Files
wasmtime/lib/reader/src/parser.rs
2018-06-12 05:02:25 -07:00

2598 lines
98 KiB
Rust

//! Parser for .cton files.
use cretonne_codegen::entity::EntityRef;
use cretonne_codegen::ir;
use cretonne_codegen::ir::entities::AnyEntity;
use cretonne_codegen::ir::immediates::{Ieee32, Ieee64, Imm64, Offset32, Uimm32};
use cretonne_codegen::ir::instructions::{InstructionData, InstructionFormat, VariableArgs};
use cretonne_codegen::ir::types::VOID;
use cretonne_codegen::ir::{AbiParam, ArgumentExtension, ArgumentLoc, Ebb, ExtFuncData,
ExternalName, FuncRef, Function, GlobalVar, GlobalVarData, Heap,
HeapBase, HeapData, HeapStyle, JumpTable, JumpTableData, MemFlags,
Opcode, SigRef, Signature, StackSlot, StackSlotData, StackSlotKind,
Type, Value, ValueLoc};
use cretonne_codegen::isa::{self, Encoding, RegUnit, TargetIsa};
use cretonne_codegen::packed_option::ReservedValue;
use cretonne_codegen::settings::CallConv;
use cretonne_codegen::{settings, timing};
use error::{Location, ParseError, ParseResult};
use isaspec;
use lexer::{LexError, Lexer, LocatedError, LocatedToken, Token};
use sourcemap::SourceMap;
use std::mem;
use std::str::FromStr;
use std::{u16, u32};
use target_lexicon::Triple;
use testcommand::TestCommand;
use testfile::{Comment, Details, TestFile};
/// Parse the entire `text` into a list of functions.
///
/// Any test commands or target declarations are ignored.
pub fn parse_functions(text: &str) -> ParseResult<Vec<Function>> {
let _tt = timing::parse_text();
parse_test(text).map(|file| file.functions.into_iter().map(|(func, _)| func).collect())
}
/// Parse the entire `text` as a test case file.
///
/// The returned `TestFile` contains direct references to substrings of `text`.
pub fn parse_test(text: &str) -> ParseResult<TestFile> {
let _tt = timing::parse_text();
let mut parser = Parser::new(text);
// Gather the preamble comments.
parser.start_gathering_comments();
let commands = parser.parse_test_commands();
let isa_spec = parser.parse_target_specs()?;
parser.token();
parser.claim_gathered_comments(AnyEntity::Function);
let preamble_comments = parser.take_comments();
let functions = parser.parse_function_list(isa_spec.unique_isa())?;
Ok(TestFile {
commands,
isa_spec,
preamble_comments,
functions,
})
}
pub struct Parser<'a> {
lex: Lexer<'a>,
lex_error: Option<LexError>,
/// Current lookahead token.
lookahead: Option<Token<'a>>,
/// Location of lookahead.
loc: Location,
/// Are we gathering any comments that we encounter?
gathering_comments: bool,
/// The gathered comments; claim them with `claim_gathered_comments`.
gathered_comments: Vec<&'a str>,
/// Comments collected so far.
comments: Vec<Comment<'a>>,
}
/// Context for resolving references when parsing a single function.
struct Context<'a> {
function: Function,
map: SourceMap,
/// Aliases to resolve once value definitions are known.
aliases: Vec<Value>,
/// Reference to the unique_isa for things like parsing target-specific instruction encoding
/// information. This is only `Some` if exactly one set of `isa` directives were found in the
/// prologue (it is valid to have directives for multiple different targets, but in that case we
/// couldn't know which target the provided encodings are intended for)
unique_isa: Option<&'a TargetIsa>,
}
impl<'a> Context<'a> {
fn new(f: Function, unique_isa: Option<&'a TargetIsa>) -> Context<'a> {
Context {
function: f,
map: SourceMap::new(),
unique_isa,
aliases: Vec::new(),
}
}
// Get the index of a recipe name if it exists.
fn find_recipe_index(&self, recipe_name: &str) -> Option<u16> {
if let Some(unique_isa) = self.unique_isa {
unique_isa
.encoding_info()
.names
.iter()
.position(|&name| name == recipe_name)
.map(|idx| idx as u16)
} else {
None
}
}
// Allocate a new stack slot.
fn add_ss(&mut self, ss: StackSlot, data: StackSlotData, loc: &Location) -> ParseResult<()> {
while self.function.stack_slots.next_key().index() <= ss.index() {
self.function
.create_stack_slot(StackSlotData::new(StackSlotKind::SpillSlot, 0));
}
self.function.stack_slots[ss] = data;
self.map.def_ss(ss, loc)
}
// Resolve a reference to a stack slot.
fn check_ss(&self, ss: StackSlot, loc: &Location) -> ParseResult<()> {
if !self.map.contains_ss(ss) {
err!(loc, "undefined stack slot {}", ss)
} else {
Ok(())
}
}
// Allocate a global variable slot.
fn add_gv(&mut self, gv: GlobalVar, data: GlobalVarData, loc: &Location) -> ParseResult<()> {
while self.function.global_vars.next_key().index() <= gv.index() {
self.function.create_global_var(GlobalVarData::Sym {
name: ExternalName::testcase(""),
colocated: false,
});
}
self.function.global_vars[gv] = data;
self.map.def_gv(gv, loc)
}
// Resolve a reference to a global variable.
fn check_gv(&self, gv: GlobalVar, loc: &Location) -> ParseResult<()> {
if !self.map.contains_gv(gv) {
err!(loc, "undefined global variable {}", gv)
} else {
Ok(())
}
}
// Allocate a heap slot.
fn add_heap(&mut self, heap: Heap, data: HeapData, loc: &Location) -> ParseResult<()> {
while self.function.heaps.next_key().index() <= heap.index() {
self.function.create_heap(HeapData {
base: HeapBase::ReservedReg,
min_size: Imm64::new(0),
guard_size: Imm64::new(0),
style: HeapStyle::Static {
bound: Imm64::new(0),
},
});
}
self.function.heaps[heap] = data;
self.map.def_heap(heap, loc)
}
// Resolve a reference to a heap.
fn check_heap(&self, heap: Heap, loc: &Location) -> ParseResult<()> {
if !self.map.contains_heap(heap) {
err!(loc, "undefined heap {}", heap)
} else {
Ok(())
}
}
// Allocate a new signature.
fn add_sig(&mut self, sig: SigRef, data: Signature, loc: &Location) -> ParseResult<()> {
while self.function.dfg.signatures.next_key().index() <= sig.index() {
self.function
.import_signature(Signature::new(CallConv::Fast));
}
self.function.dfg.signatures[sig] = data;
self.map.def_sig(sig, loc)
}
// Resolve a reference to a signature.
fn check_sig(&self, sig: SigRef, loc: &Location) -> ParseResult<()> {
if !self.map.contains_sig(sig) {
err!(loc, "undefined signature {}", sig)
} else {
Ok(())
}
}
// Allocate a new external function.
fn add_fn(&mut self, fn_: FuncRef, data: ExtFuncData, loc: &Location) -> ParseResult<()> {
while self.function.dfg.ext_funcs.next_key().index() <= fn_.index() {
self.function.import_function(ExtFuncData {
name: ExternalName::testcase(""),
signature: SigRef::reserved_value(),
colocated: false,
});
}
self.function.dfg.ext_funcs[fn_] = data;
self.map.def_fn(fn_, loc)
}
// Resolve a reference to a function.
fn check_fn(&self, fn_: FuncRef, loc: &Location) -> ParseResult<()> {
if !self.map.contains_fn(fn_) {
err!(loc, "undefined function {}", fn_)
} else {
Ok(())
}
}
// Allocate a new jump table.
fn add_jt(&mut self, jt: JumpTable, data: JumpTableData, loc: &Location) -> ParseResult<()> {
while self.function.jump_tables.next_key().index() <= jt.index() {
self.function.create_jump_table(JumpTableData::new());
}
self.function.jump_tables[jt] = data;
self.map.def_jt(jt, loc)
}
// Resolve a reference to a jump table.
fn check_jt(&self, jt: JumpTable, loc: &Location) -> ParseResult<()> {
if !self.map.contains_jt(jt) {
err!(loc, "undefined jump table {}", jt)
} else {
Ok(())
}
}
// Assign the global for the stack limit.
fn set_stack_limit(&mut self, gv: GlobalVar, loc: &Location) -> ParseResult<()> {
if let Some(_) = self.function.set_stack_limit(Some(gv)) {
err!(loc, "multiple stack_limit declarations")
} else {
Ok(())
}
}
// Allocate a new EBB.
fn add_ebb(&mut self, ebb: Ebb, loc: &Location) -> ParseResult<Ebb> {
while self.function.dfg.num_ebbs() <= ebb.index() {
self.function.dfg.make_ebb();
}
self.function.layout.append_ebb(ebb);
self.map.def_ebb(ebb, loc).and(Ok(ebb))
}
}
impl<'a> Parser<'a> {
/// Create a new `Parser` which reads `text`. The referenced text must outlive the parser.
pub fn new(text: &'a str) -> Parser {
Parser {
lex: Lexer::new(text),
lex_error: None,
lookahead: None,
loc: Location { line_number: 0 },
gathering_comments: false,
gathered_comments: Vec::new(),
comments: Vec::new(),
}
}
// Consume the current lookahead token and return it.
fn consume(&mut self) -> Token<'a> {
self.lookahead.take().expect("No token to consume")
}
// Consume the whole line following the current lookahead token.
// Return the text of the line tail.
fn consume_line(&mut self) -> &'a str {
let rest = self.lex.rest_of_line();
self.consume();
rest
}
// Get the current lookahead token, after making sure there is one.
fn token(&mut self) -> Option<Token<'a>> {
// clippy says self.lookahead is immutable so this loop is either infinite or never
// running. I don't think this is true - self.lookahead is mutated in the loop body - so
// maybe this is a clippy bug? Either way, disable clippy for this.
#[cfg_attr(feature = "cargo-clippy", allow(while_immutable_condition))]
while self.lookahead == None {
match self.lex.next() {
Some(Ok(LocatedToken { token, location })) => {
match token {
Token::Comment(text) => {
if self.gathering_comments {
self.gathered_comments.push(text);
}
}
_ => self.lookahead = Some(token),
}
self.loc = location;
}
Some(Err(LocatedError { error, location })) => {
self.lex_error = Some(error);
self.loc = location;
break;
}
None => break,
}
}
self.lookahead
}
// Enable gathering of all comments encountered.
fn start_gathering_comments(&mut self) {
debug_assert!(!self.gathering_comments);
self.gathering_comments = true;
debug_assert!(self.gathered_comments.is_empty());
}
// Claim the comments gathered up to the current position for the
// given entity.
fn claim_gathered_comments<E: Into<AnyEntity>>(&mut self, entity: E) {
debug_assert!(self.gathering_comments);
let entity = entity.into();
self.comments.extend(
self.gathered_comments
.drain(..)
.map(|text| Comment { entity, text }),
);
self.gathering_comments = false;
}
// Get the comments collected so far, clearing out the internal list.
fn take_comments(&mut self) -> Vec<Comment<'a>> {
debug_assert!(!self.gathering_comments);
mem::replace(&mut self.comments, Vec::new())
}
// Match and consume a token without payload.
fn match_token(&mut self, want: Token<'a>, err_msg: &str) -> ParseResult<Token<'a>> {
if self.token() == Some(want) {
Ok(self.consume())
} else {
err!(self.loc, err_msg)
}
}
// If the next token is a `want`, consume it, otherwise do nothing.
fn optional(&mut self, want: Token<'a>) -> bool {
if self.token() == Some(want) {
self.consume();
true
} else {
false
}
}
// Match and consume a specific identifier string.
// Used for pseudo-keywords like "stack_slot" that only appear in certain contexts.
fn match_identifier(&mut self, want: &'static str, err_msg: &str) -> ParseResult<Token<'a>> {
if self.token() == Some(Token::Identifier(want)) {
Ok(self.consume())
} else {
err!(self.loc, err_msg)
}
}
// Match and consume a type.
fn match_type(&mut self, err_msg: &str) -> ParseResult<Type> {
if let Some(Token::Type(t)) = self.token() {
self.consume();
Ok(t)
} else {
err!(self.loc, err_msg)
}
}
// Match and consume a stack slot reference.
fn match_ss(&mut self, err_msg: &str) -> ParseResult<StackSlot> {
if let Some(Token::StackSlot(ss)) = self.token() {
self.consume();
if let Some(ss) = StackSlot::with_number(ss) {
return Ok(ss);
}
}
err!(self.loc, err_msg)
}
// Match and consume a global variable reference.
fn match_gv(&mut self, err_msg: &str) -> ParseResult<GlobalVar> {
if let Some(Token::GlobalVar(gv)) = self.token() {
self.consume();
if let Some(gv) = GlobalVar::with_number(gv) {
return Ok(gv);
}
}
err!(self.loc, err_msg)
}
// Match and consume a function reference.
fn match_fn(&mut self, err_msg: &str) -> ParseResult<FuncRef> {
if let Some(Token::FuncRef(fnref)) = self.token() {
self.consume();
if let Some(fnref) = FuncRef::with_number(fnref) {
return Ok(fnref);
}
}
err!(self.loc, err_msg)
}
// Match and consume a signature reference.
fn match_sig(&mut self, err_msg: &str) -> ParseResult<SigRef> {
if let Some(Token::SigRef(sigref)) = self.token() {
self.consume();
if let Some(sigref) = SigRef::with_number(sigref) {
return Ok(sigref);
}
}
err!(self.loc, err_msg)
}
// Match and consume a heap reference.
fn match_heap(&mut self, err_msg: &str) -> ParseResult<Heap> {
if let Some(Token::Heap(heap)) = self.token() {
self.consume();
if let Some(heap) = Heap::with_number(heap) {
return Ok(heap);
}
}
err!(self.loc, err_msg)
}
// Match and consume a jump table reference.
fn match_jt(&mut self) -> ParseResult<JumpTable> {
if let Some(Token::JumpTable(jt)) = self.token() {
self.consume();
if let Some(jt) = JumpTable::with_number(jt) {
return Ok(jt);
}
}
err!(self.loc, "expected jump table number: jt«n»")
}
// Match and consume an ebb reference.
fn match_ebb(&mut self, err_msg: &str) -> ParseResult<Ebb> {
if let Some(Token::Ebb(ebb)) = self.token() {
self.consume();
Ok(ebb)
} else {
err!(self.loc, err_msg)
}
}
// Match and consume a value reference, direct or vtable.
fn match_value(&mut self, err_msg: &str) -> ParseResult<Value> {
if let Some(Token::Value(v)) = self.token() {
self.consume();
Ok(v)
} else {
err!(self.loc, err_msg)
}
}
fn error(&self, message: &str) -> ParseError {
ParseError {
location: self.loc,
message: message.to_string(),
}
}
// Match and consume an Imm64 immediate.
fn match_imm64(&mut self, err_msg: &str) -> ParseResult<Imm64> {
if let Some(Token::Integer(text)) = self.token() {
self.consume();
// Lexer just gives us raw text that looks like an integer.
// Parse it as an Imm64 to check for overflow and other issues.
text.parse().map_err(|e| self.error(e))
} else {
err!(self.loc, err_msg)
}
}
// Match and consume a Uimm32 immediate.
fn match_uimm32(&mut self, err_msg: &str) -> ParseResult<Uimm32> {
if let Some(Token::Integer(text)) = self.token() {
self.consume();
// Lexer just gives us raw text that looks like an integer.
// Parse it as an Uimm32 to check for overflow and other issues.
text.parse().map_err(|e| self.error(e))
} else {
err!(self.loc, err_msg)
}
}
// Match and consume a u8 immediate.
// This is used for lane numbers in SIMD vectors.
fn match_uimm8(&mut self, err_msg: &str) -> ParseResult<u8> {
if let Some(Token::Integer(text)) = self.token() {
self.consume();
// Lexer just gives us raw text that looks like an integer.
// Parse it as a u8 to check for overflow and other issues.
text.parse()
.map_err(|_| self.error("expected u8 decimal immediate"))
} else {
err!(self.loc, err_msg)
}
}
// Match and consume an i32 immediate.
// This is used for stack argument byte offsets.
fn match_imm32(&mut self, err_msg: &str) -> ParseResult<i32> {
if let Some(Token::Integer(text)) = self.token() {
self.consume();
// Lexer just gives us raw text that looks like an integer.
// Parse it as a i32 to check for overflow and other issues.
text.parse()
.map_err(|_| self.error("expected i32 decimal immediate"))
} else {
err!(self.loc, err_msg)
}
}
// Match and consume an optional offset32 immediate.
//
// Note that this will match an empty string as an empty offset, and that if an offset is
// present, it must contain a sign.
fn optional_offset32(&mut self) -> ParseResult<Offset32> {
if let Some(Token::Integer(text)) = self.token() {
self.consume();
// Lexer just gives us raw text that looks like an integer.
// Parse it as an `Offset32` to check for overflow and other issues.
text.parse().map_err(|e| self.error(e))
} else {
// An offset32 operand can be absent.
Ok(Offset32::new(0))
}
}
// Match and consume an Ieee32 immediate.
fn match_ieee32(&mut self, err_msg: &str) -> ParseResult<Ieee32> {
if let Some(Token::Float(text)) = self.token() {
self.consume();
// Lexer just gives us raw text that looks like a float.
// Parse it as an Ieee32 to check for the right number of digits and other issues.
text.parse().map_err(|e| self.error(e))
} else {
err!(self.loc, err_msg)
}
}
// Match and consume an Ieee64 immediate.
fn match_ieee64(&mut self, err_msg: &str) -> ParseResult<Ieee64> {
if let Some(Token::Float(text)) = self.token() {
self.consume();
// Lexer just gives us raw text that looks like a float.
// Parse it as an Ieee64 to check for the right number of digits and other issues.
text.parse().map_err(|e| self.error(e))
} else {
err!(self.loc, err_msg)
}
}
// Match and consume a boolean immediate.
fn match_bool(&mut self, err_msg: &str) -> ParseResult<bool> {
if let Some(Token::Identifier(text)) = self.token() {
self.consume();
match text {
"true" => Ok(true),
"false" => Ok(false),
_ => err!(self.loc, err_msg),
}
} else {
err!(self.loc, err_msg)
}
}
// Match and consume an enumerated immediate, like one of the condition codes.
fn match_enum<T: FromStr>(&mut self, err_msg: &str) -> ParseResult<T> {
if let Some(Token::Identifier(text)) = self.token() {
self.consume();
text.parse().map_err(|_| self.error(err_msg))
} else {
err!(self.loc, err_msg)
}
}
// Match and a consume a possibly empty sequence of memory operation flags.
fn optional_memflags(&mut self) -> MemFlags {
let mut flags = MemFlags::new();
while let Some(Token::Identifier(text)) = self.token() {
if flags.set_by_name(text) {
self.consume();
} else {
break;
}
}
flags
}
// Match and consume an identifier.
fn match_any_identifier(&mut self, err_msg: &str) -> ParseResult<&'a str> {
if let Some(Token::Identifier(text)) = self.token() {
self.consume();
Ok(text)
} else {
err!(self.loc, err_msg)
}
}
// Match and consume a HexSequence that fits into a u16.
// This is used for instruction encodings.
fn match_hex16(&mut self, err_msg: &str) -> ParseResult<u16> {
if let Some(Token::HexSequence(bits_str)) = self.token() {
self.consume();
// The only error we anticipate from this parse is overflow, the lexer should
// already have ensured that the string doesn't contain invalid characters, and
// isn't empty or negative.
u16::from_str_radix(bits_str, 16)
.map_err(|_| self.error("the hex sequence given overflows the u16 type"))
} else {
err!(self.loc, err_msg)
}
}
// Match and consume a register unit either by number `%15` or by name `%rax`.
fn match_regunit(&mut self, isa: Option<&TargetIsa>) -> ParseResult<RegUnit> {
if let Some(Token::Name(name)) = self.token() {
self.consume();
match isa {
Some(isa) => isa.register_info()
.parse_regunit(name)
.ok_or_else(|| self.error("invalid register name")),
None => name.parse()
.map_err(|_| self.error("invalid register number")),
}
} else {
match isa {
Some(isa) => err!(self.loc, "Expected {} register unit", isa.name()),
None => err!(self.loc, "Expected register unit number"),
}
}
}
/// Parse an optional source location.
///
/// Return an optional source location if no real location is present.
fn optional_srcloc(&mut self) -> ParseResult<ir::SourceLoc> {
if let Some(Token::SourceLoc(text)) = self.token() {
match u32::from_str_radix(text, 16) {
Ok(num) => {
self.consume();
Ok(ir::SourceLoc::new(num))
}
Err(_) => return err!(self.loc, "invalid source location: {}", text),
}
} else {
Ok(Default::default())
}
}
/// Parse a list of test commands.
pub fn parse_test_commands(&mut self) -> Vec<TestCommand<'a>> {
let mut list = Vec::new();
while self.token() == Some(Token::Identifier("test")) {
list.push(TestCommand::new(self.consume_line()));
}
list
}
/// Parse a list of target specs.
///
/// Accept a mix of `target` and `set` command lines. The `set` commands are cumulative.
///
pub fn parse_target_specs(&mut self) -> ParseResult<isaspec::IsaSpec> {
// Was there any `target` commands?
let mut seen_target = false;
// Location of last `set` command since the last `target`.
let mut last_set_loc = None;
let mut targets = Vec::new();
let mut flag_builder = settings::builder();
while let Some(Token::Identifier(command)) = self.token() {
match command {
"set" => {
last_set_loc = Some(self.loc);
isaspec::parse_options(
self.consume_line().trim().split_whitespace(),
&mut flag_builder,
&self.loc,
)?;
}
"target" => {
let loc = self.loc;
// Grab the whole line so the lexer won't go looking for tokens on the
// following lines.
let mut words = self.consume_line().trim().split_whitespace();
// Look for `target foo`.
let target_name = match words.next() {
Some(w) => w,
None => return err!(loc, "expected target triple"),
};
let triple = match Triple::from_str(target_name) {
Ok(triple) => triple,
Err(err) => return err!(loc, err),
};
let mut isa_builder = match isa::lookup(triple) {
Err(isa::LookupError::SupportDisabled) => {
continue;
}
Err(isa::LookupError::Unsupported) => {
return err!(loc, "unsupported target '{}'", target_name)
}
Ok(b) => b,
};
last_set_loc = None;
seen_target = true;
// Apply the target-specific settings to `isa_builder`.
isaspec::parse_options(words, &mut isa_builder, &self.loc)?;
// Construct a trait object with the aggregate settings.
targets.push(isa_builder.finish(settings::Flags::new(flag_builder.clone())));
}
_ => break,
}
}
if !seen_target {
// No `target` commands, but we allow for `set` commands.
Ok(isaspec::IsaSpec::None(settings::Flags::new(flag_builder)))
} else if let Some(loc) = last_set_loc {
err!(
loc,
"dangling 'set' command after ISA specification has no effect."
)
} else {
Ok(isaspec::IsaSpec::Some(targets))
}
}
/// Parse a list of function definitions.
///
/// This is the top-level parse function matching the whole contents of a file.
pub fn parse_function_list(
&mut self,
unique_isa: Option<&TargetIsa>,
) -> ParseResult<Vec<(Function, Details<'a>)>> {
let mut list = Vec::new();
while self.token().is_some() {
list.push(self.parse_function(unique_isa)?);
}
if let Some(err) = self.lex_error {
return match err {
LexError::InvalidChar => err!(self.loc, "invalid character"),
};
}
Ok(list)
}
// Parse a whole function definition.
//
// function ::= * "function" name signature "{" preamble function-body "}"
//
fn parse_function(
&mut self,
unique_isa: Option<&TargetIsa>,
) -> ParseResult<(Function, Details<'a>)> {
// Begin gathering comments.
// Make sure we don't include any comments before the `function` keyword.
self.token();
debug_assert!(self.comments.is_empty());
self.start_gathering_comments();
self.match_identifier("function", "expected 'function'")?;
let location = self.loc;
// function ::= "function" * name signature "{" preamble function-body "}"
let name = self.parse_external_name()?;
// function ::= "function" name * signature "{" preamble function-body "}"
let sig = self.parse_signature(unique_isa)?;
let mut ctx = Context::new(Function::with_name_signature(name, sig), unique_isa);
// function ::= "function" name signature * "{" preamble function-body "}"
self.match_token(Token::LBrace, "expected '{' before function body")?;
self.token();
self.claim_gathered_comments(AnyEntity::Function);
// function ::= "function" name signature "{" * preamble function-body "}"
self.parse_preamble(&mut ctx)?;
// function ::= "function" name signature "{" preamble * function-body "}"
self.parse_function_body(&mut ctx)?;
// function ::= "function" name signature "{" preamble function-body * "}"
self.match_token(Token::RBrace, "expected '}' after function body")?;
// Collect any comments following the end of the function, then stop gathering comments.
self.start_gathering_comments();
self.token();
self.claim_gathered_comments(AnyEntity::Function);
let details = Details {
location,
comments: self.take_comments(),
map: ctx.map,
};
Ok((ctx.function, details))
}
// Parse an external name.
//
// For example, in a function decl, the parser would be in this state:
//
// function ::= "function" * name signature { ... }
//
fn parse_external_name(&mut self) -> ParseResult<ExternalName> {
match self.token() {
Some(Token::Name(s)) => {
self.consume();
s.parse()
.map_err(|_| self.error("invalid test case or libcall name"))
}
Some(Token::UserRef(namespace)) => {
self.consume();
match self.token() {
Some(Token::Colon) => {
self.consume();
match self.token() {
Some(Token::Integer(index_str)) => {
let index: u32 = u32::from_str_radix(index_str, 10).map_err(
|_| self.error("the integer given overflows the u32 type"),
)?;
self.consume();
Ok(ExternalName::user(namespace, index))
}
_ => err!(self.loc, "expected integer"),
}
}
_ => err!(self.loc, "expected colon"),
}
}
_ => err!(self.loc, "expected external name"),
}
}
// Parse a function signature.
//
// signature ::= * "(" [paramlist] ")" ["->" retlist] [callconv]
//
fn parse_signature(&mut self, unique_isa: Option<&TargetIsa>) -> ParseResult<Signature> {
// Calling convention defaults to `fast`, but can be changed.
let mut sig = Signature::new(CallConv::Fast);
self.match_token(Token::LPar, "expected function signature: ( args... )")?;
// signature ::= "(" * [abi-param-list] ")" ["->" retlist] [callconv]
if self.token() != Some(Token::RPar) {
sig.params = self.parse_abi_param_list(unique_isa)?;
}
self.match_token(Token::RPar, "expected ')' after function arguments")?;
if self.optional(Token::Arrow) {
sig.returns = self.parse_abi_param_list(unique_isa)?;
}
// The calling convention is optional.
if let Some(Token::Identifier(text)) = self.token() {
match text.parse() {
Ok(cc) => {
self.consume();
sig.call_conv = cc;
}
_ => return err!(self.loc, "unknown calling convention: {}", text),
}
}
if sig.params.iter().all(|a| a.location.is_assigned()) {
sig.compute_argument_bytes();
}
Ok(sig)
}
// Parse list of function parameter / return value types.
//
// paramlist ::= * param { "," param }
//
fn parse_abi_param_list(
&mut self,
unique_isa: Option<&TargetIsa>,
) -> ParseResult<Vec<AbiParam>> {
let mut list = Vec::new();
// abi-param-list ::= * abi-param { "," abi-param }
list.push(self.parse_abi_param(unique_isa)?);
// abi-param-list ::= abi-param * { "," abi-param }
while self.optional(Token::Comma) {
// abi-param-list ::= abi-param { "," * abi-param }
list.push(self.parse_abi_param(unique_isa)?);
}
Ok(list)
}
// Parse a single argument type with flags.
fn parse_abi_param(&mut self, unique_isa: Option<&TargetIsa>) -> ParseResult<AbiParam> {
// abi-param ::= * type { flag } [ argumentloc ]
let mut arg = AbiParam::new(self.match_type("expected parameter type")?);
// abi-param ::= type * { flag } [ argumentloc ]
while let Some(Token::Identifier(s)) = self.token() {
match s {
"uext" => arg.extension = ArgumentExtension::Uext,
"sext" => arg.extension = ArgumentExtension::Sext,
_ => {
if let Ok(purpose) = s.parse() {
arg.purpose = purpose;
} else {
break;
}
}
}
self.consume();
}
// abi-param ::= type { flag } * [ argumentloc ]
arg.location = self.parse_argument_location(unique_isa)?;
Ok(arg)
}
// Parse an argument location specifier; either a register or a byte offset into the stack.
fn parse_argument_location(
&mut self,
unique_isa: Option<&TargetIsa>,
) -> ParseResult<ArgumentLoc> {
// argumentloc ::= '[' regname | uimm32 ']'
if self.optional(Token::LBracket) {
let result = match self.token() {
Some(Token::Name(name)) => {
self.consume();
if let Some(isa) = unique_isa {
isa.register_info()
.parse_regunit(name)
.map(ArgumentLoc::Reg)
.ok_or_else(|| self.error("invalid register name"))
} else {
err!(self.loc, "argument location requires exactly one isa")
}
}
Some(Token::Integer(_)) => {
let offset = self.match_imm32("expected stack argument byte offset")?;
Ok(ArgumentLoc::Stack(offset))
}
Some(Token::Minus) => {
self.consume();
Ok(ArgumentLoc::Unassigned)
}
_ => err!(self.loc, "expected argument location"),
};
self.match_token(
Token::RBracket,
"expected ']' to end argument location annotation",
)?;
result
} else {
Ok(ArgumentLoc::Unassigned)
}
}
// Parse the function preamble.
//
// preamble ::= * { preamble-decl }
// preamble-decl ::= * stack-slot-decl
// * function-decl
// * signature-decl
// * jump-table-decl
// * stack-limit-decl
//
// The parsed decls are added to `ctx` rather than returned.
fn parse_preamble(&mut self, ctx: &mut Context) -> ParseResult<()> {
loop {
match self.token() {
Some(Token::StackSlot(..)) => {
self.start_gathering_comments();
let loc = self.loc;
self.parse_stack_slot_decl()
.and_then(|(ss, dat)| ctx.add_ss(ss, dat, &loc))
}
Some(Token::GlobalVar(..)) => {
self.start_gathering_comments();
self.parse_global_var_decl()
.and_then(|(gv, dat)| ctx.add_gv(gv, dat, &self.loc))
}
Some(Token::Heap(..)) => {
self.start_gathering_comments();
self.parse_heap_decl()
.and_then(|(heap, dat)| ctx.add_heap(heap, dat, &self.loc))
}
Some(Token::SigRef(..)) => {
self.start_gathering_comments();
self.parse_signature_decl(ctx.unique_isa)
.and_then(|(sig, dat)| ctx.add_sig(sig, dat, &self.loc))
}
Some(Token::FuncRef(..)) => {
self.start_gathering_comments();
self.parse_function_decl(ctx)
.and_then(|(fn_, dat)| ctx.add_fn(fn_, dat, &self.loc))
}
Some(Token::JumpTable(..)) => {
self.start_gathering_comments();
self.parse_jump_table_decl()
.and_then(|(jt, dat)| ctx.add_jt(jt, dat, &self.loc))
}
Some(Token::Identifier("stack_limit")) => self.parse_stack_limit_decl()
.and_then(|gv| ctx.set_stack_limit(gv, &self.loc)),
// More to come..
_ => return Ok(()),
}?;
}
}
// Parse a stack slot decl.
//
// stack-slot-decl ::= * StackSlot(ss) "=" stack-slot-kind Bytes {"," stack-slot-flag}
// stack-slot-kind ::= "explicit_slot"
// | "spill_slot"
// | "incoming_arg"
// | "outgoing_arg"
fn parse_stack_slot_decl(&mut self) -> ParseResult<(StackSlot, StackSlotData)> {
let ss = self.match_ss("expected stack slot number: ss«n»")?;
self.match_token(Token::Equal, "expected '=' in stack slot declaration")?;
let kind = self.match_enum("expected stack slot kind")?;
// stack-slot-decl ::= StackSlot(ss) "=" stack-slot-kind * Bytes {"," stack-slot-flag}
let bytes: i64 = self.match_imm64("expected byte-size in stack_slot decl")?
.into();
if bytes < 0 {
return err!(self.loc, "negative stack slot size");
}
if bytes > i64::from(u32::MAX) {
return err!(self.loc, "stack slot too large");
}
let mut data = StackSlotData::new(kind, bytes as u32);
// Take additional options.
while self.optional(Token::Comma) {
match self.match_any_identifier("expected stack slot flags")? {
"offset" => data.offset = Some(self.match_imm32("expected byte offset")?),
other => return err!(self.loc, "Unknown stack slot flag '{}'", other),
}
}
// Collect any trailing comments.
self.token();
self.claim_gathered_comments(ss);
// TBD: stack-slot-decl ::= StackSlot(ss) "=" stack-slot-kind Bytes * {"," stack-slot-flag}
Ok((ss, data))
}
// Parse a global variable decl.
//
// global-var-decl ::= * GlobalVar(gv) "=" global-var-desc
// global-var-desc ::= "vmctx" offset32
// | "deref" "(" GlobalVar(base) ")" offset32
// | globalsym ["colocated"] name
//
fn parse_global_var_decl(&mut self) -> ParseResult<(GlobalVar, GlobalVarData)> {
let gv = self.match_gv("expected global variable number: gv«n»")?;
self.match_token(Token::Equal, "expected '=' in global variable declaration")?;
let data = match self.match_any_identifier("expected global variable kind")? {
"vmctx" => {
let offset = self.optional_offset32()?;
GlobalVarData::VMContext { offset }
}
"deref" => {
self.match_token(Token::LPar, "expected '(' in 'deref' global variable decl")?;
let base = self.match_gv("expected global variable: gv«n»")?;
self.match_token(Token::RPar, "expected ')' in 'deref' global variable decl")?;
let offset = self.optional_offset32()?;
GlobalVarData::Deref { base, offset }
}
"globalsym" => {
let colocated = self.optional(Token::Identifier("colocated"));
let name = self.parse_external_name()?;
GlobalVarData::Sym { name, colocated }
}
other => return err!(self.loc, "Unknown global variable kind '{}'", other),
};
// Collect any trailing comments.
self.token();
self.claim_gathered_comments(gv);
Ok((gv, data))
}
// Parse a heap decl.
//
// heap-decl ::= * Heap(heap) "=" heap-desc
// heap-desc ::= heap-style heap-base { "," heap-attr }
// heap-style ::= "static" | "dynamic"
// heap-base ::= "reserved_reg"
// | GlobalVar(base)
// heap-attr ::= "min" Imm64(bytes)
// | "max" Imm64(bytes)
// | "guard" Imm64(bytes)
//
fn parse_heap_decl(&mut self) -> ParseResult<(Heap, HeapData)> {
let heap = self.match_heap("expected heap number: heap«n»")?;
self.match_token(Token::Equal, "expected '=' in heap declaration")?;
let style_name = self.match_any_identifier("expected 'static' or 'dynamic'")?;
// heap-desc ::= heap-style * heap-base { "," heap-attr }
// heap-base ::= * "reserved_reg"
// | * GlobalVar(base)
let base = match self.token() {
Some(Token::Identifier("reserved_reg")) => HeapBase::ReservedReg,
Some(Token::GlobalVar(base_num)) => {
let base_gv = match GlobalVar::with_number(base_num) {
Some(gv) => gv,
None => return err!(self.loc, "invalid global variable number for heap base"),
};
HeapBase::GlobalVar(base_gv)
}
_ => return err!(self.loc, "expected heap base"),
};
self.consume();
let mut data = HeapData {
base,
min_size: 0.into(),
guard_size: 0.into(),
style: HeapStyle::Static { bound: 0.into() },
};
// heap-desc ::= heap-style heap-base * { "," heap-attr }
while self.optional(Token::Comma) {
match self.match_any_identifier("expected heap attribute name")? {
"min" => {
data.min_size = self.match_imm64("expected integer min size")?;
}
"bound" => {
data.style = match style_name {
"dynamic" => HeapStyle::Dynamic {
bound_gv: self.match_gv("expected gv bound")?,
},
"static" => HeapStyle::Static {
bound: self.match_imm64("expected integer bound")?,
},
t => return err!(self.loc, "unknown heap style '{}'", t),
};
}
"guard" => {
data.guard_size = self.match_imm64("expected integer guard size")?;
}
t => return err!(self.loc, "unknown heap attribute '{}'", t),
}
}
// Collect any trailing comments.
self.token();
self.claim_gathered_comments(heap);
Ok((heap, data))
}
// Parse a signature decl.
//
// signature-decl ::= SigRef(sigref) "=" signature
//
fn parse_signature_decl(
&mut self,
unique_isa: Option<&TargetIsa>,
) -> ParseResult<(SigRef, Signature)> {
let sig = self.match_sig("expected signature number: sig«n»")?;
self.match_token(Token::Equal, "expected '=' in signature decl")?;
let data = self.parse_signature(unique_isa)?;
// Collect any trailing comments.
self.token();
self.claim_gathered_comments(sig);
Ok((sig, data))
}
// Parse a function decl.
//
// Two variants:
//
// function-decl ::= FuncRef(fnref) "=" ["colocated"]" name function-decl-sig
// function-decl-sig ::= SigRef(sig) | signature
//
// The first variant allocates a new signature reference. The second references an existing
// signature which must be declared first.
//
fn parse_function_decl(&mut self, ctx: &mut Context) -> ParseResult<(FuncRef, ExtFuncData)> {
let fn_ = self.match_fn("expected function number: fn«n»")?;
self.match_token(Token::Equal, "expected '=' in function decl")?;
let loc = self.loc;
// function-decl ::= FuncRef(fnref) "=" * ["colocated"] name function-decl-sig
let colocated = self.optional(Token::Identifier("colocated"));
// function-decl ::= FuncRef(fnref) "=" ["colocated"] * name function-decl-sig
let name = self.parse_external_name()?;
// function-decl ::= FuncRef(fnref) "=" ["colocated"] name * function-decl-sig
let data = match self.token() {
Some(Token::LPar) => {
// function-decl ::= FuncRef(fnref) "=" ["colocated"] name * signature
let sig = self.parse_signature(ctx.unique_isa)?;
let sigref = ctx.function.import_signature(sig);
ctx.map
.def_entity(sigref.into(), &loc)
.expect("duplicate SigRef entities created");
ExtFuncData {
name,
signature: sigref,
colocated,
}
}
Some(Token::SigRef(sig_src)) => {
let sig = match SigRef::with_number(sig_src) {
None => {
return err!(self.loc, "attempted to use invalid signature ss{}", sig_src)
}
Some(sig) => sig,
};
ctx.check_sig(sig, &self.loc)?;
self.consume();
ExtFuncData {
name,
signature: sig,
colocated,
}
}
_ => return err!(self.loc, "expected 'function' or sig«n» in function decl"),
};
// Collect any trailing comments.
self.token();
self.claim_gathered_comments(fn_);
Ok((fn_, data))
}
// Parse a jump table decl.
//
// jump-table-decl ::= * JumpTable(jt) "=" "jump_table" jt-entry {"," jt-entry}
fn parse_jump_table_decl(&mut self) -> ParseResult<(JumpTable, JumpTableData)> {
let jt = self.match_jt()?;
self.match_token(Token::Equal, "expected '=' in jump_table decl")?;
self.match_identifier("jump_table", "expected 'jump_table'")?;
let mut data = JumpTableData::new();
// jump-table-decl ::= JumpTable(jt) "=" "jump_table" * jt-entry {"," jt-entry}
for idx in 0_usize.. {
if let Some(dest) = self.parse_jump_table_entry()? {
data.set_entry(idx, dest);
}
if !self.optional(Token::Comma) {
// Collect any trailing comments.
self.token();
self.claim_gathered_comments(jt);
return Ok((jt, data));
}
}
err!(self.loc, "jump_table too long")
}
// jt-entry ::= * Ebb(dest) | "0"
fn parse_jump_table_entry(&mut self) -> ParseResult<Option<Ebb>> {
match self.token() {
Some(Token::Integer(s)) => {
if s == "0" {
self.consume();
Ok(None)
} else {
err!(self.loc, "invalid jump_table entry '{}'", s)
}
}
Some(Token::Ebb(dest)) => {
self.consume();
Ok(Some(dest))
}
_ => err!(self.loc, "expected jump_table entry"),
}
}
/// stack-limit-decl ::= "stack_limit" "=" GlobalVar(gv)
fn parse_stack_limit_decl(&mut self) -> ParseResult<GlobalVar> {
self.consume();
self.match_token(Token::Equal, "expected '=' in stack limit declaration")?;
let gv = self.match_gv("expected global variable")?;
Ok(gv)
}
// Parse a function body, add contents to `ctx`.
//
// function-body ::= * { extended-basic-block }
//
fn parse_function_body(&mut self, ctx: &mut Context) -> ParseResult<()> {
while self.token() != Some(Token::RBrace) {
self.parse_extended_basic_block(ctx)?;
}
// Now that we've seen all defined values in the function, ensure that
// all references refer to a definition.
for ebb in &ctx.function.layout {
for inst in ctx.function.layout.ebb_insts(ebb) {
for value in ctx.function.dfg.inst_args(inst) {
if !ctx.map.contains_value(*value) {
return err!(
ctx.map.location(AnyEntity::Inst(inst)).unwrap(),
"undefined operand value {}",
value
);
}
}
}
}
for alias in &ctx.aliases {
if !ctx.function.dfg.set_alias_type_for_parser(*alias) {
let loc = ctx.map.location(AnyEntity::Value(*alias)).unwrap();
return err!(loc, "alias cycle involving {}", alias);
}
}
Ok(())
}
// Parse an extended basic block, add contents to `ctx`.
//
// extended-basic-block ::= * ebb-header { instruction }
// ebb-header ::= Ebb(ebb) [ebb-params] ":"
//
fn parse_extended_basic_block(&mut self, ctx: &mut Context) -> ParseResult<()> {
// Collect comments for the next ebb.
self.start_gathering_comments();
let ebb_num = self.match_ebb("expected EBB header")?;
let ebb = ctx.add_ebb(ebb_num, &self.loc)?;
if !self.optional(Token::Colon) {
// ebb-header ::= Ebb(ebb) [ * ebb-params ] ":"
self.parse_ebb_params(ctx, ebb)?;
self.match_token(Token::Colon, "expected ':' after EBB parameters")?;
}
// Collect any trailing comments.
self.token();
self.claim_gathered_comments(ebb);
// extended-basic-block ::= ebb-header * { instruction }
while match self.token() {
Some(Token::Value(_))
| Some(Token::Identifier(_))
| Some(Token::LBracket)
| Some(Token::SourceLoc(_)) => true,
_ => false,
} {
let srcloc = self.optional_srcloc()?;
let (encoding, result_locations) = self.parse_instruction_encoding(ctx)?;
// We need to parse instruction results here because they are shared
// between the parsing of value aliases and the parsing of instructions.
//
// inst-results ::= Value(v) { "," Value(v) }
let results = self.parse_inst_results()?;
for result in &results {
while ctx.function.dfg.num_values() <= result.index() {
ctx.function.dfg.make_invalid_value_for_parser();
}
}
match self.token() {
Some(Token::Arrow) => {
self.consume();
self.parse_value_alias(&results, ctx)?;
}
Some(Token::Equal) => {
self.consume();
self.parse_instruction(&results, srcloc, encoding, result_locations, ctx, ebb)?;
}
_ if !results.is_empty() => return err!(self.loc, "expected -> or ="),
_ => {
self.parse_instruction(&results, srcloc, encoding, result_locations, ctx, ebb)?
}
}
}
Ok(())
}
// Parse parenthesized list of EBB parameters. Returns a vector of (u32, Type) pairs with the
// value numbers of the defined values and the defined types.
//
// ebb-params ::= * "(" ebb-param { "," ebb-param } ")"
fn parse_ebb_params(&mut self, ctx: &mut Context, ebb: Ebb) -> ParseResult<()> {
// ebb-params ::= * "(" ebb-param { "," ebb-param } ")"
self.match_token(Token::LPar, "expected '(' before EBB parameters")?;
// ebb-params ::= "(" * ebb-param { "," ebb-param } ")"
self.parse_ebb_param(ctx, ebb)?;
// ebb-params ::= "(" ebb-param * { "," ebb-param } ")"
while self.optional(Token::Comma) {
// ebb-params ::= "(" ebb-param { "," * ebb-param } ")"
self.parse_ebb_param(ctx, ebb)?;
}
// ebb-params ::= "(" ebb-param { "," ebb-param } * ")"
self.match_token(Token::RPar, "expected ')' after EBB parameters")?;
Ok(())
}
// Parse a single EBB parameter declaration, and append it to `ebb`.
//
// ebb-param ::= * Value(v) ":" Type(t) arg-loc?
// arg-loc ::= "[" value-location "]"
//
fn parse_ebb_param(&mut self, ctx: &mut Context, ebb: Ebb) -> ParseResult<()> {
// ebb-param ::= * Value(v) ":" Type(t) arg-loc?
let v = self.match_value("EBB argument must be a value")?;
let v_location = self.loc;
// ebb-param ::= Value(v) * ":" Type(t) arg-loc?
self.match_token(Token::Colon, "expected ':' after EBB argument")?;
// ebb-param ::= Value(v) ":" * Type(t) arg-loc?
while ctx.function.dfg.num_values() <= v.index() {
ctx.function.dfg.make_invalid_value_for_parser();
}
let t = self.match_type("expected EBB argument type")?;
// Allocate the EBB argument.
ctx.function.dfg.append_ebb_param_for_parser(ebb, t, v);
ctx.map.def_value(v, &v_location)?;
// ebb-param ::= Value(v) ":" Type(t) * arg-loc?
if self.optional(Token::LBracket) {
let loc = self.parse_value_location(ctx)?;
ctx.function.locations[v] = loc;
self.match_token(Token::RBracket, "expected ']' after value location")?;
}
Ok(())
}
fn parse_value_location(&mut self, ctx: &Context) -> ParseResult<ValueLoc> {
match self.token() {
Some(Token::StackSlot(src_num)) => {
self.consume();
let ss = match StackSlot::with_number(src_num) {
None => {
return err!(
self.loc,
"attempted to use invalid stack slot ss{}",
src_num
)
}
Some(ss) => ss,
};
ctx.check_ss(ss, &self.loc)?;
Ok(ValueLoc::Stack(ss))
}
Some(Token::Name(name)) => {
self.consume();
if let Some(isa) = ctx.unique_isa {
isa.register_info()
.parse_regunit(name)
.map(ValueLoc::Reg)
.ok_or_else(|| self.error("invalid register value location"))
} else {
err!(self.loc, "value location requires exactly one isa")
}
}
Some(Token::Minus) => {
self.consume();
Ok(ValueLoc::Unassigned)
}
_ => err!(self.loc, "invalid value location"),
}
}
fn parse_instruction_encoding(
&mut self,
ctx: &Context,
) -> ParseResult<(Option<Encoding>, Option<Vec<ValueLoc>>)> {
let (mut encoding, mut result_locations) = (None, None);
// encoding ::= "[" encoding_literal result_locations "]"
if self.optional(Token::LBracket) {
// encoding_literal ::= "-" | Identifier HexSequence
if !self.optional(Token::Minus) {
let recipe = self.match_any_identifier("expected instruction encoding or '-'")?;
let bits = self.match_hex16("expected a hex sequence")?;
if let Some(recipe_index) = ctx.find_recipe_index(recipe) {
encoding = Some(Encoding::new(recipe_index, bits));
} else if ctx.unique_isa.is_some() {
return err!(self.loc, "invalid instruction recipe");
} else {
// We allow encodings to be specified when there's no unique ISA purely
// for convenience, eg when copy-pasting code for a test.
}
}
// result_locations ::= ("," ( "-" | names ) )?
// names ::= Name { "," Name }
if self.optional(Token::Comma) {
let mut results = Vec::new();
results.push(self.parse_value_location(ctx)?);
while self.optional(Token::Comma) {
results.push(self.parse_value_location(ctx)?);
}
result_locations = Some(results);
}
self.match_token(
Token::RBracket,
"expected ']' to terminate instruction encoding",
)?;
}
Ok((encoding, result_locations))
}
// Parse instruction results and return them.
//
// inst-results ::= Value(v) { "," Value(v) }
//
fn parse_inst_results(&mut self) -> ParseResult<Vec<Value>> {
// Result value numbers.
let mut results = Vec::new();
// instruction ::= * [inst-results "="] Opcode(opc) ["." Type] ...
// inst-results ::= * Value(v) { "," Value(v) }
if let Some(Token::Value(v)) = self.token() {
self.consume();
results.push(v);
// inst-results ::= Value(v) * { "," Value(v) }
while self.optional(Token::Comma) {
// inst-results ::= Value(v) { "," * Value(v) }
results.push(self.match_value("expected result value")?);
}
}
Ok(results)
}
// Parse a value alias, and append it to `ebb`.
//
// value_alias ::= [inst-results] "->" Value(v)
//
fn parse_value_alias(&mut self, results: &[Value], ctx: &mut Context) -> ParseResult<()> {
if results.len() != 1 {
return err!(self.loc, "wrong number of aliases");
}
let result = results[0];
let dest = self.match_value("expected value alias")?;
// Allow duplicate definitions of aliases, as long as they are identical.
if ctx.map.contains_value(result) {
if let Some(old) = ctx.function.dfg.value_alias_dest_for_parser(result) {
if old != dest {
return err!(
self.loc,
"value {} is already defined as an alias with destination {}",
result,
old
);
}
} else {
return err!(self.loc, "value {} is already defined");
}
} else {
ctx.map.def_value(result, &self.loc)?;
}
if !ctx.map.contains_value(dest) {
return err!(self.loc, "value {} is not yet defined", dest);
}
ctx.function.dfg.make_value_alias_for_parser(dest, result);
ctx.aliases.push(result);
Ok(())
}
// Parse an instruction, append it to `ebb`.
//
// instruction ::= [inst-results "="] Opcode(opc) ["." Type] ...
//
fn parse_instruction(
&mut self,
results: &[Value],
srcloc: ir::SourceLoc,
encoding: Option<Encoding>,
result_locations: Option<Vec<ValueLoc>>,
ctx: &mut Context,
ebb: Ebb,
) -> ParseResult<()> {
// Define the result values.
for val in results {
ctx.map.def_value(*val, &self.loc)?;
}
// Collect comments for the next instruction.
self.start_gathering_comments();
// instruction ::= [inst-results "="] * Opcode(opc) ["." Type] ...
let opcode = if let Some(Token::Identifier(text)) = self.token() {
match text.parse() {
Ok(opc) => opc,
Err(msg) => return err!(self.loc, "{}: '{}'", msg, text),
}
} else {
return err!(self.loc, "expected instruction opcode");
};
let opcode_loc = self.loc;
self.consume();
// Look for a controlling type variable annotation.
// instruction ::= [inst-results "="] Opcode(opc) * ["." Type] ...
let explicit_ctrl_type = if self.optional(Token::Dot) {
Some(self.match_type("expected type after 'opcode.'")?)
} else {
None
};
// instruction ::= [inst-results "="] Opcode(opc) ["." Type] * ...
let inst_data = self.parse_inst_operands(ctx, opcode)?;
// We're done parsing the instruction now.
//
// We still need to check that the number of result values in the source matches the opcode
// or function call signature. We also need to create values with the right type for all
// the instruction results.
let ctrl_typevar = self.infer_typevar(ctx, opcode, explicit_ctrl_type, &inst_data)?;
let inst = ctx.function.dfg.make_inst(inst_data);
let num_results =
ctx.function
.dfg
.make_inst_results_for_parser(inst, ctrl_typevar, results);
ctx.function.layout.append_inst(inst, ebb);
ctx.map
.def_entity(inst.into(), &opcode_loc)
.expect("duplicate inst references created");
if !srcloc.is_default() {
ctx.function.srclocs[inst] = srcloc;
}
if let Some(encoding) = encoding {
ctx.function.encodings[inst] = encoding;
}
if results.len() != num_results {
return err!(
self.loc,
"instruction produces {} result values, {} given",
num_results,
results.len()
);
}
if let Some(ref result_locations) = result_locations {
if results.len() != result_locations.len() {
return err!(
self.loc,
"instruction produces {} result values, but {} locations were \
specified",
results.len(),
result_locations.len()
);
}
}
if let Some(result_locations) = result_locations {
for (&value, loc) in ctx.function
.dfg
.inst_results(inst)
.iter()
.zip(result_locations)
{
ctx.function.locations[value] = loc;
}
}
// Collect any trailing comments.
self.token();
self.claim_gathered_comments(inst);
Ok(())
}
// Type inference for polymorphic instructions.
//
// The controlling type variable can be specified explicitly as 'splat.i32x4 v5', or it can be
// inferred from `inst_data.typevar_operand` for some opcodes.
//
// Returns the controlling typevar for a polymorphic opcode, or `VOID` for a non-polymorphic
// opcode.
fn infer_typevar(
&self,
ctx: &Context,
opcode: Opcode,
explicit_ctrl_type: Option<Type>,
inst_data: &InstructionData,
) -> ParseResult<Type> {
let constraints = opcode.constraints();
let ctrl_type = match explicit_ctrl_type {
Some(t) => t,
None => {
if constraints.use_typevar_operand() {
// This is an opcode that supports type inference, AND there was no
// explicit type specified. Look up `ctrl_value` to see if it was defined
// already.
// TBD: If it is defined in another block, the type should have been
// specified explicitly. It is unfortunate that the correctness of IR
// depends on the layout of the blocks.
let ctrl_src_value = inst_data
.typevar_operand(&ctx.function.dfg.value_lists)
.expect("Constraints <-> Format inconsistency");
if !ctx.map.contains_value(ctrl_src_value) {
return err!(
self.loc,
"type variable required for polymorphic opcode, e.g. '{}.{}'; \
can't infer from {} which is not yet defined",
opcode,
constraints.ctrl_typeset().unwrap().example(),
ctrl_src_value
);
}
if !ctx.function.dfg.value_is_valid_for_parser(ctrl_src_value) {
return err!(
self.loc,
"type variable required for polymorphic opcode, e.g. '{}.{}'; \
can't infer from {} which is not yet resolved",
opcode,
constraints.ctrl_typeset().unwrap().example(),
ctrl_src_value
);
}
ctx.function.dfg.value_type(ctrl_src_value)
} else if constraints.is_polymorphic() {
// This opcode does not support type inference, so the explicit type
// variable is required.
return err!(
self.loc,
"type variable required for polymorphic opcode, e.g. '{}.{}'",
opcode,
constraints.ctrl_typeset().unwrap().example()
);
} else {
// This is a non-polymorphic opcode. No typevar needed.
VOID
}
}
};
// Verify that `ctrl_type` is valid for the controlling type variable. We don't want to
// attempt deriving types from an incorrect basis.
// This is not a complete type check. The verifier does that.
if let Some(typeset) = constraints.ctrl_typeset() {
// This is a polymorphic opcode.
if !typeset.contains(ctrl_type) {
return err!(
self.loc,
"{} is not a valid typevar for {}",
ctrl_type,
opcode
);
}
// Treat it as a syntax error to speficy a typevar on a non-polymorphic opcode.
} else if ctrl_type != VOID {
return err!(self.loc, "{} does not take a typevar", opcode);
}
Ok(ctrl_type)
}
// Parse comma-separated value list into a VariableArgs struct.
//
// value_list ::= [ value { "," value } ]
//
fn parse_value_list(&mut self) -> ParseResult<VariableArgs> {
let mut args = VariableArgs::new();
if let Some(Token::Value(v)) = self.token() {
args.push(v);
self.consume();
} else {
return Ok(args);
}
while self.optional(Token::Comma) {
args.push(self.match_value("expected value in argument list")?);
}
Ok(args)
}
fn parse_value_sequence(&mut self) -> ParseResult<VariableArgs> {
let mut args = VariableArgs::new();
if let Some(Token::Value(v)) = self.token() {
args.push(v);
self.consume();
} else {
return Ok(args);
}
while self.optional(Token::Plus) {
args.push(self.match_value("expected value in argument list")?);
}
Ok(args)
}
// Parse an optional value list enclosed in parantheses.
fn parse_opt_value_list(&mut self) -> ParseResult<VariableArgs> {
if !self.optional(Token::LPar) {
return Ok(VariableArgs::new());
}
let args = self.parse_value_list()?;
self.match_token(Token::RPar, "expected ')' after arguments")?;
Ok(args)
}
// Parse the operands following the instruction opcode.
// This depends on the format of the opcode.
fn parse_inst_operands(
&mut self,
ctx: &mut Context,
opcode: Opcode,
) -> ParseResult<InstructionData> {
let idata = match opcode.format() {
InstructionFormat::Unary => InstructionData::Unary {
opcode,
arg: self.match_value("expected SSA value operand")?,
},
InstructionFormat::UnaryImm => InstructionData::UnaryImm {
opcode,
imm: self.match_imm64("expected immediate integer operand")?,
},
InstructionFormat::UnaryIeee32 => InstructionData::UnaryIeee32 {
opcode,
imm: self.match_ieee32("expected immediate 32-bit float operand")?,
},
InstructionFormat::UnaryIeee64 => InstructionData::UnaryIeee64 {
opcode,
imm: self.match_ieee64("expected immediate 64-bit float operand")?,
},
InstructionFormat::UnaryBool => InstructionData::UnaryBool {
opcode,
imm: self.match_bool("expected immediate boolean operand")?,
},
InstructionFormat::UnaryGlobalVar => {
let gv = self.match_gv("expected global variable")?;
ctx.check_gv(gv, &self.loc)?;
InstructionData::UnaryGlobalVar {
opcode,
global_var: gv,
}
}
InstructionFormat::Binary => {
let lhs = self.match_value("expected SSA value first operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let rhs = self.match_value("expected SSA value second operand")?;
InstructionData::Binary {
opcode,
args: [lhs, rhs],
}
}
InstructionFormat::BinaryImm => {
let lhs = self.match_value("expected SSA value first operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let rhs = self.match_imm64("expected immediate integer second operand")?;
InstructionData::BinaryImm {
opcode,
arg: lhs,
imm: rhs,
}
}
InstructionFormat::Ternary => {
// Names here refer to the `select` instruction.
// This format is also use by `fma`.
let ctrl_arg = self.match_value("expected SSA value control operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let true_arg = self.match_value("expected SSA value true operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let false_arg = self.match_value("expected SSA value false operand")?;
InstructionData::Ternary {
opcode,
args: [ctrl_arg, true_arg, false_arg],
}
}
InstructionFormat::MultiAry => {
let args = self.parse_value_list()?;
InstructionData::MultiAry {
opcode,
args: args.into_value_list(&[], &mut ctx.function.dfg.value_lists),
}
}
InstructionFormat::NullAry => InstructionData::NullAry { opcode },
InstructionFormat::Jump => {
// Parse the destination EBB number.
let ebb_num = self.match_ebb("expected jump destination EBB")?;
let args = self.parse_opt_value_list()?;
InstructionData::Jump {
opcode,
destination: ebb_num,
args: args.into_value_list(&[], &mut ctx.function.dfg.value_lists),
}
}
InstructionFormat::Branch => {
let ctrl_arg = self.match_value("expected SSA value control operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let ebb_num = self.match_ebb("expected branch destination EBB")?;
let args = self.parse_opt_value_list()?;
InstructionData::Branch {
opcode,
destination: ebb_num,
args: args.into_value_list(&[ctrl_arg], &mut ctx.function.dfg.value_lists),
}
}
InstructionFormat::BranchInt => {
let cond = self.match_enum("expected intcc condition code")?;
let arg = self.match_value("expected SSA value first operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let ebb_num = self.match_ebb("expected branch destination EBB")?;
let args = self.parse_opt_value_list()?;
InstructionData::BranchInt {
opcode,
cond,
destination: ebb_num,
args: args.into_value_list(&[arg], &mut ctx.function.dfg.value_lists),
}
}
InstructionFormat::BranchFloat => {
let cond = self.match_enum("expected floatcc condition code")?;
let arg = self.match_value("expected SSA value first operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let ebb_num = self.match_ebb("expected branch destination EBB")?;
let args = self.parse_opt_value_list()?;
InstructionData::BranchFloat {
opcode,
cond,
destination: ebb_num,
args: args.into_value_list(&[arg], &mut ctx.function.dfg.value_lists),
}
}
InstructionFormat::BranchIcmp => {
let cond = self.match_enum("expected intcc condition code")?;
let lhs = self.match_value("expected SSA value first operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let rhs = self.match_value("expected SSA value second operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let ebb_num = self.match_ebb("expected branch destination EBB")?;
let args = self.parse_opt_value_list()?;
InstructionData::BranchIcmp {
opcode,
cond,
destination: ebb_num,
args: args.into_value_list(&[lhs, rhs], &mut ctx.function.dfg.value_lists),
}
}
InstructionFormat::BranchTable => {
let arg = self.match_value("expected SSA value operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let table = self.match_jt()?;
ctx.check_jt(table, &self.loc)?;
InstructionData::BranchTable { opcode, arg, table }
}
InstructionFormat::InsertLane => {
let lhs = self.match_value("expected SSA value first operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let lane = self.match_uimm8("expected lane number")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let rhs = self.match_value("expected SSA value last operand")?;
InstructionData::InsertLane {
opcode,
lane,
args: [lhs, rhs],
}
}
InstructionFormat::ExtractLane => {
let arg = self.match_value("expected SSA value last operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let lane = self.match_uimm8("expected lane number")?;
InstructionData::ExtractLane { opcode, lane, arg }
}
InstructionFormat::IntCompare => {
let cond = self.match_enum("expected intcc condition code")?;
let lhs = self.match_value("expected SSA value first operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let rhs = self.match_value("expected SSA value second operand")?;
InstructionData::IntCompare {
opcode,
cond,
args: [lhs, rhs],
}
}
InstructionFormat::IntCompareImm => {
let cond = self.match_enum("expected intcc condition code")?;
let lhs = self.match_value("expected SSA value first operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let rhs = self.match_imm64("expected immediate second operand")?;
InstructionData::IntCompareImm {
opcode,
cond,
arg: lhs,
imm: rhs,
}
}
InstructionFormat::IntCond => {
let cond = self.match_enum("expected intcc condition code")?;
let arg = self.match_value("expected SSA value")?;
InstructionData::IntCond { opcode, cond, arg }
}
InstructionFormat::FloatCompare => {
let cond = self.match_enum("expected floatcc condition code")?;
let lhs = self.match_value("expected SSA value first operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let rhs = self.match_value("expected SSA value second operand")?;
InstructionData::FloatCompare {
opcode,
cond,
args: [lhs, rhs],
}
}
InstructionFormat::FloatCond => {
let cond = self.match_enum("expected floatcc condition code")?;
let arg = self.match_value("expected SSA value")?;
InstructionData::FloatCond { opcode, cond, arg }
}
InstructionFormat::IntSelect => {
let cond = self.match_enum("expected intcc condition code")?;
let guard = self.match_value("expected SSA value first operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let v_true = self.match_value("expected SSA value second operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let v_false = self.match_value("expected SSA value third operand")?;
InstructionData::IntSelect {
opcode,
cond,
args: [guard, v_true, v_false],
}
}
InstructionFormat::Call => {
let func_ref = self.match_fn("expected function reference")?;
ctx.check_fn(func_ref, &self.loc)?;
self.match_token(Token::LPar, "expected '(' before arguments")?;
let args = self.parse_value_list()?;
self.match_token(Token::RPar, "expected ')' after arguments")?;
InstructionData::Call {
opcode,
func_ref,
args: args.into_value_list(&[], &mut ctx.function.dfg.value_lists),
}
}
InstructionFormat::CallIndirect => {
let sig_ref = self.match_sig("expected signature reference")?;
ctx.check_sig(sig_ref, &self.loc)?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let callee = self.match_value("expected SSA value callee operand")?;
self.match_token(Token::LPar, "expected '(' before arguments")?;
let args = self.parse_value_list()?;
self.match_token(Token::RPar, "expected ')' after arguments")?;
InstructionData::CallIndirect {
opcode,
sig_ref,
args: args.into_value_list(&[callee], &mut ctx.function.dfg.value_lists),
}
}
InstructionFormat::FuncAddr => {
let func_ref = self.match_fn("expected function reference")?;
ctx.check_fn(func_ref, &self.loc)?;
InstructionData::FuncAddr { opcode, func_ref }
}
InstructionFormat::StackLoad => {
let ss = self.match_ss("expected stack slot number: ss«n»")?;
ctx.check_ss(ss, &self.loc)?;
let offset = self.optional_offset32()?;
InstructionData::StackLoad {
opcode,
stack_slot: ss,
offset,
}
}
InstructionFormat::StackStore => {
let arg = self.match_value("expected SSA value operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let ss = self.match_ss("expected stack slot number: ss«n»")?;
ctx.check_ss(ss, &self.loc)?;
let offset = self.optional_offset32()?;
InstructionData::StackStore {
opcode,
arg,
stack_slot: ss,
offset,
}
}
InstructionFormat::HeapAddr => {
let heap = self.match_heap("expected heap identifier")?;
ctx.check_heap(heap, &self.loc)?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let arg = self.match_value("expected SSA value heap address")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let imm = self.match_uimm32("expected 32-bit integer size")?;
InstructionData::HeapAddr {
opcode,
heap,
arg,
imm,
}
}
InstructionFormat::Load => {
let flags = self.optional_memflags();
let addr = self.match_value("expected SSA value address")?;
let offset = self.optional_offset32()?;
InstructionData::Load {
opcode,
flags,
arg: addr,
offset,
}
}
InstructionFormat::LoadComplex => {
let flags = self.optional_memflags();
let args = self.parse_value_sequence()?;
let offset = self.optional_offset32()?;
InstructionData::LoadComplex {
opcode,
flags,
args: args.into_value_list(&[], &mut ctx.function.dfg.value_lists),
offset,
}
}
InstructionFormat::Store => {
let flags = self.optional_memflags();
let arg = self.match_value("expected SSA value operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let addr = self.match_value("expected SSA value address")?;
let offset = self.optional_offset32()?;
InstructionData::Store {
opcode,
flags,
args: [arg, addr],
offset,
}
}
InstructionFormat::StoreComplex => {
let flags = self.optional_memflags();
let src = self.match_value("expected SSA value operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let args = self.parse_value_sequence()?;
let offset = self.optional_offset32()?;
InstructionData::StoreComplex {
opcode,
flags,
args: args.into_value_list(&[src], &mut ctx.function.dfg.value_lists),
offset,
}
}
InstructionFormat::RegMove => {
let arg = self.match_value("expected SSA value operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let src = self.match_regunit(ctx.unique_isa)?;
self.match_token(Token::Arrow, "expected '->' between register units")?;
let dst = self.match_regunit(ctx.unique_isa)?;
InstructionData::RegMove {
opcode,
arg,
src,
dst,
}
}
InstructionFormat::CopySpecial => {
let src = self.match_regunit(ctx.unique_isa)?;
self.match_token(Token::Arrow, "expected '->' between register units")?;
let dst = self.match_regunit(ctx.unique_isa)?;
InstructionData::CopySpecial { opcode, src, dst }
}
InstructionFormat::RegSpill => {
let arg = self.match_value("expected SSA value operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let src = self.match_regunit(ctx.unique_isa)?;
self.match_token(Token::Arrow, "expected '->' before destination stack slot")?;
let dst = self.match_ss("expected stack slot number: ss«n»")?;
ctx.check_ss(dst, &self.loc)?;
InstructionData::RegSpill {
opcode,
arg,
src,
dst,
}
}
InstructionFormat::RegFill => {
let arg = self.match_value("expected SSA value operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let src = self.match_ss("expected stack slot number: ss«n»")?;
ctx.check_ss(src, &self.loc)?;
self.match_token(
Token::Arrow,
"expected '->' before destination register units",
)?;
let dst = self.match_regunit(ctx.unique_isa)?;
InstructionData::RegFill {
opcode,
arg,
src,
dst,
}
}
InstructionFormat::Trap => {
let code = self.match_enum("expected trap code")?;
InstructionData::Trap { opcode, code }
}
InstructionFormat::CondTrap => {
let arg = self.match_value("expected SSA value operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let code = self.match_enum("expected trap code")?;
InstructionData::CondTrap { opcode, arg, code }
}
InstructionFormat::IntCondTrap => {
let cond = self.match_enum("expected intcc condition code")?;
let arg = self.match_value("expected SSA value operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let code = self.match_enum("expected trap code")?;
InstructionData::IntCondTrap {
opcode,
cond,
arg,
code,
}
}
InstructionFormat::FloatCondTrap => {
let cond = self.match_enum("expected floatcc condition code")?;
let arg = self.match_value("expected SSA value operand")?;
self.match_token(Token::Comma, "expected ',' between operands")?;
let code = self.match_enum("expected trap code")?;
InstructionData::FloatCondTrap {
opcode,
cond,
arg,
code,
}
}
};
Ok(idata)
}
}
#[cfg(test)]
mod tests {
use super::*;
use cretonne_codegen::ir::entities::AnyEntity;
use cretonne_codegen::ir::types;
use cretonne_codegen::ir::StackSlotKind;
use cretonne_codegen::ir::{ArgumentExtension, ArgumentPurpose};
use cretonne_codegen::settings::CallConv;
use error::ParseError;
use isaspec::IsaSpec;
use testfile::{Comment, Details};
#[test]
fn argument_type() {
let mut p = Parser::new("i32 sext");
let arg = p.parse_abi_param(None).unwrap();
assert_eq!(arg.value_type, types::I32);
assert_eq!(arg.extension, ArgumentExtension::Sext);
assert_eq!(arg.purpose, ArgumentPurpose::Normal);
let ParseError { location, message } = p.parse_abi_param(None).unwrap_err();
assert_eq!(location.line_number, 1);
assert_eq!(message, "expected parameter type");
}
#[test]
fn aliases() {
let (func, details) = Parser::new(
"function %qux() system_v {
ebb0:
v4 = iconst.i8 6
v3 -> v4
v1 = iadd_imm v3, 17
}",
).parse_function(None)
.unwrap();
assert_eq!(func.name.to_string(), "%qux");
let v4 = details.map.lookup_str("v4").unwrap();
assert_eq!(v4.to_string(), "v4");
let v3 = details.map.lookup_str("v3").unwrap();
assert_eq!(v3.to_string(), "v3");
match v3 {
AnyEntity::Value(v3) => {
let aliased_to = func.dfg.resolve_aliases(v3);
assert_eq!(aliased_to.to_string(), "v4");
}
_ => panic!("expected value: {}", v3),
}
}
#[test]
fn signature() {
let sig = Parser::new("()system_v").parse_signature(None).unwrap();
assert_eq!(sig.params.len(), 0);
assert_eq!(sig.returns.len(), 0);
assert_eq!(sig.call_conv, CallConv::SystemV);
let sig2 = Parser::new("(i8 uext, f32, f64, i32 sret) -> i32 sext, f64 baldrdash")
.parse_signature(None)
.unwrap();
assert_eq!(
sig2.to_string(),
"(i8 uext, f32, f64, i32 sret) -> i32 sext, f64 baldrdash"
);
assert_eq!(sig2.call_conv, CallConv::Baldrdash);
// Old-style signature without a calling convention.
assert_eq!(
Parser::new("()").parse_signature(None).unwrap().to_string(),
"() fast"
);
assert_eq!(
Parser::new("() notacc")
.parse_signature(None)
.unwrap_err()
.to_string(),
"1: unknown calling convention: notacc"
);
// `void` is not recognized as a type by the lexer. It should not appear in files.
assert_eq!(
Parser::new("() -> void")
.parse_signature(None)
.unwrap_err()
.to_string(),
"1: expected parameter type"
);
assert_eq!(
Parser::new("i8 -> i8")
.parse_signature(None)
.unwrap_err()
.to_string(),
"1: expected function signature: ( args... )"
);
assert_eq!(
Parser::new("(i8 -> i8")
.parse_signature(None)
.unwrap_err()
.to_string(),
"1: expected ')' after function arguments"
);
}
#[test]
fn stack_slot_decl() {
let (func, _) = Parser::new(
"function %foo() system_v {
ss3 = incoming_arg 13
ss1 = spill_slot 1
}",
).parse_function(None)
.unwrap();
assert_eq!(func.name.to_string(), "%foo");
let mut iter = func.stack_slots.keys();
let _ss0 = iter.next().unwrap();
let ss1 = iter.next().unwrap();
assert_eq!(ss1.to_string(), "ss1");
assert_eq!(func.stack_slots[ss1].kind, StackSlotKind::SpillSlot);
assert_eq!(func.stack_slots[ss1].size, 1);
let _ss2 = iter.next().unwrap();
let ss3 = iter.next().unwrap();
assert_eq!(ss3.to_string(), "ss3");
assert_eq!(func.stack_slots[ss3].kind, StackSlotKind::IncomingArg);
assert_eq!(func.stack_slots[ss3].size, 13);
assert_eq!(iter.next(), None);
// Catch duplicate definitions.
assert_eq!(
Parser::new(
"function %bar() system_v {
ss1 = spill_slot 13
ss1 = spill_slot 1
}",
).parse_function(None)
.unwrap_err()
.to_string(),
"3: duplicate entity: ss1"
);
}
#[test]
fn ebb_header() {
let (func, _) = Parser::new(
"function %ebbs() system_v {
ebb0:
ebb4(v3: i32):
}",
).parse_function(None)
.unwrap();
assert_eq!(func.name.to_string(), "%ebbs");
let mut ebbs = func.layout.ebbs();
let ebb0 = ebbs.next().unwrap();
assert_eq!(func.dfg.ebb_params(ebb0), &[]);
let ebb4 = ebbs.next().unwrap();
let ebb4_args = func.dfg.ebb_params(ebb4);
assert_eq!(ebb4_args.len(), 1);
assert_eq!(func.dfg.value_type(ebb4_args[0]), types::I32);
}
#[test]
fn comments() {
let (func, Details { comments, .. }) = Parser::new(
"; before
function %comment() system_v { ; decl
ss10 = outgoing_arg 13 ; stackslot.
; Still stackslot.
jt10 = jump_table ebb0
; Jumptable
ebb0: ; Basic block
trap user42; Instruction
} ; Trailing.
; More trailing.",
).parse_function(None)
.unwrap();
assert_eq!(func.name.to_string(), "%comment");
assert_eq!(comments.len(), 8); // no 'before' comment.
assert_eq!(
comments[0],
Comment {
entity: AnyEntity::Function,
text: "; decl",
}
);
assert_eq!(comments[1].entity.to_string(), "ss10");
assert_eq!(comments[2].entity.to_string(), "ss10");
assert_eq!(comments[2].text, "; Still stackslot.");
assert_eq!(comments[3].entity.to_string(), "jt10");
assert_eq!(comments[3].text, "; Jumptable");
assert_eq!(comments[4].entity.to_string(), "ebb0");
assert_eq!(comments[4].text, "; Basic block");
assert_eq!(comments[5].entity.to_string(), "inst0");
assert_eq!(comments[5].text, "; Instruction");
assert_eq!(comments[6].entity, AnyEntity::Function);
assert_eq!(comments[7].entity, AnyEntity::Function);
}
#[test]
fn test_file() {
let tf = parse_test(
"; before
test cfg option=5
test verify
set enable_float=false
; still preamble
function %comment() system_v {}",
).unwrap();
assert_eq!(tf.commands.len(), 2);
assert_eq!(tf.commands[0].command, "cfg");
assert_eq!(tf.commands[1].command, "verify");
match tf.isa_spec {
IsaSpec::None(s) => {
assert!(s.enable_verifier());
assert!(!s.enable_float());
}
_ => panic!("unexpected ISAs"),
}
assert_eq!(tf.preamble_comments.len(), 2);
assert_eq!(tf.preamble_comments[0].text, "; before");
assert_eq!(tf.preamble_comments[1].text, "; still preamble");
assert_eq!(tf.functions.len(), 1);
assert_eq!(tf.functions[0].0.name.to_string(), "%comment");
}
#[test]
#[cfg(build_riscv)]
fn isa_spec() {
assert!(
parse_test(
"target
function %foo() system_v {}",
).is_err()
);
assert!(
parse_test(
"target riscv32
set enable_float=false
function %foo() system_v {}",
).is_err()
);
match parse_test(
"set enable_float=false
isa riscv
function %foo() system_v {}",
).unwrap()
.isa_spec
{
IsaSpec::None(_) => panic!("Expected some ISA"),
IsaSpec::Some(v) => {
assert_eq!(v.len(), 1);
assert_eq!(v[0].name(), "riscv");
}
}
}
#[test]
fn user_function_name() {
// Valid characters in the name:
let func = Parser::new(
"function u1:2() system_v {
ebb0:
trap int_divz
}",
).parse_function(None)
.unwrap()
.0;
assert_eq!(func.name.to_string(), "u1:2");
// Invalid characters in the name:
let mut parser = Parser::new(
"function u123:abc() system_v {
ebb0:
trap stk_ovf
}",
);
assert!(parser.parse_function(None).is_err());
// Incomplete function names should not be valid:
let mut parser = Parser::new(
"function u() system_v {
ebb0:
trap int_ovf
}",
);
assert!(parser.parse_function(None).is_err());
let mut parser = Parser::new(
"function u0() system_v {
ebb0:
trap int_ovf
}",
);
assert!(parser.parse_function(None).is_err());
let mut parser = Parser::new(
"function u0:() system_v {
ebb0:
trap int_ovf
}",
);
assert!(parser.parse_function(None).is_err());
}
}