Files
wasmtime/cranelift/codegen/src/machinst/valueregs.rs
Chris Fallin 6c94eb82aa x86-64 Windows fastcall ABI support.
This adds support for the "fastcall" ABI, which is the native C/C++ ABI
on Windows platforms on x86-64. It is similar to but not exactly like
System V; primarily, its argument register assignments are different,
and it requires stack shadow space.

Note that this also adjusts the handling of multi-register values in the
shared ABI implementation, and with this change, adjusts handling of
`i128`s on *both* Fastcall/x64 *and* SysV/x64 platforms. This was done
to align with actual behavior by the "rustc ABI" on both platforms, as
mapped out experimentally (Compiler Explorer link in comments). This
behavior is gated under the `enable_llvm_abi_extensions` flag.

Note also that this does *not* add x64 unwind info on Windows. That will
come in a future PR (but is planned!).
2021-03-03 19:53:18 -08:00

188 lines
5.9 KiB
Rust

//! Data structure for tracking the (possibly multiple) registers that hold one
//! SSA `Value`.
use regalloc::{RealReg, Reg, VirtualReg, Writable};
use std::fmt::Debug;
#[cfg(feature = "arm32")]
const VALUE_REGS_PARTS: usize = 4;
#[cfg(not(feature = "arm32"))]
const VALUE_REGS_PARTS: usize = 2;
/// Location at which a `Value` is stored in register(s): the value is located
/// in one or more registers, depending on its width. A value may be stored in
/// more than one register if the machine has no registers wide enough
/// otherwise: for example, on a 32-bit architecture, we may store `I64` values
/// in two registers, and `I128` values in four.
///
/// By convention, the register parts are kept in machine-endian order here.
///
/// N.B.: we cap the capacity of this at four (when any 32-bit target is
/// enabled) or two (otherwise), and we use special in-band sentinal `Reg`
/// values (`Reg::invalid()`) to avoid the need to carry a separate length. This
/// allows the struct to be `Copy` (no heap or drop overhead) and be only 16 or
/// 8 bytes, which is important for compiler performance.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct ValueRegs<R: Clone + Copy + Debug + PartialEq + Eq + InvalidSentinel> {
parts: [R; VALUE_REGS_PARTS],
}
/// A type with an "invalid" sentinel value.
pub trait InvalidSentinel: Copy + Eq {
/// The invalid sentinel value.
fn invalid_sentinel() -> Self;
/// Is this the invalid sentinel?
fn is_invalid_sentinel(self) -> bool {
self == Self::invalid_sentinel()
}
}
impl InvalidSentinel for Reg {
fn invalid_sentinel() -> Self {
Reg::invalid()
}
}
impl InvalidSentinel for VirtualReg {
fn invalid_sentinel() -> Self {
VirtualReg::invalid()
}
}
impl InvalidSentinel for RealReg {
fn invalid_sentinel() -> Self {
RealReg::invalid()
}
}
impl InvalidSentinel for Writable<Reg> {
fn invalid_sentinel() -> Self {
Writable::from_reg(Reg::invalid_sentinel())
}
}
impl<R: Clone + Copy + Debug + PartialEq + Eq + InvalidSentinel> ValueRegs<R> {
/// Create an invalid Value-in-Reg.
pub fn invalid() -> Self {
ValueRegs {
parts: [R::invalid_sentinel(); VALUE_REGS_PARTS],
}
}
/// Is this Value-to-Reg mapping valid?
pub fn is_valid(self) -> bool {
!self.parts[0].is_invalid_sentinel()
}
/// Is this Value-to-Reg mapping invalid?
pub fn is_invalid(self) -> bool {
self.parts[0].is_invalid_sentinel()
}
/// Return the single register used for this value, if any.
pub fn only_reg(self) -> Option<R> {
if self.len() == 1 {
Some(self.parts[0])
} else {
None
}
}
/// Return an iterator over the registers storing this value.
pub fn regs(&self) -> &[R] {
&self.parts[0..self.len()]
}
}
#[cfg(feature = "arm32")]
impl<R: Clone + Copy + Debug + PartialEq + Eq + InvalidSentinel> ValueRegs<R> {
/// Create a Value-in-R location for a value stored in one register.
pub fn one(reg: R) -> Self {
ValueRegs {
parts: [
reg,
R::invalid_sentinel(),
R::invalid_sentinel(),
R::invalid_sentinel(),
],
}
}
/// Create a Value-in-R location for a value stored in two registers.
pub fn two(r1: R, r2: R) -> Self {
ValueRegs {
parts: [r1, r2, R::invalid_sentinel(), R::invalid_sentinel()],
}
}
/// Create a Value-in-R location for a value stored in four registers.
pub fn four(r1: R, r2: R, r3: R, r4: R) -> Self {
ValueRegs {
parts: [r1, r2, r3, r4],
}
}
/// Return the number of registers used.
pub fn len(self) -> usize {
// If rustc/LLVM is smart enough, this might even be vectorized...
(self.parts[0] != R::invalid_sentinel()) as usize
+ (self.parts[1] != R::invalid_sentinel()) as usize
+ (self.parts[2] != R::invalid_sentinel()) as usize
+ (self.parts[3] != R::invalid_sentinel()) as usize
}
/// Map individual registers via a map function.
pub fn map<NewR, F>(self, f: F) -> ValueRegs<NewR>
where
NewR: Clone + Copy + Debug + PartialEq + Eq + InvalidSentinel,
F: Fn(R) -> NewR,
{
ValueRegs {
parts: [
f(self.parts[0]),
f(self.parts[1]),
f(self.parts[2]),
f(self.parts[3]),
],
}
}
}
#[cfg(not(feature = "arm32"))]
impl<R: Clone + Copy + Debug + PartialEq + Eq + InvalidSentinel> ValueRegs<R> {
/// Create a Value-in-R location for a value stored in one register.
pub fn one(reg: R) -> Self {
ValueRegs {
parts: [reg, R::invalid_sentinel()],
}
}
/// Create a Value-in-R location for a value stored in two registers.
pub fn two(r1: R, r2: R) -> Self {
ValueRegs { parts: [r1, r2] }
}
/// Return the number of registers used.
pub fn len(self) -> usize {
// If rustc/LLVM is smart enough, this might even be vectorized...
(self.parts[0] != R::invalid_sentinel()) as usize
+ (self.parts[1] != R::invalid_sentinel()) as usize
}
/// Map individual registers via a map function.
pub fn map<NewR, F>(self, f: F) -> ValueRegs<NewR>
where
NewR: Clone + Copy + Debug + PartialEq + Eq + InvalidSentinel,
F: Fn(R) -> NewR,
{
ValueRegs {
parts: [f(self.parts[0]), f(self.parts[1])],
}
}
}
/// Create a writable ValueRegs.
#[allow(dead_code)]
pub(crate) fn writable_value_regs(regs: ValueRegs<Reg>) -> ValueRegs<Writable<Reg>> {
regs.map(|r| Writable::from_reg(r))
}
/// Strip a writable ValueRegs down to a readonly ValueRegs.
#[allow(dead_code)]
pub(crate) fn non_writable_value_regs(regs: ValueRegs<Writable<Reg>>) -> ValueRegs<Reg> {
regs.map(|r| r.to_reg())
}