Files
wasmtime/crates/wiggle/src/borrow.rs
Alex Crichton 7a1b7cdf92 Implement RFC 11: Redesigning Wasmtime's APIs (#2897)
Implement Wasmtime's new API as designed by RFC 11. This is quite a large commit which has had lots of discussion externally, so for more information it's best to read the RFC thread and the PR thread.
2021-06-03 09:10:53 -05:00

260 lines
10 KiB
Rust

use crate::{BorrowHandle, GuestError, Region};
use std::collections::HashMap;
use std::sync::Mutex;
pub struct BorrowChecker {
/// Unfortunately, since the terminology of std::cell and the problem domain of borrow checking
/// overlap, the method calls on this member will be confusing.
///
/// Also, unfortunately, for now this uses a `Mutex`. The reason for that is
/// that this is shared as `&BorrowChecker` in a bunch of `GuestPtr` values.
/// Through this sharing we still want each `GuestPtr` to be `Send` and the
/// "naive" way to make `&T` `Send` with interior mutability is to use a
/// `Mutex`. Fixing this will likely require rethinking `GuestPtr` one way
/// or another. That needs to happen for other reasons as well (for example
/// to allow for wasm calls to happen while `GuestPtr` values are active),
/// so it's hoped that in a later rethinking of `GuestPtr` we can revisit
/// this and remove this `Mutex`.
bc: Mutex<InnerBorrowChecker>,
}
impl BorrowChecker {
/// A `BorrowChecker` manages run-time validation of borrows from a
/// `GuestMemory`. It keeps track of regions of guest memory which are
/// possible to alias with Rust references (via the `GuestSlice` and
/// `GuestStr` structs, which implement `std::ops::Deref` and
/// `std::ops::DerefMut`. It also enforces that `GuestPtr::read`
/// does not access memory with an outstanding mutable borrow, and
/// `GuestPtr::write` does not access memory with an outstanding
/// shared or mutable borrow.
pub fn new() -> Self {
BorrowChecker {
bc: Mutex::new(InnerBorrowChecker::new()),
}
}
/// Indicates whether any outstanding shared or mutable borrows are known
/// to the `BorrowChecker`. This function must be `false` in order for it
/// to be safe to recursively call into a WebAssembly module, or to
/// manipulate the WebAssembly memory by any other means.
pub fn has_outstanding_borrows(&self) -> bool {
self.bc.lock().unwrap().has_outstanding_borrows()
}
pub fn shared_borrow(&self, r: Region) -> Result<BorrowHandle, GuestError> {
self.bc.lock().unwrap().shared_borrow(r)
}
pub fn mut_borrow(&self, r: Region) -> Result<BorrowHandle, GuestError> {
self.bc.lock().unwrap().mut_borrow(r)
}
pub fn shared_unborrow(&self, h: BorrowHandle) {
self.bc.lock().unwrap().shared_unborrow(h)
}
pub fn mut_unborrow(&self, h: BorrowHandle) {
self.bc.lock().unwrap().mut_unborrow(h)
}
pub fn is_shared_borrowed(&self, r: Region) -> bool {
self.bc.lock().unwrap().is_shared_borrowed(r)
}
pub fn is_mut_borrowed(&self, r: Region) -> bool {
self.bc.lock().unwrap().is_mut_borrowed(r)
}
}
#[derive(Debug)]
/// This is a pretty naive way to account for borrows. This datastructure
/// could be made a lot more efficient with some effort.
struct InnerBorrowChecker {
/// Maps from handle to region borrowed. A HashMap is probably not ideal
/// for this but it works. It would be more efficient if we could
/// check `is_borrowed` without an O(n) iteration, by organizing borrows
/// by an ordering of Region.
shared_borrows: HashMap<BorrowHandle, Region>,
mut_borrows: HashMap<BorrowHandle, Region>,
/// Handle to give out for the next borrow. This is the bare minimum of
/// bookkeeping of free handles, and in a pathological case we could run
/// out, hence [`GuestError::BorrowCheckerOutOfHandles`]
next_handle: BorrowHandle,
}
impl InnerBorrowChecker {
fn new() -> Self {
InnerBorrowChecker {
shared_borrows: HashMap::new(),
mut_borrows: HashMap::new(),
next_handle: BorrowHandle(0),
}
}
fn has_outstanding_borrows(&self) -> bool {
!(self.shared_borrows.is_empty() && self.mut_borrows.is_empty())
}
fn is_shared_borrowed(&self, r: Region) -> bool {
self.shared_borrows.values().any(|b| b.overlaps(r))
}
fn is_mut_borrowed(&self, r: Region) -> bool {
self.mut_borrows.values().any(|b| b.overlaps(r))
}
fn new_handle(&mut self) -> Result<BorrowHandle, GuestError> {
// Reset handles to 0 if all handles have been returned.
if self.shared_borrows.is_empty() && self.mut_borrows.is_empty() {
self.next_handle = BorrowHandle(0);
}
let h = self.next_handle;
// Get the next handle. Since we don't recycle handles until all of
// them have been returned, there is a pathological case where a user
// may make a Very Large (usize::MAX) number of valid borrows and
// unborrows while always keeping at least one borrow outstanding, and
// we will run out of borrow handles.
self.next_handle = BorrowHandle(
h.0.checked_add(1)
.ok_or_else(|| GuestError::BorrowCheckerOutOfHandles)?,
);
Ok(h)
}
fn shared_borrow(&mut self, r: Region) -> Result<BorrowHandle, GuestError> {
if self.is_mut_borrowed(r) {
return Err(GuestError::PtrBorrowed(r));
}
let h = self.new_handle()?;
self.shared_borrows.insert(h, r);
Ok(h)
}
fn mut_borrow(&mut self, r: Region) -> Result<BorrowHandle, GuestError> {
if self.is_shared_borrowed(r) || self.is_mut_borrowed(r) {
return Err(GuestError::PtrBorrowed(r));
}
let h = self.new_handle()?;
self.mut_borrows.insert(h, r);
Ok(h)
}
fn shared_unborrow(&mut self, h: BorrowHandle) {
let removed = self.shared_borrows.remove(&h);
debug_assert!(removed.is_some(), "double-freed shared borrow");
}
fn mut_unborrow(&mut self, h: BorrowHandle) {
let removed = self.mut_borrows.remove(&h);
debug_assert!(removed.is_some(), "double-freed mut borrow");
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn nonoverlapping() {
let mut bs = InnerBorrowChecker::new();
let r1 = Region::new(0, 10);
let r2 = Region::new(10, 10);
assert!(!r1.overlaps(r2));
bs.mut_borrow(r1).expect("can borrow r1");
bs.mut_borrow(r2).expect("can borrow r2");
let mut bs = InnerBorrowChecker::new();
let r1 = Region::new(10, 10);
let r2 = Region::new(0, 10);
assert!(!r1.overlaps(r2));
bs.mut_borrow(r1).expect("can borrow r1");
bs.mut_borrow(r2).expect("can borrow r2");
}
#[test]
fn overlapping() {
let mut bs = InnerBorrowChecker::new();
let r1 = Region::new(0, 10);
let r2 = Region::new(9, 10);
assert!(r1.overlaps(r2));
bs.shared_borrow(r1).expect("can borrow r1");
assert!(bs.mut_borrow(r2).is_err(), "cant mut borrow r2");
bs.shared_borrow(r2).expect("can shared borrow r2");
let mut bs = InnerBorrowChecker::new();
let r1 = Region::new(0, 10);
let r2 = Region::new(2, 5);
assert!(r1.overlaps(r2));
bs.shared_borrow(r1).expect("can borrow r1");
assert!(bs.mut_borrow(r2).is_err(), "cant borrow r2");
bs.shared_borrow(r2).expect("can shared borrow r2");
let mut bs = InnerBorrowChecker::new();
let r1 = Region::new(9, 10);
let r2 = Region::new(0, 10);
assert!(r1.overlaps(r2));
bs.shared_borrow(r1).expect("can borrow r1");
assert!(bs.mut_borrow(r2).is_err(), "cant borrow r2");
bs.shared_borrow(r2).expect("can shared borrow r2");
let mut bs = InnerBorrowChecker::new();
let r1 = Region::new(2, 5);
let r2 = Region::new(0, 10);
assert!(r1.overlaps(r2));
bs.shared_borrow(r1).expect("can borrow r1");
assert!(bs.mut_borrow(r2).is_err(), "cant borrow r2");
bs.shared_borrow(r2).expect("can shared borrow r2");
let mut bs = InnerBorrowChecker::new();
let r1 = Region::new(2, 5);
let r2 = Region::new(10, 5);
let r3 = Region::new(15, 5);
let r4 = Region::new(0, 10);
assert!(r1.overlaps(r4));
bs.shared_borrow(r1).expect("can borrow r1");
bs.shared_borrow(r2).expect("can borrow r2");
bs.shared_borrow(r3).expect("can borrow r3");
assert!(bs.mut_borrow(r4).is_err(), "cant mut borrow r4");
bs.shared_borrow(r4).expect("can shared borrow r4");
}
#[test]
fn unborrowing() {
let mut bs = InnerBorrowChecker::new();
let r1 = Region::new(0, 10);
let r2 = Region::new(10, 10);
assert!(!r1.overlaps(r2));
assert_eq!(bs.has_outstanding_borrows(), false, "start with no borrows");
let h1 = bs.mut_borrow(r1).expect("can borrow r1");
assert_eq!(bs.has_outstanding_borrows(), true, "h1 is outstanding");
let h2 = bs.mut_borrow(r2).expect("can borrow r2");
assert!(bs.mut_borrow(r2).is_err(), "can't borrow r2 twice");
bs.mut_unborrow(h2);
assert_eq!(
bs.has_outstanding_borrows(),
true,
"h1 is still outstanding"
);
bs.mut_unborrow(h1);
assert_eq!(bs.has_outstanding_borrows(), false, "no remaining borrows");
let _h3 = bs
.mut_borrow(r2)
.expect("can borrow r2 again now that its been unborrowed");
// Lets try again with shared:
let mut bs = InnerBorrowChecker::new();
let r1 = Region::new(0, 10);
let r2 = Region::new(10, 10);
assert!(!r1.overlaps(r2));
assert_eq!(bs.has_outstanding_borrows(), false, "start with no borrows");
let h1 = bs.shared_borrow(r1).expect("can borrow r1");
assert_eq!(bs.has_outstanding_borrows(), true, "h1 is outstanding");
let h2 = bs.shared_borrow(r2).expect("can borrow r2");
let h3 = bs.shared_borrow(r2).expect("can shared borrow r2 twice");
bs.shared_unborrow(h2);
assert_eq!(
bs.has_outstanding_borrows(),
true,
"h1, h3 still outstanding"
);
bs.shared_unborrow(h1);
bs.shared_unborrow(h3);
assert_eq!(bs.has_outstanding_borrows(), false, "no remaining borrows");
}
}