* Load generated trampolines into jitdump when profiling This commit updates the jitdump profiler to generate JIT profiling records for generated trampolines in a wasm module in addition to the functions already in a module. It's also updated to learn about trampolines generated via `Func::new` and friends. These trampolines were all not previously registered meaning that stack traces with these pc values would be confusing to see in the profile output. While the names aren't the best it should at least be more clear than before if a function is hot! * Fix more builds
576 lines
22 KiB
Rust
576 lines
22 KiB
Rust
//! Define the `instantiate` function, which takes a byte array containing an
|
|
//! encoded wasm module and returns a live wasm instance. Also, define
|
|
//! `CompiledModule` to allow compiling and instantiating to be done as separate
|
|
//! steps.
|
|
|
|
use crate::code_memory::CodeMemory;
|
|
use crate::debug::create_gdbjit_image;
|
|
use crate::{MmapVec, ProfilingAgent};
|
|
use anyhow::{anyhow, Context, Result};
|
|
use object::write::{Object, StandardSegment};
|
|
use object::{File, Object as _, ObjectSection, SectionKind};
|
|
use serde::{Deserialize, Serialize};
|
|
use std::ops::Range;
|
|
use std::sync::Arc;
|
|
use thiserror::Error;
|
|
use wasmtime_environ::{
|
|
CompileError, DefinedFuncIndex, FunctionInfo, InstanceSignature, InstanceTypeIndex, Module,
|
|
ModuleSignature, ModuleTranslation, ModuleTypeIndex, PrimaryMap, SignatureIndex,
|
|
StackMapInformation, Trampoline, Tunables, WasmFuncType, ELF_WASMTIME_ADDRMAP,
|
|
ELF_WASMTIME_TRAPS,
|
|
};
|
|
use wasmtime_runtime::{GdbJitImageRegistration, InstantiationError, VMFunctionBody, VMTrampoline};
|
|
|
|
/// This is the name of the section in the final ELF image which contains
|
|
/// concatenated data segments from the original wasm module.
|
|
///
|
|
/// This section is simply a list of bytes and ranges into this section are
|
|
/// stored within a `Module` for each data segment. Memory initialization and
|
|
/// passive segment management all index data directly located in this section.
|
|
///
|
|
/// Note that this implementation does not afford any method of leveraging the
|
|
/// `data.drop` instruction to actually release the data back to the OS. The
|
|
/// data section is simply always present in the ELF image. If we wanted to
|
|
/// release the data it's probably best to figure out what the best
|
|
/// implementation is for it at the time given a particular set of constraints.
|
|
const ELF_WASM_DATA: &'static str = ".rodata.wasm";
|
|
|
|
/// This is the name of the section in the final ELF image which contains a
|
|
/// `bincode`-encoded `CompiledModuleInfo`.
|
|
///
|
|
/// This section is optionally decoded in `CompiledModule::from_artifacts`
|
|
/// depending on whether or not a `CompiledModuleInfo` is already available. In
|
|
/// cases like `Module::new` where compilation directly leads into consumption,
|
|
/// it's available. In cases like `Module::deserialize` this section must be
|
|
/// decoded to get all the relevant information.
|
|
const ELF_WASMTIME_INFO: &'static str = ".wasmtime.info";
|
|
|
|
/// An error condition while setting up a wasm instance, be it validation,
|
|
/// compilation, or instantiation.
|
|
#[derive(Error, Debug)]
|
|
pub enum SetupError {
|
|
/// The module did not pass validation.
|
|
#[error("Validation error: {0}")]
|
|
Validate(String),
|
|
|
|
/// A wasm translation error occurred.
|
|
#[error("WebAssembly failed to compile")]
|
|
Compile(#[from] CompileError),
|
|
|
|
/// Some runtime resource was unavailable or insufficient, or the start function
|
|
/// trapped.
|
|
#[error("Instantiation failed during setup")]
|
|
Instantiate(#[from] InstantiationError),
|
|
|
|
/// Debug information generation error occurred.
|
|
#[error("Debug information error")]
|
|
DebugInfo(#[from] anyhow::Error),
|
|
}
|
|
|
|
/// Secondary in-memory results of compilation.
|
|
///
|
|
/// This opaque structure can be optionally passed back to
|
|
/// `CompiledModule::from_artifacts` to avoid decoding extra information there.
|
|
#[derive(Serialize, Deserialize)]
|
|
pub struct CompiledModuleInfo {
|
|
/// Type information about the compiled WebAssembly module.
|
|
module: Module,
|
|
|
|
/// Metadata about each compiled function.
|
|
funcs: PrimaryMap<DefinedFuncIndex, FunctionInfo>,
|
|
|
|
/// The trampolines compiled into the text section and their start/length
|
|
/// relative to the start of the text section.
|
|
trampolines: Vec<Trampoline>,
|
|
|
|
/// General compilation metadata.
|
|
meta: Metadata,
|
|
}
|
|
|
|
#[derive(Serialize, Deserialize)]
|
|
struct Metadata {
|
|
/// Whether or not native debug information is available in `obj`
|
|
native_debug_info_present: bool,
|
|
|
|
/// Whether or not the original wasm module contained debug information that
|
|
/// we skipped and did not parse.
|
|
has_unparsed_debuginfo: bool,
|
|
|
|
/// Offset in the original wasm file to the code section.
|
|
code_section_offset: u64,
|
|
|
|
/// Whether or not custom wasm-specific dwarf sections were inserted into
|
|
/// the ELF image.
|
|
///
|
|
/// Note that even if this flag is `true` sections may be missing if they
|
|
/// weren't found in the original wasm module itself.
|
|
has_wasm_debuginfo: bool,
|
|
}
|
|
|
|
/// Finishes compilation of the `translation` specified, producing the final
|
|
/// compilation artifact and auxiliary information.
|
|
///
|
|
/// This function will consume the final results of compiling a wasm module
|
|
/// and finish the ELF image in-progress as part of `obj` by appending any
|
|
/// compiler-agnostic sections.
|
|
///
|
|
/// The auxiliary `CompiledModuleInfo` structure returned here has also been
|
|
/// serialized into the object returned, but if the caller will quickly
|
|
/// turn-around and invoke `CompiledModule::from_artifacts` after this then the
|
|
/// information can be passed to that method to avoid extra deserialization.
|
|
/// This is done to avoid a serialize-then-deserialize for API calls like
|
|
/// `Module::new` where the compiled module is immediately going to be used.
|
|
///
|
|
/// The `MmapVec` returned here contains the compiled image and resides in
|
|
/// mmap'd memory for easily switching permissions to executable afterwards.
|
|
pub fn finish_compile(
|
|
translation: ModuleTranslation<'_>,
|
|
mut obj: Object,
|
|
funcs: PrimaryMap<DefinedFuncIndex, FunctionInfo>,
|
|
trampolines: Vec<Trampoline>,
|
|
tunables: &Tunables,
|
|
) -> Result<(MmapVec, CompiledModuleInfo)> {
|
|
let ModuleTranslation {
|
|
mut module,
|
|
debuginfo,
|
|
has_unparsed_debuginfo,
|
|
data,
|
|
passive_data,
|
|
..
|
|
} = translation;
|
|
|
|
// Place all data from the wasm module into a section which will the
|
|
// source of the data later at runtime.
|
|
let data_id = obj.add_section(
|
|
obj.segment_name(StandardSegment::Data).to_vec(),
|
|
ELF_WASM_DATA.as_bytes().to_vec(),
|
|
SectionKind::ReadOnlyData,
|
|
);
|
|
let mut total_data_len = 0;
|
|
for data in data.iter() {
|
|
obj.append_section_data(data_id, data, 1);
|
|
total_data_len += data.len();
|
|
}
|
|
for data in passive_data.iter() {
|
|
obj.append_section_data(data_id, data, 1);
|
|
}
|
|
|
|
// Update passive data offsets since they're all located after the other
|
|
// data in the module.
|
|
for (_, range) in module.passive_data_map.iter_mut() {
|
|
range.start = range.start.checked_add(total_data_len as u32).unwrap();
|
|
range.end = range.end.checked_add(total_data_len as u32).unwrap();
|
|
}
|
|
|
|
// Insert the wasm raw wasm-based debuginfo into the output, if
|
|
// requested. Note that this is distinct from the native debuginfo
|
|
// possibly generated by the native compiler, hence these sections
|
|
// getting wasm-specific names.
|
|
if tunables.parse_wasm_debuginfo {
|
|
push_debug(&mut obj, &debuginfo.dwarf.debug_abbrev);
|
|
push_debug(&mut obj, &debuginfo.dwarf.debug_addr);
|
|
push_debug(&mut obj, &debuginfo.dwarf.debug_aranges);
|
|
push_debug(&mut obj, &debuginfo.dwarf.debug_info);
|
|
push_debug(&mut obj, &debuginfo.dwarf.debug_line);
|
|
push_debug(&mut obj, &debuginfo.dwarf.debug_line_str);
|
|
push_debug(&mut obj, &debuginfo.dwarf.debug_str);
|
|
push_debug(&mut obj, &debuginfo.dwarf.debug_str_offsets);
|
|
push_debug(&mut obj, &debuginfo.debug_ranges);
|
|
push_debug(&mut obj, &debuginfo.debug_rnglists);
|
|
}
|
|
|
|
// Encode a `CompiledModuleInfo` structure into the `ELF_WASMTIME_INFO`
|
|
// section of this image. This is not necessary when the returned module
|
|
// is never serialized to disk, which is also why we return a copy of
|
|
// the `CompiledModuleInfo` structure to the caller in case they don't
|
|
// want to deserialize this value immediately afterwards from the
|
|
// section. Otherwise, though, this is necessary to reify a `Module` on
|
|
// the other side from disk-serialized artifacts in
|
|
// `Module::deserialize` (a Wasmtime API).
|
|
let info_id = obj.add_section(
|
|
obj.segment_name(StandardSegment::Data).to_vec(),
|
|
ELF_WASMTIME_INFO.as_bytes().to_vec(),
|
|
SectionKind::ReadOnlyData,
|
|
);
|
|
let mut bytes = Vec::new();
|
|
let info = CompiledModuleInfo {
|
|
module,
|
|
funcs,
|
|
trampolines,
|
|
meta: Metadata {
|
|
native_debug_info_present: tunables.generate_native_debuginfo,
|
|
has_unparsed_debuginfo,
|
|
code_section_offset: debuginfo.wasm_file.code_section_offset,
|
|
has_wasm_debuginfo: tunables.parse_wasm_debuginfo,
|
|
},
|
|
};
|
|
bincode::serialize_into(&mut bytes, &info)?;
|
|
obj.append_section_data(info_id, &bytes, 1);
|
|
|
|
return Ok((MmapVec::from_obj(obj)?, info));
|
|
|
|
fn push_debug<'a, T>(obj: &mut Object, section: &T)
|
|
where
|
|
T: gimli::Section<gimli::EndianSlice<'a, gimli::LittleEndian>>,
|
|
{
|
|
let data = section.reader().slice();
|
|
if data.is_empty() {
|
|
return;
|
|
}
|
|
let section_id = obj.add_section(
|
|
obj.segment_name(StandardSegment::Debug).to_vec(),
|
|
wasm_section_name(T::id()).as_bytes().to_vec(),
|
|
SectionKind::Debug,
|
|
);
|
|
obj.append_section_data(section_id, data, 1);
|
|
}
|
|
}
|
|
|
|
/// This is intended to mirror the type tables in `wasmtime_environ`, except that
|
|
/// it doesn't store the native signatures which are no longer needed past compilation.
|
|
#[derive(Serialize, Deserialize)]
|
|
#[allow(missing_docs)]
|
|
pub struct TypeTables {
|
|
pub wasm_signatures: PrimaryMap<SignatureIndex, WasmFuncType>,
|
|
pub module_signatures: PrimaryMap<ModuleTypeIndex, ModuleSignature>,
|
|
pub instance_signatures: PrimaryMap<InstanceTypeIndex, InstanceSignature>,
|
|
}
|
|
|
|
/// A compiled wasm module, ready to be instantiated.
|
|
pub struct CompiledModule {
|
|
wasm_data: Range<usize>,
|
|
address_map_data: Range<usize>,
|
|
trap_data: Range<usize>,
|
|
module: Arc<Module>,
|
|
funcs: PrimaryMap<DefinedFuncIndex, FunctionInfo>,
|
|
trampolines: Vec<Trampoline>,
|
|
meta: Metadata,
|
|
code: Range<usize>,
|
|
code_memory: CodeMemory,
|
|
dbg_jit_registration: Option<GdbJitImageRegistration>,
|
|
}
|
|
|
|
impl CompiledModule {
|
|
/// Creates `CompiledModule` directly from a precompiled artifact.
|
|
///
|
|
/// The `mmap` argument is expecte to be the result of a previous call to
|
|
/// `finish_compile` above. This is an ELF image, at this time, which
|
|
/// contains all necessary information to create a `CompiledModule` from a
|
|
/// compilation.
|
|
///
|
|
/// This method also takes `info`, an optionally-provided deserialization of
|
|
/// the artifacts' compilation metadata section. If this information is not
|
|
/// provided (e.g. it's set to `None`) then the information will be
|
|
/// deserialized from the image of the compilation artifacts. Otherwise it
|
|
/// will be assumed to be what would otherwise happen if the section were to
|
|
/// be deserialized.
|
|
///
|
|
/// The `profiler` argument here is used to inform JIT profiling runtimes
|
|
/// about new code that is loaded.
|
|
pub fn from_artifacts(
|
|
mmap: MmapVec,
|
|
info: Option<CompiledModuleInfo>,
|
|
profiler: &dyn ProfilingAgent,
|
|
) -> Result<Arc<Self>> {
|
|
// Transfer ownership of `obj` to a `CodeMemory` object which will
|
|
// manage permissions, such as the executable bit. Once it's located
|
|
// there we also publish it for being able to execute. Note that this
|
|
// step will also resolve pending relocations in the compiled image.
|
|
let mut code_memory = CodeMemory::new(mmap);
|
|
let code = code_memory
|
|
.publish()
|
|
.context("failed to publish code memory")?;
|
|
|
|
let section = |name: &str| {
|
|
code.obj
|
|
.section_by_name(name)
|
|
.and_then(|s| s.data().ok())
|
|
.ok_or_else(|| anyhow!("missing section `{}` in compilation artifacts", name))
|
|
};
|
|
|
|
// Acquire the `CompiledModuleInfo`, either because it was passed in or
|
|
// by deserializing it from the compiliation image.
|
|
let info = match info {
|
|
Some(info) => info,
|
|
None => bincode::deserialize(section(ELF_WASMTIME_INFO)?)
|
|
.context("failed to deserialize wasmtime module info")?,
|
|
};
|
|
|
|
let mut ret = Self {
|
|
meta: info.meta,
|
|
module: Arc::new(info.module),
|
|
funcs: info.funcs,
|
|
trampolines: info.trampolines,
|
|
wasm_data: subslice_range(section(ELF_WASM_DATA)?, code.mmap),
|
|
address_map_data: subslice_range(section(ELF_WASMTIME_ADDRMAP)?, code.mmap),
|
|
trap_data: subslice_range(section(ELF_WASMTIME_TRAPS)?, code.mmap),
|
|
code: subslice_range(code.text, code.mmap),
|
|
dbg_jit_registration: None,
|
|
code_memory,
|
|
};
|
|
ret.register_debug_and_profiling(profiler)?;
|
|
|
|
Ok(Arc::new(ret))
|
|
}
|
|
|
|
fn register_debug_and_profiling(&mut self, profiler: &dyn ProfilingAgent) -> Result<()> {
|
|
// Register GDB JIT images; initialize profiler and load the wasm module.
|
|
if self.meta.native_debug_info_present {
|
|
let code = self.code();
|
|
let bytes = create_gdbjit_image(self.mmap().to_vec(), (code.as_ptr(), code.len()))
|
|
.map_err(SetupError::DebugInfo)?;
|
|
profiler.module_load(self, Some(&bytes));
|
|
let reg = GdbJitImageRegistration::register(bytes);
|
|
self.dbg_jit_registration = Some(reg);
|
|
} else {
|
|
profiler.module_load(self, None);
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Returns the underlying memory which contains the compiled module's
|
|
/// image.
|
|
pub fn mmap(&self) -> &MmapVec {
|
|
self.code_memory.mmap()
|
|
}
|
|
|
|
/// Returns the concatenated list of all data associated with this wasm
|
|
/// module.
|
|
///
|
|
/// This is used for initialization of memories and all data ranges stored
|
|
/// in a `Module` are relative to the slice returned here.
|
|
pub fn wasm_data(&self) -> &[u8] {
|
|
&self.mmap()[self.wasm_data.clone()]
|
|
}
|
|
|
|
/// Returns the encoded address map section used to pass to
|
|
/// `wasmtime_environ::lookup_file_pos`.
|
|
pub fn address_map_data(&self) -> &[u8] {
|
|
&self.mmap()[self.address_map_data.clone()]
|
|
}
|
|
|
|
/// Returns the encoded trap information for this compiled image.
|
|
///
|
|
/// For more information see `wasmtime_environ::trap_encoding`.
|
|
pub fn trap_data(&self) -> &[u8] {
|
|
&self.mmap()[self.trap_data.clone()]
|
|
}
|
|
|
|
/// Returns the text section of the ELF image for this compiled module.
|
|
///
|
|
/// This memory should have the read/execute permissions.
|
|
pub fn code(&self) -> &[u8] {
|
|
&self.mmap()[self.code.clone()]
|
|
}
|
|
|
|
/// Return a reference-counting pointer to a module.
|
|
pub fn module(&self) -> &Arc<Module> {
|
|
&self.module
|
|
}
|
|
|
|
/// Returns the `FunctionInfo` map for all defined functions.
|
|
pub fn functions(&self) -> &PrimaryMap<DefinedFuncIndex, FunctionInfo> {
|
|
&self.funcs
|
|
}
|
|
|
|
/// Return a reference to a mutable module (if possible).
|
|
pub fn module_mut(&mut self) -> Option<&mut Module> {
|
|
Arc::get_mut(&mut self.module)
|
|
}
|
|
|
|
/// Returns the map of all finished JIT functions compiled for this module
|
|
#[inline]
|
|
pub fn finished_functions(
|
|
&self,
|
|
) -> impl ExactSizeIterator<Item = (DefinedFuncIndex, *mut [VMFunctionBody])> + '_ {
|
|
let code = self.code();
|
|
self.funcs.iter().map(move |(i, info)| {
|
|
let func = &code[info.start as usize..][..info.length as usize];
|
|
(
|
|
i,
|
|
std::ptr::slice_from_raw_parts_mut(
|
|
func.as_ptr() as *mut VMFunctionBody,
|
|
func.len(),
|
|
),
|
|
)
|
|
})
|
|
}
|
|
|
|
/// Returns the per-signature trampolines for this module.
|
|
pub fn trampolines(&self) -> impl Iterator<Item = (SignatureIndex, VMTrampoline, usize)> + '_ {
|
|
let code = self.code();
|
|
self.trampolines.iter().map(move |info| {
|
|
(
|
|
info.signature,
|
|
unsafe {
|
|
let ptr = &code[info.start as usize];
|
|
std::mem::transmute::<*const u8, VMTrampoline>(ptr)
|
|
},
|
|
info.length as usize,
|
|
)
|
|
})
|
|
}
|
|
|
|
/// Returns the stack map information for all functions defined in this
|
|
/// module.
|
|
///
|
|
/// The iterator returned iterates over the span of the compiled function in
|
|
/// memory with the stack maps associated with those bytes.
|
|
pub fn stack_maps(
|
|
&self,
|
|
) -> impl Iterator<Item = (*mut [VMFunctionBody], &[StackMapInformation])> {
|
|
self.finished_functions()
|
|
.map(|(_, f)| f)
|
|
.zip(self.funcs.values().map(|f| f.stack_maps.as_slice()))
|
|
}
|
|
|
|
/// Lookups a defined function by a program counter value.
|
|
///
|
|
/// Returns the defined function index and the relative address of
|
|
/// `text_offset` within the function itself.
|
|
pub fn func_by_text_offset(&self, text_offset: usize) -> Option<(DefinedFuncIndex, u32)> {
|
|
let text_offset = text_offset as u64;
|
|
|
|
let index = match self
|
|
.funcs
|
|
.binary_search_values_by_key(&text_offset, |info| {
|
|
debug_assert!(info.length > 0);
|
|
// Return the inclusive "end" of the function
|
|
info.start + u64::from(info.length) - 1
|
|
}) {
|
|
Ok(k) => {
|
|
// Exact match, pc is at the end of this function
|
|
k
|
|
}
|
|
Err(k) => {
|
|
// Not an exact match, k is where `pc` would be "inserted"
|
|
// Since we key based on the end, function `k` might contain `pc`,
|
|
// so we'll validate on the range check below
|
|
k
|
|
}
|
|
};
|
|
|
|
let body = self.funcs.get(index)?;
|
|
let start = body.start;
|
|
let end = body.start + u64::from(body.length);
|
|
|
|
if text_offset < start || end < text_offset {
|
|
return None;
|
|
}
|
|
|
|
Some((index, (text_offset - body.start) as u32))
|
|
}
|
|
|
|
/// Gets the function information for a given function index.
|
|
pub fn func_info(&self, index: DefinedFuncIndex) -> &FunctionInfo {
|
|
self.funcs
|
|
.get(index)
|
|
.expect("defined function should be present")
|
|
}
|
|
|
|
/// Creates a new symbolication context which can be used to further
|
|
/// symbolicate stack traces.
|
|
///
|
|
/// Basically this makes a thing which parses debuginfo and can tell you
|
|
/// what filename and line number a wasm pc comes from.
|
|
pub fn symbolize_context(&self) -> Result<Option<SymbolizeContext<'_>>> {
|
|
use gimli::EndianSlice;
|
|
if !self.meta.has_wasm_debuginfo {
|
|
return Ok(None);
|
|
}
|
|
let obj = File::parse(&self.mmap()[..])
|
|
.context("failed to parse internal ELF file representation")?;
|
|
let dwarf = gimli::Dwarf::load(|id| -> Result<_> {
|
|
let data = obj
|
|
.section_by_name(wasm_section_name(id))
|
|
.and_then(|s| s.data().ok())
|
|
.unwrap_or(&[]);
|
|
Ok(EndianSlice::new(data, gimli::LittleEndian))
|
|
})?;
|
|
let cx = addr2line::Context::from_dwarf(dwarf)
|
|
.context("failed to create addr2line dwarf mapping context")?;
|
|
Ok(Some(SymbolizeContext {
|
|
inner: cx,
|
|
code_section_offset: self.meta.code_section_offset,
|
|
}))
|
|
}
|
|
|
|
/// Returns whether the original wasm module had unparsed debug information
|
|
/// based on the tunables configuration.
|
|
pub fn has_unparsed_debuginfo(&self) -> bool {
|
|
self.meta.has_unparsed_debuginfo
|
|
}
|
|
}
|
|
|
|
type Addr2LineContext<'a> = addr2line::Context<gimli::EndianSlice<'a, gimli::LittleEndian>>;
|
|
|
|
/// A context which contains dwarf debug information to translate program
|
|
/// counters back to filenames and line numbers.
|
|
pub struct SymbolizeContext<'a> {
|
|
inner: Addr2LineContext<'a>,
|
|
code_section_offset: u64,
|
|
}
|
|
|
|
impl<'a> SymbolizeContext<'a> {
|
|
/// Returns access to the [`addr2line::Context`] which can be used to query
|
|
/// frame information with.
|
|
pub fn addr2line(&self) -> &Addr2LineContext<'a> {
|
|
&self.inner
|
|
}
|
|
|
|
/// Returns the offset of the code section in the original wasm file, used
|
|
/// to calculate lookup values into the DWARF.
|
|
pub fn code_section_offset(&self) -> u64 {
|
|
self.code_section_offset
|
|
}
|
|
}
|
|
|
|
/// Returns the range of `inner` within `outer`, such that `outer[range]` is the
|
|
/// same as `inner`.
|
|
///
|
|
/// This method requires that `inner` is a sub-slice of `outer`, and if that
|
|
/// isn't true then this method will panic.
|
|
pub fn subslice_range(inner: &[u8], outer: &[u8]) -> Range<usize> {
|
|
if inner.len() == 0 {
|
|
return 0..0;
|
|
}
|
|
|
|
assert!(outer.as_ptr() <= inner.as_ptr());
|
|
assert!((&inner[inner.len() - 1] as *const _) <= (&outer[outer.len() - 1] as *const _));
|
|
|
|
let start = inner.as_ptr() as usize - outer.as_ptr() as usize;
|
|
start..start + inner.len()
|
|
}
|
|
|
|
/// Returns the Wasmtime-specific section name for dwarf debugging sections.
|
|
///
|
|
/// These sections, if configured in Wasmtime, will contain the original raw
|
|
/// dwarf debugging information found in the wasm file, unmodified. These tables
|
|
/// are then consulted later to convert wasm program counters to original wasm
|
|
/// source filenames/line numbers with `addr2line`.
|
|
fn wasm_section_name(id: gimli::SectionId) -> &'static str {
|
|
use gimli::SectionId::*;
|
|
match id {
|
|
DebugAbbrev => ".debug_abbrev.wasm",
|
|
DebugAddr => ".debug_addr.wasm",
|
|
DebugAranges => ".debug_aranges.wasm",
|
|
DebugFrame => ".debug_frame.wasm",
|
|
EhFrame => ".eh_frame.wasm",
|
|
EhFrameHdr => ".eh_frame_hdr.wasm",
|
|
DebugInfo => ".debug_info.wasm",
|
|
DebugLine => ".debug_line.wasm",
|
|
DebugLineStr => ".debug_line_str.wasm",
|
|
DebugLoc => ".debug_loc.wasm",
|
|
DebugLocLists => ".debug_loc_lists.wasm",
|
|
DebugMacinfo => ".debug_macinfo.wasm",
|
|
DebugMacro => ".debug_macro.wasm",
|
|
DebugPubNames => ".debug_pub_names.wasm",
|
|
DebugPubTypes => ".debug_pub_types.wasm",
|
|
DebugRanges => ".debug_ranges.wasm",
|
|
DebugRngLists => ".debug_rng_lists.wasm",
|
|
DebugStr => ".debug_str.wasm",
|
|
DebugStrOffsets => ".debug_str_offsets.wasm",
|
|
DebugTypes => ".debug_types.wasm",
|
|
}
|
|
}
|