
|
|
|
/// Parse the entire `text` as a test case file.
|
|
///
|
|
/// The returned `TestFile` contains direct references to substrings of `text`.
|
|
pub fn parse_test<'a>(text: &'a str) -> Result<TestFile<'a>> {
|
|
let mut parser = Parser::new(text);
|
|
// Gather the preamble comments as 'Function'.
|
|
parser.gather_comments(AnyEntity::Function);
|
|
Ok(TestFile {
|
|
commands: parser.parse_test_commands(),
|
|
isa_spec: try!(parser.parse_isa_specs()),
|
|
preamble_comments: parser.take_comments(),
|
|
functions: try!(parser.parse_function_list()),
|
|
})
|
|
}
|
|
|
|
pub struct Parser<'a> {
|
|
lex: Lexer<'a>,
|
|
|
|
lex_error: Option<lexer::Error>,
|
|
|
|
// Current lookahead token.
|
|
lookahead: Option<Token<'a>>,
|
|
|
|
// Location of lookahead.
|
|
loc: Location,
|
|
|
|
// The currently active entity that should be associated with collected comments, or `None` if
|
|
// comments are ignored.
|
|
comment_entity: Option<AnyEntity>,
|
|
|
|
// Comments collected so far.
|
|
comments: Vec<Comment<'a>>,
|
|
}
|
|
|
|
// Context for resolving references when parsing a single function.
|
|
//
|
|
// Many entities like values, stack slots, and function signatures are referenced in the `.cton`
|
|
// file by number. We need to map these numbers to real references.
|
|
struct Context {
|
|
function: Function,
|
|
map: SourceMap,
|
|
}
|
|
|
|
impl Context {
|
|
fn new(f: Function) -> Context {
|
|
Context {
|
|
function: f,
|
|
map: SourceMap::new(),
|
|
}
|
|
}
|
|
|
|
// Allocate a new stack slot and add a mapping number -> StackSlot.
|
|
fn add_ss(&mut self, number: u32, data: StackSlotData, loc: &Location) -> Result<()> {
|
|
self.map.def_ss(number, self.function.stack_slots.push(data), loc)
|
|
}
|
|
|
|
// Allocate a new signature and add a mapping number -> SigRef.
|
|
fn add_sig(&mut self, number: u32, data: Signature, loc: &Location) -> Result<()> {
|
|
self.map.def_sig(number, self.function.dfg.signatures.push(data), loc)
|
|
}
|
|
|
|
// Resolve a reference to a signature.
|
|
fn get_sig(&self, number: u32, loc: &Location) -> Result<SigRef> {
|
|
match self.map.get_sig(number) {
|
|
Some(sig) => Ok(sig),
|
|
None => err!(loc, "undefined signature sig{}", number),
|
|
}
|
|
}
|
|
|
|
// Allocate a new external function and add a mapping number -> FuncRef.
|
|
fn add_fn(&mut self, number: u32, data: ExtFuncData, loc: &Location) -> Result<()> {
|
|
self.map.def_fn(number, self.function.dfg.ext_funcs.push(data), loc)
|
|
}
|
|
|
|
// Resolve a reference to a function.
|
|
fn get_fn(&self, number: u32, loc: &Location) -> Result<FuncRef> {
|
|
match self.map.get_fn(number) {
|
|
Some(fnref) => Ok(fnref),
|
|
None => err!(loc, "undefined function fn{}", number),
|
|
}
|
|
}
|
|
|
|
// Allocate a new jump table and add a mapping number -> JumpTable.
|
|
fn add_jt(&mut self, number: u32, data: JumpTableData, loc: &Location) -> Result<()> {
|
|
self.map.def_jt(number, self.function.jump_tables.push(data), loc)
|
|
}
|
|
|
|
// Resolve a reference to a jump table.
|
|
fn get_jt(&self, number: u32, loc: &Location) -> Result<JumpTable> {
|
|
match self.map.get_jt(number) {
|
|
Some(jt) => Ok(jt),
|
|
None => err!(loc, "undefined jump table jt{}", number),
|
|
}
|
|
}
|
|
|
|
// Allocate a new EBB and add a mapping src_ebb -> Ebb.
|
|
fn add_ebb(&mut self, src_ebb: Ebb, loc: &Location) -> Result<Ebb> {
|
|
let ebb = self.function.dfg.make_ebb();
|
|
self.function.layout.append_ebb(ebb);
|
|
self.map.def_ebb(src_ebb, ebb, loc).and(Ok(ebb))
|
|
}
|
|
|
|
// The parser creates all instructions with Ebb and Value references using the source file
|
|
// numbering. These references need to be rewritten after parsing is complete since forward
|
|
// references are allowed.
|
|
fn rewrite_references(&mut self) -> Result<()> {
|
|
for ebb in self.function.layout.ebbs() {
|
|
for inst in self.function.layout.ebb_insts(ebb) {
|
|
let loc = inst.into();
|
|
match self.function.dfg[inst] {
|
|
InstructionData::Nullary { .. } |
|
|
InstructionData::UnaryImm { .. } |
|
|
InstructionData::UnaryIeee32 { .. } |
|
|
InstructionData::UnaryIeee64 { .. } |
|
|
InstructionData::UnaryImmVector { .. } => {}
|
|
|
|
InstructionData::Unary { ref mut arg, .. } |
|
|
InstructionData::UnarySplit { ref mut arg, .. } |
|
|
InstructionData::BinaryImm { ref mut arg, .. } |
|
|
InstructionData::BinaryImmRev { ref mut arg, .. } |
|
|
InstructionData::ExtractLane { ref mut arg, .. } |
|
|
InstructionData::BranchTable { ref mut arg, .. } => {
|
|
try!(self.map.rewrite_value(arg, loc));
|
|
}
|
|
|
|
InstructionData::Binary { ref mut args, .. } |
|
|
InstructionData::BinaryOverflow { ref mut args, .. } |
|
|
InstructionData::InsertLane { ref mut args, .. } |
|
|
InstructionData::IntCompare { ref mut args, .. } |
|
|
InstructionData::FloatCompare { ref mut args, .. } => {
|
|
try!(self.map.rewrite_values(args, loc));
|
|
}
|
|
|
|
InstructionData::Ternary { ref mut args, .. } => {
|
|
try!(self.map.rewrite_values(args, loc));
|
|
}
|
|
|
|
InstructionData::TernaryOverflow { ref mut data, .. } => {
|
|
try!(self.map.rewrite_values(&mut data.args, loc));
|
|
}
|
|
|
|
InstructionData::Jump { ref mut data, .. } => {
|
|
try!(self.map.rewrite_ebb(&mut data.destination, loc));
|
|
try!(self.map.rewrite_values(&mut data.varargs, loc));
|
|
}
|
|
|
|
InstructionData::Branch { ref mut data, .. } => {
|
|
try!(self.map.rewrite_value(&mut data.arg, loc));
|
|
try!(self.map.rewrite_ebb(&mut data.destination, loc));
|
|
try!(self.map.rewrite_values(&mut data.varargs, loc));
|
|
}
|
|
|
|
InstructionData::Call { ref mut data, .. } => {
|
|
try!(self.map.rewrite_values(&mut data.varargs, loc));
|
|
}
|
|
|
|
InstructionData::IndirectCall { ref mut data, .. } => {
|
|
try!(self.map.rewrite_value(&mut data.arg, loc));
|
|
try!(self.map.rewrite_values(&mut data.varargs, loc));
|
|
}
|
|
|
|
InstructionData::Return { ref mut data, .. } => {
|
|
try!(self.map.rewrite_values(&mut data.varargs, loc));
|
|
}
|
|
|
|
InstructionData::ReturnReg { ref mut data, .. } => {
|
|
try!(self.map.rewrite_value(&mut data.arg, loc));
|
|
try!(self.map.rewrite_values(&mut data.varargs, loc));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Rewrite EBB references in jump tables.
|
|
for jt in self.function.jump_tables.keys() {
|
|
let loc = jt.into();
|
|
for ebb_ref in self.function.jump_tables[jt].as_mut_slice() {
|
|
if let Some(mut ebb) = ebb_ref.expand() {
|
|
try!(self.map.rewrite_ebb(&mut ebb, loc));
|
|
// Convert back to a packed option.
|
|
*ebb_ref = ebb.into();
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl<'a> Parser<'a> {
|
|
/// Create a new `Parser` which reads `text`. The referenced text must outlive the parser.
|
|
pub fn new(text: &'a str) -> Parser {
|
|
Parser {
|
|
lex: Lexer::new(text),
|
|
lex_error: None,
|
|
lookahead: None,
|
|
loc: Location { line_number: 0 },
|
|
comment_entity: None,
|
|
comments: Vec::new(),
|
|
}
|
|
}
|
|
|
|
// Consume the current lookahead token and return it.
|
|
fn consume(&mut self) -> Token<'a> {
|
|
self.lookahead.take().expect("No token to consume")
|
|
}
|
|
|
|
// Consume the whole line following the current lookahead token.
|
|
// Return the text of the line tail.
|
|
fn consume_line(&mut self) -> &'a str {
|
|
let rest = self.lex.rest_of_line();
|
|
self.consume();
|
|
rest
|
|
}
|
|
|
|
// Get the current lookahead token, after making sure there is one.
|
|
fn token(&mut self) -> Option<Token<'a>> {
|
|
while self.lookahead == None {
|
|
match self.lex.next() {
|
|
Some(Ok(lexer::LocatedToken { token, location })) => {
|
|
match token {
|
|
Token::Comment(text) => {
|
|
// Gather comments, associate them with `comment_entity`.
|
|
if let Some(entity) = self.comment_entity {
|
|
self.comments.push(Comment {
|
|
entity: entity,
|
|
text: text,
|
|
});
|
|
}
|
|
}
|
|
_ => self.lookahead = Some(token),
|
|
}
|
|
self.loc = location;
|
|
}
|
|
Some(Err(lexer::LocatedError { error, location })) => {
|
|
self.lex_error = Some(error);
|
|
self.loc = location;
|
|
break;
|
|
}
|
|
None => break,
|
|
}
|
|
}
|
|
return self.lookahead;
|
|
}
|
|
|
|
// Begin gathering comments associated with `entity`.
|
|
fn gather_comments<E: Into<AnyEntity>>(&mut self, entity: E) {
|
|
self.comment_entity = Some(entity.into());
|
|
}
|
|
|
|
// Get the comments gathered so far, clearing out the internal list.
|
|
fn take_comments(&mut self) -> Vec<Comment<'a>> {
|
|
mem::replace(&mut self.comments, Vec::new())
|
|
}
|
|
|
|
// Match and consume a token without payload.
|
|
fn match_token(&mut self, want: Token<'a>, err_msg: &str) -> Result<Token<'a>> {
|
|
if self.token() == Some(want) {
|
|
Ok(self.consume())
|
|
} else {
|
|
err!(self.loc, err_msg)
|
|
}
|
|
}
|
|
|
|
// If the next token is a `want`, consume it, otherwise do nothing.
|
|
fn optional(&mut self, want: Token<'a>) -> bool {
|
|
if self.token() == Some(want) {
|
|
self.consume();
|
|
true
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
|
|
// Match and consume a specific identifier string.
|
|
// Used for pseudo-keywords like "stack_slot" that only appear in certain contexts.
|
|
fn match_identifier(&mut self, want: &'static str, err_msg: &str) -> Result<Token<'a>> {
|
|
if self.token() == Some(Token::Identifier(want)) {
|
|
Ok(self.consume())
|
|
} else {
|
|
err!(self.loc, err_msg)
|
|
}
|
|
}
|
|
|
|
// Match and consume a type.
|
|
fn match_type(&mut self, err_msg: &str) -> Result<Type> {
|
|
if let Some(Token::Type(t)) = self.token() {
|
|
self.consume();
|
|
Ok(t)
|
|
} else {
|
|
err!(self.loc, err_msg)
|
|
}
|
|
}
|
|
|
|
// Match and consume a stack slot reference.
|
|
fn match_ss(&mut self, err_msg: &str) -> Result<u32> {
|
|
if let Some(Token::StackSlot(ss)) = self.token() {
|
|
self.consume();
|
|
Ok(ss)
|
|
} else {
|
|
err!(self.loc, err_msg)
|
|
}
|
|
}
|
|
|
|
// Match and consume a function reference.
|
|
fn match_fn(&mut self, err_msg: &str) -> Result<u32> {
|
|
if let Some(Token::FuncRef(fnref)) = self.token() {
|
|
self.consume();
|
|
Ok(fnref)
|
|
} else {
|
|
err!(self.loc, err_msg)
|
|
}
|
|
}
|
|
|
|
// Match and consume a signature reference.
|
|
fn match_sig(&mut self, err_msg: &str) -> Result<u32> {
|
|
if let Some(Token::SigRef(sigref)) = self.token() {
|
|
self.consume();
|
|
Ok(sigref)
|
|
} else {
|
|
err!(self.loc, err_msg)
|
|
}
|
|
}
|
|
|
|
// Match and consume a jump table reference.
|
|
fn match_jt(&mut self) -> Result<u32> {
|
|
if let Some(Token::JumpTable(jt)) = self.token() {
|
|
self.consume();
|
|
Ok(jt)
|
|
} else {
|
|
err!(self.loc, "expected jump table number: jt«n»")
|
|
}
|
|
}
|
|
|
|
// Match and consume an ebb reference.
|
|
fn match_ebb(&mut self, err_msg: &str) -> Result<Ebb> {
|
|
if let Some(Token::Ebb(ebb)) = self.token() {
|
|
self.consume();
|
|
Ok(ebb)
|
|
} else {
|
|
err!(self.loc, err_msg)
|
|
}
|
|
}
|
|
|
|
// Match and consume a value reference, direct or vtable.
|
|
// This does not convert from the source value numbering to our in-memory value numbering.
|
|
fn match_value(&mut self, err_msg: &str) -> Result<Value> {
|
|
if let Some(Token::Value(v)) = self.token() {
|
|
self.consume();
|
|
Ok(v)
|
|
} else {
|
|
err!(self.loc, err_msg)
|
|
}
|
|
}
|
|
|
|
fn error(&self, message: &str) -> Error {
|
|
Error {
|
|
location: self.loc.clone(),
|
|
message: message.to_string(),
|
|
}
|
|
}
|
|
|
|
// Match and consume an Imm64 immediate.
|
|
fn match_imm64(&mut self, err_msg: &str) -> Result<Imm64> {
|
|
if let Some(Token::Integer(text)) = self.token() {
|
|
self.consume();
|
|
// Lexer just gives us raw text that looks like an integer.
|
|
// Parse it as an Imm64 to check for overflow and other issues.
|
|
text.parse().map_err(|e| self.error(e))
|
|
} else {
|
|
err!(self.loc, err_msg)
|
|
}
|
|
}
|
|
|
|
// Match and consume a u8 immediate.
|
|
// This is used for lane numbers in SIMD vectors.
|
|
fn match_uimm8(&mut self, err_msg: &str) -> Result<u8> {
|
|
if let Some(Token::Integer(text)) = self.token() {
|
|
self.consume();
|
|
// Lexer just gives us raw text that looks like an integer.
|
|
// Parse it as a u8 to check for overflow and other issues.
|
|
text.parse().map_err(|_| self.error("expected u8 decimal immediate"))
|
|
} else {
|
|
err!(self.loc, err_msg)
|
|
}
|
|
}
|
|
|
|
// Match and consume an Ieee32 immediate.
|
|
fn match_ieee32(&mut self, err_msg: &str) -> Result<Ieee32> {
|
|
if let Some(Token::Float(text)) = self.token() {
|
|
self.consume();
|
|
// Lexer just gives us raw text that looks like a float.
|
|
// Parse it as an Ieee32 to check for the right number of digits and other issues.
|
|
text.parse().map_err(|e| self.error(e))
|
|
} else {
|
|
err!(self.loc, err_msg)
|
|
}
|
|
}
|
|
|
|
// Match and consume an Ieee64 immediate.
|
|
fn match_ieee64(&mut self, err_msg: &str) -> Result<Ieee64> {
|
|
if let Some(Token::Float(text)) = self.token() {
|
|
self.consume();
|
|
// Lexer just gives us raw text that looks like a float.
|
|
// Parse it as an Ieee64 to check for the right number of digits and other issues.
|
|
text.parse().map_err(|e| self.error(e))
|
|
} else {
|
|
err!(self.loc, err_msg)
|
|
}
|
|
}
|
|
|
|
// Match and consume an enumerated immediate, like one of the condition codes.
|
|
fn match_enum<T: FromStr>(&mut self, err_msg: &str) -> Result<T> {
|
|
if let Some(Token::Identifier(text)) = self.token() {
|
|
self.consume();
|
|
text.parse().map_err(|_| self.error(err_msg))
|
|
} else {
|
|
err!(self.loc, err_msg)
|
|
}
|
|
}
|
|
|
|
/// Parse a list of test commands.
|
|
pub fn parse_test_commands(&mut self) -> Vec<TestCommand<'a>> {
|
|
let mut list = Vec::new();
|
|
while self.token() == Some(Token::Identifier("test")) {
|
|
list.push(TestCommand::new(self.consume_line()));
|
|
}
|
|
list
|
|
}
|
|
|
|
/// Parse a list of ISA specs.
|
|
///
|
|
/// Accept a mix of `isa` and `set` command lines. The `set` commands are cumulative.
|
|
///
|
|
pub fn parse_isa_specs(&mut self) -> Result<isaspec::IsaSpec> {
|
|
// Was there any `isa` commands?
|
|
let mut seen_isa = false;
|
|
// Location of last `set` command since the last `isa`.
|
|
let mut last_set_loc = None;
|
|
|
|
let mut isas = Vec::new();
|
|
let mut flag_builder = settings::builder();
|
|
|
|
while let Some(Token::Identifier(command)) = self.token() {
|
|
match command {
|
|
"set" => {
|
|
last_set_loc = Some(self.loc);
|
|
try!(isaspec::parse_options(self.consume_line().trim().split_whitespace(),
|
|
&mut flag_builder,
|
|
&self.loc));
|
|
}
|
|
"isa" => {
|
|
last_set_loc = None;
|
|
seen_isa = true;
|
|
let loc = self.loc;
|
|
// Grab the whole line so the lexer won't go looking for tokens on the
|
|
// following lines.
|
|
let mut words = self.consume_line().trim().split_whitespace();
|
|
// Look for `isa foo`.
|
|
let isa_name = match words.next() {
|
|
None => return err!(loc, "expected ISA name"),
|
|
Some(w) => w,
|
|
};
|
|
let mut isa_builder = match isa::lookup(isa_name) {
|
|
None => return err!(loc, "unknown ISA '{}'", isa_name),
|
|
Some(b) => b,
|
|
};
|
|
// Apply the ISA-specific settings to `isa_builder`.
|
|
try!(isaspec::parse_options(words, &mut isa_builder, &self.loc));
|
|
|
|
// Construct a trait object with the aggregrate settings.
|
|
isas.push(isa_builder.finish(settings::Flags::new(&flag_builder)));
|
|
}
|
|
_ => break,
|
|
}
|
|
}
|
|
if !seen_isa {
|
|
// No `isa` commands, but we allow for `set` commands.
|
|
Ok(isaspec::IsaSpec::None(settings::Flags::new(&flag_builder)))
|
|
} else if let Some(loc) = last_set_loc {
|
|
err!(loc,
|
|
"dangling 'set' command after ISA specification has no effect.")
|
|
} else {
|
|
Ok(isaspec::IsaSpec::Some(isas))
|
|
}
|
|
}
|
|
|
|
/// Parse a list of function definitions.
|
|
///
|
|
/// This is the top-level parse function matching the whole contents of a file.
|
|
pub fn parse_function_list(&mut self) -> Result<Vec<(Function, Details<'a>)>> {
|
|
let mut list = Vec::new();
|
|
while self.token().is_some() {
|
|
list.push(try!(self.parse_function()));
|
|
}
|
|
Ok(list)
|
|
}
|
|
|
|
// Parse a whole function definition.
|
|
//
|
|
// function ::= * function-spec "{" preamble function-body "}"
|
|
//
|
|
fn parse_function(&mut self) -> Result<(Function, Details<'a>)> {
|
|
// Begin gathering comments.
|
|
// Make sure we don't include any comments before the `function` keyword.
|
|
self.token();
|
|
self.comments.clear();
|
|
self.gather_comments(AnyEntity::Function);
|
|
|
|
let (location, name, sig) = try!(self.parse_function_spec());
|
|
let mut ctx = Context::new(Function::with_name_signature(name, sig));
|
|
|
|
// function ::= function-spec * "{" preamble function-body "}"
|
|
try!(self.match_token(Token::LBrace, "expected '{' before function body"));
|
|
// function ::= function-spec "{" * preamble function-body "}"
|
|
try!(self.parse_preamble(&mut ctx));
|
|
// function ::= function-spec "{" preamble * function-body "}"
|
|
try!(self.parse_function_body(&mut ctx));
|
|
// function ::= function-spec "{" preamble function-body * "}"
|
|
try!(self.match_token(Token::RBrace, "expected '}' after function body"));
|
|
|
|
// Collect any comments following the end of the function, then stop gathering comments.
|
|
self.gather_comments(AnyEntity::Function);
|
|
self.token();
|
|
self.comment_entity = None;
|
|
|
|
// Rewrite references to values and EBBs after parsing everything to allow forward
|
|
// references.
|
|
try!(ctx.rewrite_references());
|
|
|
|
let details = Details {
|
|
location: location,
|
|
comments: self.take_comments(),
|
|
map: ctx.map,
|
|
};
|
|
|
|
Ok((ctx.function, details))
|
|
}
|
|
|
|
// Parse a function spec.
|
|
//
|
|
// function-spec ::= * "function" name signature
|
|
//
|
|
fn parse_function_spec(&mut self) -> Result<(Location, FunctionName, Signature)> {
|
|
try!(self.match_identifier("function", "expected 'function'"));
|
|
let location = self.loc;
|
|
|
|
// function-spec ::= "function" * name signature
|
|
let name = try!(self.parse_function_name());
|
|
|
|
// function-spec ::= "function" name * signature
|
|
let sig = try!(self.parse_signature());
|
|
|
|
Ok((location, name, sig))
|
|
}
|
|
|
|
// Parse a function name.
|
|
//
|
|
// function ::= "function" * name signature { ... }
|
|
//
|
|
fn parse_function_name(&mut self) -> Result<FunctionName> {
|
|
match self.token() {
|
|
Some(Token::Identifier(s)) => {
|
|
self.consume();
|
|
Ok(FunctionName::new(s))
|
|
}
|
|
_ => err!(self.loc, "expected function name"),
|
|
}
|
|
}
|
|
|
|
// Parse a function signature.
|
|
//
|
|
// signature ::= * "(" [arglist] ")" ["->" retlist] [call_conv]
|
|
//
|
|
fn parse_signature(&mut self) -> Result<Signature> {
|
|
let mut sig = Signature::new();
|
|
|
|
try!(self.match_token(Token::LPar, "expected function signature: ( args... )"));
|
|
// signature ::= "(" * [arglist] ")" ["->" retlist] [call_conv]
|
|
if self.token() != Some(Token::RPar) {
|
|
sig.argument_types = try!(self.parse_argument_list());
|
|
}
|
|
try!(self.match_token(Token::RPar, "expected ')' after function arguments"));
|
|
if self.optional(Token::Arrow) {
|
|
sig.return_types = try!(self.parse_argument_list());
|
|
}
|
|
|
|
// TBD: calling convention.
|
|
|
|
Ok(sig)
|
|
}
|
|
|
|
// Parse list of function argument / return value types.
|
|
//
|
|
// arglist ::= * arg { "," arg }
|
|
//
|
|
fn parse_argument_list(&mut self) -> Result<Vec<ArgumentType>> {
|
|
let mut list = Vec::new();
|
|
|
|
// arglist ::= * arg { "," arg }
|
|
list.push(try!(self.parse_argument_type()));
|
|
|
|
// arglist ::= arg * { "," arg }
|
|
while self.optional(Token::Comma) {
|
|
// arglist ::= arg { "," * arg }
|
|
list.push(try!(self.parse_argument_type()));
|
|
}
|
|
|
|
Ok(list)
|
|
}
|
|
|
|
// Parse a single argument type with flags.
|
|
fn parse_argument_type(&mut self) -> Result<ArgumentType> {
|
|
// arg ::= * type { flag }
|
|
let mut arg = ArgumentType::new(try!(self.match_type("expected argument type")));
|
|
|
|
// arg ::= type * { flag }
|
|
while let Some(Token::Identifier(s)) = self.token() {
|
|
match s {
|
|
"uext" => arg.extension = ArgumentExtension::Uext,
|
|
"sext" => arg.extension = ArgumentExtension::Sext,
|
|
"inreg" => arg.inreg = true,
|
|
_ => break,
|
|
}
|
|
self.consume();
|
|
}
|
|
|
|
Ok(arg)
|
|
}
|
|
|
|
// Parse the function preamble.
|
|
//
|
|
// preamble ::= * { preamble-decl }
|
|
// preamble-decl ::= * stack-slot-decl
|
|
// * function-decl
|
|
// * signature-decl
|
|
// * jump-table-decl
|
|
//
|
|
// The parsed decls are added to `ctx` rather than returned.
|
|
fn parse_preamble(&mut self, ctx: &mut Context) -> Result<()> {
|
|
loop {
|
|
try!(match self.token() {
|
|
Some(Token::StackSlot(..)) => {
|
|
self.gather_comments(ctx.function.stack_slots.next_key());
|
|
self.parse_stack_slot_decl()
|
|
.and_then(|(num, dat)| ctx.add_ss(num, dat, &self.loc))
|
|
}
|
|
Some(Token::SigRef(..)) => {
|
|
self.gather_comments(ctx.function.dfg.signatures.next_key());
|
|
self.parse_signature_decl()
|
|
.and_then(|(num, dat)| ctx.add_sig(num, dat, &self.loc))
|
|
}
|
|
Some(Token::FuncRef(..)) => {
|
|
self.gather_comments(ctx.function.dfg.ext_funcs.next_key());
|
|
self.parse_function_decl(ctx)
|
|
.and_then(|(num, dat)| ctx.add_fn(num, dat, &self.loc))
|
|
}
|
|
Some(Token::JumpTable(..)) => {
|
|
self.gather_comments(ctx.function.jump_tables.next_key());
|
|
self.parse_jump_table_decl()
|
|
.and_then(|(num, dat)| ctx.add_jt(num, dat, &self.loc))
|
|
}
|
|
// More to come..
|
|
_ => return Ok(()),
|
|
});
|
|
}
|
|
}
|
|
|
|
// Parse a stack slot decl.
|
|
//
|
|
// stack-slot-decl ::= * StackSlot(ss) "=" "stack_slot" Bytes {"," stack-slot-flag}
|
|
fn parse_stack_slot_decl(&mut self) -> Result<(u32, StackSlotData)> {
|
|
let number = try!(self.match_ss("expected stack slot number: ss«n»"));
|
|
try!(self.match_token(Token::Equal, "expected '=' in stack_slot decl"));
|
|
try!(self.match_identifier("stack_slot", "expected 'stack_slot'"));
|
|
|
|
// stack-slot-decl ::= StackSlot(ss) "=" "stack_slot" * Bytes {"," stack-slot-flag}
|
|
let bytes: i64 = try!(self.match_imm64("expected byte-size in stack_slot decl")).into();
|
|
if bytes < 0 {
|
|
return err!(self.loc, "negative stack slot size");
|
|
}
|
|
if bytes > u32::MAX as i64 {
|
|
return err!(self.loc, "stack slot too large");
|
|
}
|
|
let data = StackSlotData::new(bytes as u32);
|
|
|
|
// TBD: stack-slot-decl ::= StackSlot(ss) "=" "stack_slot" Bytes * {"," stack-slot-flag}
|
|
Ok((number, data))
|
|
}
|
|
|
|
// Parse a signature decl.
|
|
//
|
|
// signature-decl ::= SigRef(sigref) "=" "signature" signature
|
|
//
|
|
fn parse_signature_decl(&mut self) -> Result<(u32, Signature)> {
|
|
let number = try!(self.match_sig("expected signature number: sig«n»"));
|
|
try!(self.match_token(Token::Equal, "expected '=' in signature decl"));
|
|
try!(self.match_identifier("signature", "expected 'signature'"));
|
|
let data = try!(self.parse_signature());
|
|
Ok((number, data))
|
|
}
|
|
|
|
// Parse a function decl.
|
|
//
|
|
// Two variants:
|
|
//
|
|
// function-decl ::= FuncRef(fnref) "=" function-spec
|
|
// FuncRef(fnref) "=" SigRef(sig) name
|
|
//
|
|
// The first variant allocates a new signature reference. The second references an existing
|
|
// signature which must be declared first.
|
|
//
|
|
fn parse_function_decl(&mut self, ctx: &mut Context) -> Result<(u32, ExtFuncData)> {
|
|
let number = try!(self.match_fn("expected function number: fn«n»"));
|
|
try!(self.match_token(Token::Equal, "expected '=' in function decl"));
|
|
|
|
let data = match self.token() {
|
|
Some(Token::Identifier("function")) => {
|
|
let (loc, name, sig) = try!(self.parse_function_spec());
|
|
let sigref = ctx.function.dfg.signatures.push(sig);
|
|
ctx.map.def_entity(sigref.into(), &loc).expect("duplicate SigRef entities created");
|
|
ExtFuncData {
|
|
name: name,
|
|
signature: sigref,
|
|
}
|
|
}
|
|
Some(Token::SigRef(sig_src)) => {
|
|
let sig = try!(ctx.get_sig(sig_src, &self.loc));
|
|
self.consume();
|
|
let name = try!(self.parse_function_name());
|
|
ExtFuncData {
|
|
name: name,
|
|
signature: sig,
|
|
}
|
|
}
|
|
_ => return err!(self.loc, "expected 'function' or sig«n» in function decl"),
|
|
};
|
|
Ok((number, data))
|
|
}
|
|
|
|
// Parse a jump table decl.
|
|
//
|
|
// jump-table-decl ::= * JumpTable(jt) "=" "jump_table" jt-entry {"," jt-entry}
|
|
fn parse_jump_table_decl(&mut self) -> Result<(u32, JumpTableData)> {
|
|
let number = try!(self.match_jt());
|
|
try!(self.match_token(Token::Equal, "expected '=' in jump_table decl"));
|
|
try!(self.match_identifier("jump_table", "expected 'jump_table'"));
|
|
|
|
let mut data = JumpTableData::new();
|
|
|
|
// jump-table-decl ::= JumpTable(jt) "=" "jump_table" * jt-entry {"," jt-entry}
|
|
for idx in 0usize.. {
|
|
if let Some(dest) = try!(self.parse_jump_table_entry()) {
|
|
data.set_entry(idx, dest);
|
|
}
|
|
if !self.optional(Token::Comma) {
|
|
return Ok((number, data));
|
|
}
|
|
}
|
|
|
|
err!(self.loc, "jump_table too long")
|
|
}
|
|
|
|
// jt-entry ::= * Ebb(dest) | "0"
|
|
fn parse_jump_table_entry(&mut self) -> Result<Option<Ebb>> {
|
|
match self.token() {
|
|
Some(Token::Integer(s)) => {
|
|
if s == "0" {
|
|
self.consume();
|
|
Ok(None)
|
|
} else {
|
|
err!(self.loc, "invalid jump_table entry '{}'", s)
|
|
}
|
|
}
|
|
Some(Token::Ebb(dest)) => {
|
|
self.consume();
|
|
Ok(Some(dest))
|
|
}
|
|
_ => err!(self.loc, "expected jump_table entry"),
|
|
}
|
|
}
|
|
|
|
// Parse a function body, add contents to `ctx`.
|
|
//
|
|
// function-body ::= * { extended-basic-block }
|
|
//
|
|
fn parse_function_body(&mut self, ctx: &mut Context) -> Result<()> {
|
|
while self.token() != Some(Token::RBrace) {
|
|
try!(self.parse_extended_basic_block(ctx));
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
// Parse an extended basic block, add contents to `ctx`.
|
|
//
|
|
// extended-basic-block ::= * ebb-header { instruction }
|
|
// ebb-header ::= Ebb(ebb) [ebb-args] ":"
|
|
//
|
|
fn parse_extended_basic_block(&mut self, ctx: &mut Context) -> Result<()> {
|
|
let ebb_num = try!(self.match_ebb("expected EBB header"));
|
|
let ebb = try!(ctx.add_ebb(ebb_num, &self.loc));
|
|
self.gather_comments(ebb);
|
|
|
|
if !self.optional(Token::Colon) {
|
|
// ebb-header ::= Ebb(ebb) [ * ebb-args ] ":"
|
|
try!(self.parse_ebb_args(ctx, ebb));
|
|
try!(self.match_token(Token::Colon, "expected ':' after EBB arguments"));
|
|
}
|
|
|
|
// extended-basic-block ::= ebb-header * { instruction }
|
|
while match self.token() {
|
|
Some(Token::Value(_)) => true,
|
|
Some(Token::Identifier(_)) => true,
|
|
_ => false,
|
|
} {
|
|
try!(self.parse_instruction(ctx, ebb));
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// Parse parenthesized list of EBB arguments. Returns a vector of (u32, Type) pairs with the
|
|
// source vx numbers of the defined values and the defined types.
|
|
//
|
|
// ebb-args ::= * "(" ebb-arg { "," ebb-arg } ")"
|
|
fn parse_ebb_args(&mut self, ctx: &mut Context, ebb: Ebb) -> Result<()> {
|
|
// ebb-args ::= * "(" ebb-arg { "," ebb-arg } ")"
|
|
try!(self.match_token(Token::LPar, "expected '(' before EBB arguments"));
|
|
|
|
// ebb-args ::= "(" * ebb-arg { "," ebb-arg } ")"
|
|
try!(self.parse_ebb_arg(ctx, ebb));
|
|
|
|
// ebb-args ::= "(" ebb-arg * { "," ebb-arg } ")"
|
|
while self.optional(Token::Comma) {
|
|
// ebb-args ::= "(" ebb-arg { "," * ebb-arg } ")"
|
|
try!(self.parse_ebb_arg(ctx, ebb));
|
|
}
|
|
|
|
// ebb-args ::= "(" ebb-arg { "," ebb-arg } * ")"
|
|
try!(self.match_token(Token::RPar, "expected ')' after EBB arguments"));
|
|
|
|
Ok(())
|
|
}
|
|
|
|
// Parse a single EBB argument declaration, and append it to `ebb`.
|
|
//
|
|
// ebb-arg ::= * Value(vx) ":" Type(t)
|
|
//
|
|
fn parse_ebb_arg(&mut self, ctx: &mut Context, ebb: Ebb) -> Result<()> {
|
|
// ebb-arg ::= * Value(vx) ":" Type(t)
|
|
let vx = try!(self.match_value("EBB argument must be a value"));
|
|
let vx_location = self.loc;
|
|
// ebb-arg ::= Value(vx) * ":" Type(t)
|
|
try!(self.match_token(Token::Colon, "expected ':' after EBB argument"));
|
|
// ebb-arg ::= Value(vx) ":" * Type(t)
|
|
let t = try!(self.match_type("expected EBB argument type"));
|
|
// Allocate the EBB argument and add the mapping.
|
|
let value = ctx.function.dfg.append_ebb_arg(ebb, t);
|
|
ctx.map.def_value(vx, value, &vx_location)
|
|
}
|
|
|
|
// Parse an instruction, append it to `ebb`.
|
|
//
|
|
// instruction ::= [inst-results "="] Opcode(opc) ["." Type] ...
|
|
// inst-results ::= Value(v) { "," Value(vx) }
|
|
//
|
|
fn parse_instruction(&mut self, ctx: &mut Context, ebb: Ebb) -> Result<()> {
|
|
// Collect comments for the next instruction to be allocated.
|
|
self.gather_comments(ctx.function.dfg.next_inst());
|
|
|
|
// Result value numbers.
|
|
let mut results = Vec::new();
|
|
|
|
// instruction ::= * [inst-results "="] Opcode(opc) ["." Type] ...
|
|
// inst-results ::= * Value(v) { "," Value(vx) }
|
|
if let Some(Token::Value(v)) = self.token() {
|
|
self.consume();
|
|
results.push(v);
|
|
|
|
// inst-results ::= Value(v) * { "," Value(vx) }
|
|
while self.optional(Token::Comma) {
|
|
// inst-results ::= Value(v) { "," * Value(vx) }
|
|
results.push(try!(self.match_value("expected result value")));
|
|
}
|
|
|
|
try!(self.match_token(Token::Equal, "expected '=' before opcode"));
|
|
}
|
|
|
|
// instruction ::= [inst-results "="] * Opcode(opc) ["." Type] ...
|
|
let opcode = if let Some(Token::Identifier(text)) = self.token() {
|
|
match text.parse() {
|
|
Ok(opc) => opc,
|
|
Err(msg) => return err!(self.loc, "{}: '{}'", msg, text),
|
|
}
|
|
} else {
|
|
return err!(self.loc, "expected instruction opcode");
|
|
};
|
|
let opcode_loc = self.loc;
|
|
self.consume();
|
|
|
|
// Look for a controlling type variable annotation.
|
|
// instruction ::= [inst-results "="] Opcode(opc) * ["." Type] ...
|
|
let explicit_ctrl_type = if self.optional(Token::Dot) {
|
|
Some(try!(self.match_type("expected type after 'opcode.'")))
|
|
} else {
|
|
None
|
|
};
|
|
|
|
// instruction ::= [inst-results "="] Opcode(opc) ["." Type] * ...
|
|
let inst_data = try!(self.parse_inst_operands(ctx, opcode));
|
|
|
|
// We're done parsing the instruction now.
|
|
//
|
|
// We still need to check that the number of result values in the source matches the opcode
|
|
// or function call signature. We also need to create values with the right type for all
|
|
// the instruction results.
|
|
let ctrl_typevar = try!(self.infer_typevar(ctx, opcode, explicit_ctrl_type, &inst_data));
|
|
let inst = ctx.function.dfg.make_inst(inst_data);
|
|
let num_results = ctx.function.dfg.make_inst_results(inst, ctrl_typevar);
|
|
ctx.function.layout.append_inst(inst, ebb);
|
|
ctx.map.def_entity(inst.into(), &opcode_loc).expect("duplicate inst references created");
|
|
|
|
if results.len() != num_results {
|
|
return err!(self.loc,
|
|
"instruction produces {} result values, {} given",
|
|
num_results,
|
|
results.len());
|
|
}
|
|
|
|
// Now map the source result values to the just created instruction results.
|
|
// Pass a reference to `ctx.values` instead of `ctx` itself since the `Values` iterator
|
|
// holds a reference to `ctx.function`.
|
|
self.add_values(&mut ctx.map,
|
|
results.into_iter(),
|
|
ctx.function.dfg.inst_results(inst))
|
|
}
|
|
|
|
// Type inference for polymorphic instructions.
|
|
//
|
|
// The controlling type variable can be specified explicitly as 'splat.i32x4 v5', or it can be
|
|
// inferred from `inst_data.typevar_operand` for some opcodes.
|
|
//
|
|
// The value operands in `inst_data` are expected to use source numbering.
|
|
//
|
|
// Returns the controlling typevar for a polymorphic opcode, or `VOID` for a non-polymorphic
|
|
// opcode.
|
|
fn infer_typevar(&self,
|
|
ctx: &Context,
|
|
opcode: Opcode,
|
|
explicit_ctrl_type: Option<Type>,
|
|
inst_data: &InstructionData)
|
|
-> Result<Type> {
|
|
let constraints = opcode.constraints();
|
|
let ctrl_type = match explicit_ctrl_type {
|
|
Some(t) => t,
|
|
None => {
|
|
if constraints.use_typevar_operand() {
|
|
// This is an opcode that supports type inference, AND there was no explicit
|
|
// type specified. Look up `ctrl_value` to see if it was defined already.
|
|
// TBD: If it is defined in another block, the type should have been specified
|
|
// explicitly. It is unfortunate that the correctness of IL depends on the
|
|
// layout of the blocks.
|
|
let ctrl_src_value = inst_data.typevar_operand()
|
|
.expect("Constraints <-> Format inconsistency");
|
|
ctx.function.dfg.value_type(match ctx.map.get_value(ctrl_src_value) {
|
|
Some(v) => v,
|
|
None => {
|
|
return err!(self.loc,
|
|
"cannot determine type of operand {}",
|
|
ctrl_src_value);
|
|
}
|
|
})
|
|
} else if constraints.is_polymorphic() {
|
|
// This opcode does not support type inference, so the explicit type variable
|
|
// is required.
|
|
return err!(self.loc,
|
|
"type variable required for polymorphic opcode, e.g. '{}.{}'",
|
|
opcode,
|
|
constraints.ctrl_typeset().unwrap().example());
|
|
} else {
|
|
// This is a non-polymorphic opcode. No typevar needed.
|
|
VOID
|
|
}
|
|
}
|
|
};
|
|
|
|
// Verify that `ctrl_type` is valid for the controlling type variable. We don't want to
|
|
// attempt deriving types from an incorrect basis.
|
|
// This is not a complete type check. The verifier does that.
|
|
if let Some(typeset) = constraints.ctrl_typeset() {
|
|
// This is a polymorphic opcode.
|
|
if !typeset.contains(ctrl_type) {
|
|
return err!(self.loc,
|
|
"{} is not a valid typevar for {}",
|
|
ctrl_type,
|
|
opcode);
|
|
}
|
|
} else {
|
|
// Treat it as a syntax error to speficy a typevar on a non-polymorphic opcode.
|
|
if ctrl_type != VOID {
|
|
return err!(self.loc, "{} does not take a typevar", opcode);
|
|
}
|
|
}
|
|
|
|
Ok(ctrl_type)
|
|
}
|
|
|
|
// Add mappings for a list of source values to their corresponding new values.
|
|
fn add_values<S, V>(&self, map: &mut SourceMap, results: S, new_results: V) -> Result<()>
|
|
where S: Iterator<Item = Value>,
|
|
V: Iterator<Item = Value>
|
|
{
|
|
for (src, val) in results.zip(new_results) {
|
|
try!(map.def_value(src, val, &self.loc));
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
// Parse comma-separated value list into a VariableArgs struct.
|
|
//
|
|
// value_list ::= [ value { "," value } ]
|
|
//
|
|
fn parse_value_list(&mut self) -> Result<VariableArgs> {
|
|
let mut args = VariableArgs::new();
|
|
|
|
if let Some(Token::Value(v)) = self.token() {
|
|
args.push(v);
|
|
self.consume();
|
|
} else {
|
|
return Ok(args);
|
|
}
|
|
|
|
while self.optional(Token::Comma) {
|
|
args.push(try!(self.match_value("expected value in argument list")));
|
|
}
|
|
|
|
Ok(args)
|
|
}
|
|
|
|
// Parse an optional value list enclosed in parantheses.
|
|
fn parse_opt_value_list(&mut self) -> Result<VariableArgs> {
|
|
if !self.optional(Token::LPar) {
|
|
return Ok(VariableArgs::new());
|
|
}
|
|
|
|
let args = try!(self.parse_value_list());
|
|
|
|
try!(self.match_token(Token::RPar, "expected ')' after arguments"));
|
|
|
|
Ok(args)
|
|
}
|
|
|
|
// Parse the operands following the instruction opcode.
|
|
// This depends on the format of the opcode.
|
|
fn parse_inst_operands(&mut self, ctx: &Context, opcode: Opcode) -> Result<InstructionData> {
|
|
Ok(match opcode.format().unwrap() {
|
|
InstructionFormat::Nullary => {
|
|
InstructionData::Nullary {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
}
|
|
}
|
|
InstructionFormat::Unary => {
|
|
InstructionData::Unary {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
arg: try!(self.match_value("expected SSA value operand")),
|
|
}
|
|
}
|
|
InstructionFormat::UnaryImm => {
|
|
InstructionData::UnaryImm {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
imm: try!(self.match_imm64("expected immediate integer operand")),
|
|
}
|
|
}
|
|
InstructionFormat::UnaryIeee32 => {
|
|
InstructionData::UnaryIeee32 {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
imm: try!(self.match_ieee32("expected immediate 32-bit float operand")),
|
|
}
|
|
}
|
|
InstructionFormat::UnaryIeee64 => {
|
|
InstructionData::UnaryIeee64 {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
imm: try!(self.match_ieee64("expected immediate 64-bit float operand")),
|
|
}
|
|
}
|
|
InstructionFormat::UnaryImmVector => {
|
|
unimplemented!();
|
|
}
|
|
InstructionFormat::UnarySplit => {
|
|
InstructionData::UnarySplit {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
second_result: None.into(),
|
|
arg: try!(self.match_value("expected SSA value operand")),
|
|
}
|
|
}
|
|
InstructionFormat::Binary => {
|
|
let lhs = try!(self.match_value("expected SSA value first operand"));
|
|
try!(self.match_token(Token::Comma, "expected ',' between operands"));
|
|
let rhs = try!(self.match_value("expected SSA value second operand"));
|
|
InstructionData::Binary {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
args: [lhs, rhs],
|
|
}
|
|
}
|
|
InstructionFormat::BinaryImm => {
|
|
let lhs = try!(self.match_value("expected SSA value first operand"));
|
|
try!(self.match_token(Token::Comma, "expected ',' between operands"));
|
|
let rhs = try!(self.match_imm64("expected immediate integer second operand"));
|
|
InstructionData::BinaryImm {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
arg: lhs,
|
|
imm: rhs,
|
|
}
|
|
}
|
|
InstructionFormat::BinaryImmRev => {
|
|
let lhs = try!(self.match_imm64("expected immediate integer first operand"));
|
|
try!(self.match_token(Token::Comma, "expected ',' between operands"));
|
|
let rhs = try!(self.match_value("expected SSA value second operand"));
|
|
InstructionData::BinaryImmRev {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
imm: lhs,
|
|
arg: rhs,
|
|
}
|
|
}
|
|
InstructionFormat::BinaryOverflow => {
|
|
let lhs = try!(self.match_value("expected SSA value first operand"));
|
|
try!(self.match_token(Token::Comma, "expected ',' between operands"));
|
|
let rhs = try!(self.match_value("expected SSA value second operand"));
|
|
InstructionData::BinaryOverflow {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
second_result: None.into(),
|
|
args: [lhs, rhs],
|
|
}
|
|
}
|
|
InstructionFormat::Ternary => {
|
|
// Names here refer to the `select` instruction.
|
|
// This format is also use by `fma`.
|
|
let ctrl_arg = try!(self.match_value("expected SSA value control operand"));
|
|
try!(self.match_token(Token::Comma, "expected ',' between operands"));
|
|
let true_arg = try!(self.match_value("expected SSA value true operand"));
|
|
try!(self.match_token(Token::Comma, "expected ',' between operands"));
|
|
let false_arg = try!(self.match_value("expected SSA value false operand"));
|
|
InstructionData::Ternary {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
args: [ctrl_arg, true_arg, false_arg],
|
|
}
|
|
}
|
|
InstructionFormat::TernaryOverflow => {
|
|
// Names here refer to the `iadd_carry` instruction.
|
|
let lhs = try!(self.match_value("expected SSA value first operand"));
|
|
try!(self.match_token(Token::Comma, "expected ',' between operands"));
|
|
let rhs = try!(self.match_value("expected SSA value second operand"));
|
|
try!(self.match_token(Token::Comma, "expected ',' between operands"));
|
|
let cin = try!(self.match_value("expected SSA value third operand"));
|
|
InstructionData::TernaryOverflow {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
second_result: None.into(),
|
|
data: Box::new(TernaryOverflowData { args: [lhs, rhs, cin] }),
|
|
}
|
|
}
|
|
InstructionFormat::Jump => {
|
|
// Parse the destination EBB number. Don't translate source to local numbers yet.
|
|
let ebb_num = try!(self.match_ebb("expected jump destination EBB"));
|
|
let args = try!(self.parse_opt_value_list());
|
|
InstructionData::Jump {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
data: Box::new(JumpData {
|
|
destination: ebb_num,
|
|
varargs: args,
|
|
}),
|
|
}
|
|
}
|
|
InstructionFormat::Branch => {
|
|
let ctrl_arg = try!(self.match_value("expected SSA value control operand"));
|
|
try!(self.match_token(Token::Comma, "expected ',' between operands"));
|
|
let ebb_num = try!(self.match_ebb("expected branch destination EBB"));
|
|
let args = try!(self.parse_opt_value_list());
|
|
InstructionData::Branch {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
data: Box::new(BranchData {
|
|
arg: ctrl_arg,
|
|
destination: ebb_num,
|
|
varargs: args,
|
|
}),
|
|
}
|
|
}
|
|
InstructionFormat::InsertLane => {
|
|
let lhs = try!(self.match_value("expected SSA value first operand"));
|
|
try!(self.match_token(Token::Comma, "expected ',' between operands"));
|
|
let lane = try!(self.match_uimm8("expected lane number"));
|
|
try!(self.match_token(Token::Comma, "expected ',' between operands"));
|
|
let rhs = try!(self.match_value("expected SSA value last operand"));
|
|
InstructionData::InsertLane {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
lane: lane,
|
|
args: [lhs, rhs],
|
|
}
|
|
}
|
|
InstructionFormat::ExtractLane => {
|
|
let arg = try!(self.match_value("expected SSA value last operand"));
|
|
try!(self.match_token(Token::Comma, "expected ',' between operands"));
|
|
let lane = try!(self.match_uimm8("expected lane number"));
|
|
InstructionData::ExtractLane {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
lane: lane,
|
|
arg: arg,
|
|
}
|
|
}
|
|
InstructionFormat::IntCompare => {
|
|
let cond = try!(self.match_enum("expected intcc condition code"));
|
|
try!(self.match_token(Token::Comma, "expected ',' between operands"));
|
|
let lhs = try!(self.match_value("expected SSA value first operand"));
|
|
try!(self.match_token(Token::Comma, "expected ',' between operands"));
|
|
let rhs = try!(self.match_value("expected SSA value second operand"));
|
|
InstructionData::IntCompare {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
cond: cond,
|
|
args: [lhs, rhs],
|
|
}
|
|
}
|
|
InstructionFormat::FloatCompare => {
|
|
let cond = try!(self.match_enum("expected floatcc condition code"));
|
|
try!(self.match_token(Token::Comma, "expected ',' between operands"));
|
|
let lhs = try!(self.match_value("expected SSA value first operand"));
|
|
try!(self.match_token(Token::Comma, "expected ',' between operands"));
|
|
let rhs = try!(self.match_value("expected SSA value second operand"));
|
|
InstructionData::FloatCompare {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
cond: cond,
|
|
args: [lhs, rhs],
|
|
}
|
|
}
|
|
InstructionFormat::Call => {
|
|
let func_ref = try!(self.match_fn("expected function reference")
|
|
.and_then(|num| ctx.get_fn(num, &self.loc)));
|
|
try!(self.match_token(Token::LPar, "expected '(' before arguments"));
|
|
let args = try!(self.parse_value_list());
|
|
try!(self.match_token(Token::RPar, "expected ')' after arguments"));
|
|
InstructionData::Call {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
second_result: None.into(),
|
|
data: Box::new(CallData {
|
|
func_ref: func_ref,
|
|
varargs: args,
|
|
}),
|
|
}
|
|
}
|
|
InstructionFormat::IndirectCall => {
|
|
let sig_ref = try!(self.match_sig("expected signature reference")
|
|
.and_then(|num| ctx.get_sig(num, &self.loc)));
|
|
try!(self.match_token(Token::Comma, "expected ',' between operands"));
|
|
let callee = try!(self.match_value("expected SSA value callee operand"));
|
|
try!(self.match_token(Token::LPar, "expected '(' before arguments"));
|
|
let args = try!(self.parse_value_list());
|
|
try!(self.match_token(Token::RPar, "expected ')' after arguments"));
|
|
InstructionData::IndirectCall {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
second_result: None.into(),
|
|
data: Box::new(IndirectCallData {
|
|
sig_ref: sig_ref,
|
|
arg: callee,
|
|
varargs: args,
|
|
}),
|
|
}
|
|
}
|
|
InstructionFormat::Return => {
|
|
let args = try!(self.parse_value_list());
|
|
InstructionData::Return {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
data: Box::new(ReturnData { varargs: args }),
|
|
}
|
|
}
|
|
InstructionFormat::ReturnReg => {
|
|
let raddr = try!(self.match_value("expected SSA value return addr operand"));
|
|
try!(self.match_token(Token::Comma, "expected ',' between operands"));
|
|
let args = try!(self.parse_value_list());
|
|
InstructionData::ReturnReg {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
data: Box::new(ReturnRegData {
|
|
arg: raddr,
|
|
varargs: args,
|
|
}),
|
|
}
|
|
}
|
|
InstructionFormat::BranchTable => {
|
|
let arg = try!(self.match_value("expected SSA value operand"));
|
|
try!(self.match_token(Token::Comma, "expected ',' between operands"));
|
|
let table = try!(self.match_jt().and_then(|num| ctx.get_jt(num, &self.loc)));
|
|
InstructionData::BranchTable {
|
|
opcode: opcode,
|
|
ty: VOID,
|
|
arg: arg,
|
|
table: table,
|
|
}
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use cretonne::ir::{ArgumentType, ArgumentExtension};
|
|
use cretonne::ir::types;
|
|
use cretonne::ir::entities::AnyEntity;
|
|
use testfile::{Details, Comment};
|
|
use isaspec::IsaSpec;
|
|
use error::Error;
|
|
|
|
#[test]
|
|
fn argument_type() {
|
|
let mut p = Parser::new("i32 sext");
|
|
let arg = p.parse_argument_type().unwrap();
|
|
assert_eq!(arg,
|
|
ArgumentType {
|
|
value_type: types::I32,
|
|
extension: ArgumentExtension::Sext,
|
|
inreg: false,
|
|
});
|
|
let Error { location, message } = p.parse_argument_type().unwrap_err();
|
|
assert_eq!(location.line_number, 1);
|
|
assert_eq!(message, "expected argument type");
|
|
}
|
|
|
|
#[test]
|
|
fn signature() {
|
|
let sig = Parser::new("()").parse_signature().unwrap();
|
|
assert_eq!(sig.argument_types.len(), 0);
|
|
assert_eq!(sig.return_types.len(), 0);
|
|
|
|
let sig2 = Parser::new("(i8 inreg uext, f32, f64) -> i32 sext, f64")
|
|
.parse_signature()
|
|
.unwrap();
|
|
assert_eq!(sig2.to_string(),
|
|
"(i8 uext inreg, f32, f64) -> i32 sext, f64");
|
|
|
|
// `void` is not recognized as a type by the lexer. It should not appear in files.
|
|
assert_eq!(Parser::new("() -> void").parse_signature().unwrap_err().to_string(),
|
|
"1: expected argument type");
|
|
assert_eq!(Parser::new("i8 -> i8").parse_signature().unwrap_err().to_string(),
|
|
"1: expected function signature: ( args... )");
|
|
assert_eq!(Parser::new("(i8 -> i8").parse_signature().unwrap_err().to_string(),
|
|
"1: expected ')' after function arguments");
|
|
}
|
|
|
|
#[test]
|
|
fn stack_slot_decl() {
|
|
let (func, _) = Parser::new("function foo() {
|
|
ss3 = stack_slot 13
|
|
ss1 = stack_slot 1
|
|
}")
|
|
.parse_function()
|
|
.unwrap();
|
|
assert_eq!(func.name.to_string(), "foo");
|
|
let mut iter = func.stack_slots.keys();
|
|
let ss0 = iter.next().unwrap();
|
|
assert_eq!(ss0.to_string(), "ss0");
|
|
assert_eq!(func.stack_slots[ss0].size, 13);
|
|
let ss1 = iter.next().unwrap();
|
|
assert_eq!(ss1.to_string(), "ss1");
|
|
assert_eq!(func.stack_slots[ss1].size, 1);
|
|
assert_eq!(iter.next(), None);
|
|
|
|
// Catch duplicate definitions.
|
|
assert_eq!(Parser::new("function bar() {
|
|
ss1 = stack_slot 13
|
|
ss1 = stack_slot 1
|
|
}")
|
|
.parse_function()
|
|
.unwrap_err()
|
|
.to_string(),
|
|
"3: duplicate stack slot: ss1");
|
|
}
|
|
|
|
#[test]
|
|
fn ebb_header() {
|
|
let (func, _) = Parser::new("function ebbs() {
|
|
ebb0:
|
|
ebb4(vx3: i32):
|
|
}")
|
|
.parse_function()
|
|
.unwrap();
|
|
assert_eq!(func.name.to_string(), "ebbs");
|
|
|
|
let mut ebbs = func.layout.ebbs();
|
|
|
|
let ebb0 = ebbs.next().unwrap();
|
|
assert_eq!(func.dfg.ebb_args(ebb0).next(), None);
|
|
|
|
let ebb4 = ebbs.next().unwrap();
|
|
let mut ebb4_args = func.dfg.ebb_args(ebb4);
|
|
let arg0 = ebb4_args.next().unwrap();
|
|
assert_eq!(func.dfg.value_type(arg0), types::I32);
|
|
assert_eq!(ebb4_args.next(), None);
|
|
}
|
|
|
|
#[test]
|
|
fn comments() {
|
|
let (func, Details { comments, .. }) =
|
|
Parser::new("; before
|
|
function comment() { ; decl
|
|
ss10 = stack_slot 13 ; stackslot.
|
|
; Still stackslot.
|
|
jt10 = jump_table ebb0
|
|
; Jumptable
|
|
ebb0: ; Basic block
|
|
trap ; Instruction
|
|
} ; Trailing.
|
|
; More trailing.")
|
|
.parse_function()
|
|
.unwrap();
|
|
assert_eq!(func.name.to_string(), "comment");
|
|
assert_eq!(comments.len(), 8); // no 'before' comment.
|
|
assert_eq!(comments[0],
|
|
Comment {
|
|
entity: AnyEntity::Function,
|
|
text: "; decl",
|
|
});
|
|
assert_eq!(comments[1].entity.to_string(), "ss0");
|
|
assert_eq!(comments[2].entity.to_string(), "ss0");
|
|
assert_eq!(comments[2].text, "; Still stackslot.");
|
|
assert_eq!(comments[3].entity.to_string(), "jt0");
|
|
assert_eq!(comments[3].text, "; Jumptable");
|
|
assert_eq!(comments[4].entity.to_string(), "ebb0");
|
|
assert_eq!(comments[4].text, "; Basic block");
|
|
|
|
assert_eq!(comments[5].entity.to_string(), "inst0");
|
|
assert_eq!(comments[5].text, "; Instruction");
|
|
|
|
assert_eq!(comments[6].entity, AnyEntity::Function);
|
|
assert_eq!(comments[7].entity, AnyEntity::Function);
|
|
}
|
|
|
|
#[test]
|
|
fn test_file() {
|
|
let tf = parse_test("; before
|
|
test cfg option=5
|
|
test verify
|
|
set enable_float=false
|
|
; still preamble
|
|
function comment() {}")
|
|
.unwrap();
|
|
assert_eq!(tf.commands.len(), 2);
|
|
assert_eq!(tf.commands[0].command, "cfg");
|
|
assert_eq!(tf.commands[1].command, "verify");
|
|
match tf.isa_spec {
|
|
IsaSpec::None(s) => assert!(!s.enable_float()),
|
|
_ => panic!("unexpected ISAs"),
|
|
}
|
|
assert_eq!(tf.preamble_comments.len(), 2);
|
|
assert_eq!(tf.preamble_comments[0].text, "; before");
|
|
assert_eq!(tf.preamble_comments[1].text, "; still preamble");
|
|
assert_eq!(tf.functions.len(), 1);
|
|
assert_eq!(tf.functions[0].0.name.to_string(), "comment");
|
|
}
|
|
|
|
#[test]
|
|
fn isa_spec() {
|
|
assert!(parse_test("isa
|
|
function foo() {}")
|
|
.is_err());
|
|
|
|
assert!(parse_test("isa riscv
|
|
set enable_float=false
|
|
function foo() {}")
|
|
.is_err());
|
|
|
|
match parse_test("set enable_float=false
|
|
isa riscv
|
|
function foo() {}")
|
|
.unwrap()
|
|
.isa_spec {
|
|
IsaSpec::None(_) => panic!("Expected some ISA"),
|
|
IsaSpec::Some(v) => {
|
|
assert_eq!(v.len(), 1);
|
|
assert_eq!(v[0].name(), "riscv");
|
|
}
|
|
}
|
|
}
|
|
}
|