Files
wasmtime/cranelift/codegen/src/egraph/elaborate.rs
Trevor Elliott 1e6c13d83e cranelift: Rework block instructions to use BlockCall (#5464)
Add a new type BlockCall that represents the pair of a block name with arguments to be passed to it. (The mnemonic here is that it looks a bit like a function call.) Rework the implementation of jump, brz, and brnz to use BlockCall instead of storing the block arguments as varargs in the instruction's ValueList.

To ensure that we're processing block arguments from BlockCall values in instructions, three new functions have been introduced on DataFlowGraph that both sets of arguments:

inst_values - returns an iterator that traverses values in the instruction and block arguments
map_inst_values - applies a function to each value in the instruction and block arguments
overwrite_inst_values - overwrite all values in an instruction and block arguments with values from the iterator

Co-authored-by: Jamey Sharp <jamey@minilop.net>
2023-01-17 16:31:15 -08:00

684 lines
30 KiB
Rust

//! Elaboration phase: lowers EGraph back to sequences of operations
//! in CFG nodes.
use super::cost::{pure_op_cost, Cost};
use super::domtree::DomTreeWithChildren;
use super::Stats;
use crate::dominator_tree::DominatorTree;
use crate::fx::FxHashSet;
use crate::ir::{Block, Function, Inst, Value, ValueDef};
use crate::loop_analysis::{Loop, LoopAnalysis, LoopLevel};
use crate::scoped_hash_map::ScopedHashMap;
use crate::trace;
use crate::unionfind::UnionFind;
use alloc::vec::Vec;
use cranelift_entity::{packed_option::ReservedValue, SecondaryMap};
use smallvec::{smallvec, SmallVec};
pub(crate) struct Elaborator<'a> {
func: &'a mut Function,
domtree: &'a DominatorTree,
domtree_children: &'a DomTreeWithChildren,
loop_analysis: &'a LoopAnalysis,
eclasses: &'a mut UnionFind<Value>,
/// Map from Value that is produced by a pure Inst (and was thus
/// not in the side-effecting skeleton) to the value produced by
/// an elaborated inst (placed in the layout) to whose results we
/// refer in the final code.
///
/// The first time we use some result of an instruction during
/// elaboration, we can place it and insert an identity map (inst
/// results to that same inst's results) in this scoped
/// map. Within that block and its dom-tree children, that mapping
/// is visible and we can continue to use it. This allows us to
/// avoid cloning the instruction. However, if we pop that scope
/// and use it somewhere else as well, we will need to
/// duplicate. We detect this case by checking, when a value that
/// we want is not present in this map, whether the producing inst
/// is already placed in the Layout. If so, we duplicate, and
/// insert non-identity mappings from the original inst's results
/// to the cloned inst's results.
value_to_elaborated_value: ScopedHashMap<Value, ElaboratedValue>,
/// Map from Value to the best (lowest-cost) Value in its eclass
/// (tree of union value-nodes).
value_to_best_value: SecondaryMap<Value, (Cost, Value)>,
/// Stack of blocks and loops in current elaboration path.
loop_stack: SmallVec<[LoopStackEntry; 8]>,
/// The current block into which we are elaborating.
cur_block: Block,
/// Values that opt rules have indicated should be rematerialized
/// in every block they are used (e.g., immediates or other
/// "cheap-to-compute" ops).
remat_values: &'a FxHashSet<Value>,
/// Explicitly-unrolled value elaboration stack.
elab_stack: Vec<ElabStackEntry>,
/// Results from the elab stack.
elab_result_stack: Vec<ElaboratedValue>,
/// Explicitly-unrolled block elaboration stack.
block_stack: Vec<BlockStackEntry>,
/// Stats for various events during egraph processing, to help
/// with optimization of this infrastructure.
stats: &'a mut Stats,
}
#[derive(Clone, Copy, Debug)]
struct ElaboratedValue {
in_block: Block,
value: Value,
}
#[derive(Clone, Debug)]
struct LoopStackEntry {
/// The loop identifier.
lp: Loop,
/// The hoist point: a block that immediately dominates this
/// loop. May not be an immediate predecessor, but will be a valid
/// point to place all loop-invariant ops: they must depend only
/// on inputs that dominate the loop, so are available at (the end
/// of) this block.
hoist_block: Block,
/// The depth in the scope map.
scope_depth: u32,
}
#[derive(Clone, Debug)]
enum ElabStackEntry {
/// Next action is to resolve this value into an elaborated inst
/// (placed into the layout) that produces the value, and
/// recursively elaborate the insts that produce its args.
///
/// Any inserted ops should be inserted before `before`, which is
/// the instruction demanding this value.
Start { value: Value, before: Inst },
/// Args have been pushed; waiting for results.
PendingInst {
inst: Inst,
result_idx: usize,
num_args: usize,
remat: bool,
before: Inst,
},
}
#[derive(Clone, Debug)]
enum BlockStackEntry {
Elaborate { block: Block, idom: Option<Block> },
Pop,
}
impl<'a> Elaborator<'a> {
pub(crate) fn new(
func: &'a mut Function,
domtree: &'a DominatorTree,
domtree_children: &'a DomTreeWithChildren,
loop_analysis: &'a LoopAnalysis,
remat_values: &'a FxHashSet<Value>,
eclasses: &'a mut UnionFind<Value>,
stats: &'a mut Stats,
) -> Self {
let num_values = func.dfg.num_values();
let mut value_to_best_value =
SecondaryMap::with_default((Cost::infinity(), Value::reserved_value()));
value_to_best_value.resize(num_values);
Self {
func,
domtree,
domtree_children,
loop_analysis,
eclasses,
value_to_elaborated_value: ScopedHashMap::with_capacity(num_values),
value_to_best_value,
loop_stack: smallvec![],
cur_block: Block::reserved_value(),
remat_values,
elab_stack: vec![],
elab_result_stack: vec![],
block_stack: vec![],
stats,
}
}
fn start_block(&mut self, idom: Option<Block>, block: Block) {
trace!(
"start_block: block {:?} with idom {:?} at loop depth {:?} scope depth {}",
block,
idom,
self.loop_stack.len(),
self.value_to_elaborated_value.depth()
);
// Pop any loop levels we're no longer in.
while let Some(inner_loop) = self.loop_stack.last() {
if self.loop_analysis.is_in_loop(block, inner_loop.lp) {
break;
}
self.loop_stack.pop();
}
// Note that if the *entry* block is a loop header, we will
// not make note of the loop here because it will not have an
// immediate dominator. We must disallow this case because we
// will skip adding the `LoopStackEntry` here but our
// `LoopAnalysis` will otherwise still make note of this loop
// and loop depths will not match.
if let Some(idom) = idom {
if let Some(lp) = self.loop_analysis.is_loop_header(block) {
self.loop_stack.push(LoopStackEntry {
lp,
// Any code hoisted out of this loop will have code
// placed in `idom`, and will have def mappings
// inserted in to the scoped hashmap at that block's
// level.
hoist_block: idom,
scope_depth: (self.value_to_elaborated_value.depth() - 1) as u32,
});
trace!(
" -> loop header, pushing; depth now {}",
self.loop_stack.len()
);
}
} else {
debug_assert!(
self.loop_analysis.is_loop_header(block).is_none(),
"Entry block (domtree root) cannot be a loop header!"
);
}
trace!("block {}: loop stack is {:?}", block, self.loop_stack);
self.cur_block = block;
}
fn compute_best_values(&mut self) {
let best = &mut self.value_to_best_value;
for (value, def) in self.func.dfg.values_and_defs() {
trace!("computing best for value {:?} def {:?}", value, def);
match def {
ValueDef::Union(x, y) => {
// Pick the best of the two options based on
// min-cost. This works because each element of `best`
// is a `(cost, value)` tuple; `cost` comes first so
// the natural comparison works based on cost, and
// breaks ties based on value number.
trace!(" -> best of {:?} and {:?}", best[x], best[y]);
best[value] = std::cmp::min(best[x], best[y]);
trace!(" -> {:?}", best[value]);
}
ValueDef::Param(_, _) => {
best[value] = (Cost::zero(), value);
}
// If the Inst is inserted into the layout (which is,
// at this point, only the side-effecting skeleton),
// then it must be computed and thus we give it zero
// cost.
ValueDef::Result(inst, _) if self.func.layout.inst_block(inst).is_some() => {
best[value] = (Cost::zero(), value);
}
ValueDef::Result(inst, _) => {
trace!(" -> value {}: result, computing cost", value);
let inst_data = &self.func.dfg.insts[inst];
let loop_level = self
.func
.layout
.inst_block(inst)
.map(|block| self.loop_analysis.loop_level(block))
.unwrap_or(LoopLevel::root());
// N.B.: at this point we know that the opcode is
// pure, so `pure_op_cost`'s precondition is
// satisfied.
let cost = self.func.dfg.inst_values(inst).fold(
pure_op_cost(inst_data.opcode()).at_level(loop_level.level()),
|cost, value| cost + best[value].0,
);
best[value] = (cost, value);
}
};
debug_assert_ne!(best[value].0, Cost::infinity());
debug_assert_ne!(best[value].1, Value::reserved_value());
trace!("best for eclass {:?}: {:?}", value, best[value]);
}
}
/// Elaborate use of an eclass, inserting any needed new
/// instructions before the given inst `before`. Should only be
/// given values corresponding to results of instructions or
/// blockparams.
fn elaborate_eclass_use(&mut self, value: Value, before: Inst) -> ElaboratedValue {
debug_assert_ne!(value, Value::reserved_value());
// Kick off the process by requesting this result
// value.
self.elab_stack
.push(ElabStackEntry::Start { value, before });
// Now run the explicit-stack recursion until we reach
// the root.
self.process_elab_stack();
debug_assert_eq!(self.elab_result_stack.len(), 1);
self.elab_result_stack.pop().unwrap()
}
fn process_elab_stack(&mut self) {
while let Some(entry) = self.elab_stack.last() {
match entry {
&ElabStackEntry::Start { value, before } => {
// We always replace the Start entry, so pop it now.
self.elab_stack.pop();
debug_assert_ne!(value, Value::reserved_value());
let value = self.func.dfg.resolve_aliases(value);
self.stats.elaborate_visit_node += 1;
let canonical_value = self.eclasses.find_and_update(value);
debug_assert_ne!(canonical_value, Value::reserved_value());
trace!(
"elaborate: value {} canonical {} before {}",
value,
canonical_value,
before
);
let remat = if let Some(elab_val) =
self.value_to_elaborated_value.get(&canonical_value)
{
// Value is available. Look at the defined
// block, and determine whether this node kind
// allows rematerialization if the value comes
// from another block. If so, ignore the hit
// and recompute below.
let remat = elab_val.in_block != self.cur_block
&& self.remat_values.contains(&canonical_value);
if !remat {
trace!("elaborate: value {} -> {:?}", value, elab_val);
self.stats.elaborate_memoize_hit += 1;
self.elab_result_stack.push(*elab_val);
continue;
}
trace!("elaborate: value {} -> remat", canonical_value);
self.stats.elaborate_memoize_miss_remat += 1;
// The op is pure at this point, so it is always valid to
// remove from this map.
self.value_to_elaborated_value.remove(&canonical_value);
true
} else {
// Value not available; but still look up
// whether it's been flagged for remat because
// this affects placement.
let remat = self.remat_values.contains(&canonical_value);
trace!(" -> not present in map; remat = {}", remat);
remat
};
self.stats.elaborate_memoize_miss += 1;
// Get the best option; we use `value` (latest
// value) here so we have a full view of the
// eclass.
trace!("looking up best value for {}", value);
let (_, best_value) = self.value_to_best_value[value];
debug_assert_ne!(best_value, Value::reserved_value());
trace!("elaborate: value {} -> best {}", value, best_value,);
// Now resolve the value to its definition to see
// how we can compute it.
let (inst, result_idx) = match self.func.dfg.value_def(best_value) {
ValueDef::Result(inst, result_idx) => {
trace!(
" -> value {} is result {} of {}",
best_value,
result_idx,
inst
);
(inst, result_idx)
}
ValueDef::Param(_, _) => {
// We don't need to do anything to compute
// this value; just push its result on the
// result stack (blockparams are already
// available).
trace!(" -> value {} is a blockparam", best_value);
self.elab_result_stack.push(ElaboratedValue {
in_block: self.cur_block,
value: best_value,
});
continue;
}
ValueDef::Union(_, _) => {
panic!("Should never have a Union value as the best value");
}
};
trace!(
" -> result {} of inst {:?}",
result_idx,
self.func.dfg.insts[inst]
);
// We're going to need to use this instruction
// result, placing the instruction into the
// layout. First, enqueue all args to be
// elaborated. Push state to receive the results
// and later elab this inst.
let num_args = self.func.dfg.inst_values(inst).count();
self.elab_stack.push(ElabStackEntry::PendingInst {
inst,
result_idx,
num_args,
remat,
before,
});
// Push args in reverse order so we process the
// first arg first.
for arg in self.func.dfg.inst_values(inst).rev() {
debug_assert_ne!(arg, Value::reserved_value());
self.elab_stack
.push(ElabStackEntry::Start { value: arg, before });
}
}
&ElabStackEntry::PendingInst {
inst,
result_idx,
num_args,
remat,
before,
} => {
self.elab_stack.pop();
trace!(
"PendingInst: {} result {} args {} remat {} before {}",
inst,
result_idx,
num_args,
remat,
before
);
// We should have all args resolved at this
// point. Grab them and drain them out, removing
// them.
let arg_idx = self.elab_result_stack.len() - num_args;
let arg_values = &self.elab_result_stack[arg_idx..];
// Compute max loop depth.
let loop_hoist_level = arg_values
.iter()
.map(|&value| {
// Find the outermost loop level at which
// the value's defining block *is not* a
// member. This is the loop-nest level
// whose hoist-block we hoist to.
let hoist_level = self
.loop_stack
.iter()
.position(|loop_entry| {
!self.loop_analysis.is_in_loop(value.in_block, loop_entry.lp)
})
.unwrap_or(self.loop_stack.len());
trace!(
" -> arg: elab_value {:?} hoist level {:?}",
value,
hoist_level
);
hoist_level
})
.max()
.unwrap_or(self.loop_stack.len());
trace!(
" -> loop hoist level: {:?}; cur loop depth: {:?}, loop_stack: {:?}",
loop_hoist_level,
self.loop_stack.len(),
self.loop_stack,
);
// We know that this is a pure inst, because
// non-pure roots have already been placed in the
// value-to-elab'd-value map and are never subject
// to remat, so they will not reach this stage of
// processing.
//
// We now must determine the location at which we
// place the instruction. This is the current
// block *unless* we hoist above a loop when all
// args are loop-invariant (and this op is pure).
let (scope_depth, before, insert_block) =
if loop_hoist_level == self.loop_stack.len() || remat {
// Depends on some value at the current
// loop depth, or remat forces it here:
// place it at the current location.
(
self.value_to_elaborated_value.depth(),
before,
self.func.layout.inst_block(before).unwrap(),
)
} else {
// Does not depend on any args at current
// loop depth: hoist out of loop.
self.stats.elaborate_licm_hoist += 1;
let data = &self.loop_stack[loop_hoist_level];
// `data.hoist_block` should dominate `before`'s block.
let before_block = self.func.layout.inst_block(before).unwrap();
debug_assert!(self.domtree.dominates(
data.hoist_block,
before_block,
&self.func.layout
));
// Determine the instruction at which we
// insert in `data.hoist_block`.
let before = self
.func
.layout
.canonical_branch_inst(&self.func.dfg, data.hoist_block)
.unwrap();
(data.scope_depth as usize, before, data.hoist_block)
};
trace!(
" -> decided to place: before {} insert_block {}",
before,
insert_block
);
// Now we need to place `inst` at the computed
// location (just before `before`). Note that
// `inst` may already have been placed somewhere
// else, because a pure node may be elaborated at
// more than one place. In this case, we need to
// duplicate the instruction (and return the
// `Value`s for that duplicated instance
// instead).
trace!("need inst {} before {}", inst, before);
let inst = if self.func.layout.inst_block(inst).is_some() {
// Clone the inst!
let new_inst = self.func.dfg.clone_inst(inst);
trace!(
" -> inst {} already has a location; cloned to {}",
inst,
new_inst
);
// Create mappings in the
// value-to-elab'd-value map from original
// results to cloned results.
for (&result, &new_result) in self
.func
.dfg
.inst_results(inst)
.iter()
.zip(self.func.dfg.inst_results(new_inst).iter())
{
let elab_value = ElaboratedValue {
value: new_result,
in_block: insert_block,
};
let canonical_result = self.eclasses.find_and_update(result);
self.value_to_elaborated_value.insert_if_absent_with_depth(
canonical_result,
elab_value,
scope_depth,
);
self.eclasses.add(new_result);
self.eclasses.union(result, new_result);
self.value_to_best_value[new_result] = self.value_to_best_value[result];
trace!(
" -> cloned inst has new result {} for orig {}",
new_result,
result
);
}
new_inst
} else {
trace!(" -> no location; using original inst");
// Create identity mappings from result values
// to themselves in this scope, since we're
// using the original inst.
for &result in self.func.dfg.inst_results(inst) {
let elab_value = ElaboratedValue {
value: result,
in_block: insert_block,
};
let canonical_result = self.eclasses.find_and_update(result);
self.value_to_elaborated_value.insert_if_absent_with_depth(
canonical_result,
elab_value,
scope_depth,
);
trace!(" -> inserting identity mapping for {}", result);
}
inst
};
// Place the inst just before `before`.
self.func.layout.insert_inst(inst, before);
// Update the inst's arguments.
self.func
.dfg
.overwrite_inst_values(inst, arg_values.into_iter().map(|ev| ev.value));
// Now that we've consumed the arg values, pop
// them off the stack.
self.elab_result_stack.truncate(arg_idx);
// Push the requested result index of the
// instruction onto the elab-results stack.
self.elab_result_stack.push(ElaboratedValue {
in_block: insert_block,
value: self.func.dfg.inst_results(inst)[result_idx],
});
}
}
}
}
fn elaborate_block(&mut self, elab_values: &mut Vec<Value>, idom: Option<Block>, block: Block) {
trace!("elaborate_block: block {}", block);
self.start_block(idom, block);
// Iterate over the side-effecting skeleton using the linked
// list in Layout. We will insert instructions that are
// elaborated *before* `inst`, so we can always use its
// next-link to continue the iteration.
let mut next_inst = self.func.layout.first_inst(block);
let mut first_branch = None;
while let Some(inst) = next_inst {
trace!(
"elaborating inst {} with results {:?}",
inst,
self.func.dfg.inst_results(inst)
);
// Record the first branch we see in the block; all
// elaboration for args of *any* branch must be inserted
// before the *first* branch, because the branch group
// must remain contiguous at the end of the block.
if self.func.dfg.insts[inst].opcode().is_branch() && first_branch == None {
first_branch = Some(inst);
}
// Determine where elaboration inserts insts.
let before = first_branch.unwrap_or(inst);
trace!(" -> inserting before {}", before);
elab_values.extend(self.func.dfg.inst_values(inst));
for arg in elab_values.iter_mut() {
trace!(" -> arg {}", *arg);
// Elaborate the arg, placing any newly-inserted insts
// before `before`. Get the updated value, which may
// be different than the original.
let new_arg = self.elaborate_eclass_use(*arg, before);
trace!(" -> rewrote arg to {:?}", new_arg);
*arg = new_arg.value;
}
self.func
.dfg
.overwrite_inst_values(inst, elab_values.drain(..));
// We need to put the results of this instruction in the
// map now.
for &result in self.func.dfg.inst_results(inst) {
trace!(" -> result {}", result);
let canonical_result = self.eclasses.find_and_update(result);
self.value_to_elaborated_value.insert_if_absent(
canonical_result,
ElaboratedValue {
in_block: block,
value: result,
},
);
}
next_inst = self.func.layout.next_inst(inst);
}
}
fn elaborate_domtree(&mut self, domtree: &DomTreeWithChildren) {
let root = domtree.root();
self.block_stack.push(BlockStackEntry::Elaborate {
block: root,
idom: None,
});
// A temporary workspace for elaborate_block, allocated here to maximize the use of the
// allocation.
let mut elab_values = Vec::new();
while let Some(top) = self.block_stack.pop() {
match top {
BlockStackEntry::Elaborate { block, idom } => {
self.block_stack.push(BlockStackEntry::Pop);
self.value_to_elaborated_value.increment_depth();
self.elaborate_block(&mut elab_values, idom, block);
// Push children. We are doing a preorder
// traversal so we do this after processing this
// block above.
let block_stack_end = self.block_stack.len();
for child in domtree.children(block) {
self.block_stack.push(BlockStackEntry::Elaborate {
block: child,
idom: Some(block),
});
}
// Reverse what we just pushed so we elaborate in
// original block order. (The domtree iter is a
// single-ended iter over a singly-linked list so
// we can't `.rev()` above.)
self.block_stack[block_stack_end..].reverse();
}
BlockStackEntry::Pop => {
self.value_to_elaborated_value.decrement_depth();
}
}
}
}
pub(crate) fn elaborate(&mut self) {
self.stats.elaborate_func += 1;
self.stats.elaborate_func_pre_insts += self.func.dfg.num_insts() as u64;
self.compute_best_values();
self.elaborate_domtree(&self.domtree_children);
self.stats.elaborate_func_post_insts += self.func.dfg.num_insts() as u64;
}
}