This commit fixes a bug with components by changing how DWARF information from a wasm binary is copied over to the final compiled artifact. Note that this is not the Wasmtime-generated DWARF but rather the native wasm DWARF itself used in backtraces. Previously the wasm dwarf was inserted into sections `.*.wasm` where `*` was `debug_info`, `debug_str`, etc -- one per `gimli::SectionId` as found in the original wasm module. This does not work with components, however, where modules did not correctly separate their debug information into separate sections or otherwise disambiguate. The fix in this commit is to instead smash all the debug information together into one large section and store offsets into that giant section. This is similar to the `name`-section scraping or the trap metadata section where one section contains all the data for all the modules in a component. This simplifies the object file parsing by only looking for one section name and doesn't add all that much complexity to serializing and looking up dwarf information as well.
699 lines
27 KiB
Rust
699 lines
27 KiB
Rust
//! Define the `instantiate` function, which takes a byte array containing an
|
|
//! encoded wasm module and returns a live wasm instance. Also, define
|
|
//! `CompiledModule` to allow compiling and instantiating to be done as separate
|
|
//! steps.
|
|
|
|
use crate::code_memory::CodeMemory;
|
|
use crate::debug::create_gdbjit_image;
|
|
use crate::ProfilingAgent;
|
|
use anyhow::{bail, Context, Error, Result};
|
|
use object::write::{Object, SectionId, StandardSegment, WritableBuffer};
|
|
use object::SectionKind;
|
|
use serde::{Deserialize, Serialize};
|
|
use std::convert::TryFrom;
|
|
use std::ops::Range;
|
|
use std::str;
|
|
use std::sync::Arc;
|
|
use wasmtime_environ::obj;
|
|
use wasmtime_environ::{
|
|
DefinedFuncIndex, FuncIndex, FunctionLoc, MemoryInitialization, Module, ModuleTranslation,
|
|
PrimaryMap, SignatureIndex, StackMapInformation, Tunables, WasmFunctionInfo,
|
|
};
|
|
use wasmtime_runtime::{
|
|
CompiledModuleId, CompiledModuleIdAllocator, GdbJitImageRegistration, MmapVec, VMTrampoline,
|
|
};
|
|
|
|
/// Secondary in-memory results of compilation.
|
|
///
|
|
/// This opaque structure can be optionally passed back to
|
|
/// `CompiledModule::from_artifacts` to avoid decoding extra information there.
|
|
#[derive(Serialize, Deserialize)]
|
|
pub struct CompiledModuleInfo {
|
|
/// Type information about the compiled WebAssembly module.
|
|
module: Module,
|
|
|
|
/// Metadata about each compiled function.
|
|
funcs: PrimaryMap<DefinedFuncIndex, (WasmFunctionInfo, FunctionLoc)>,
|
|
|
|
/// Sorted list, by function index, of names we have for this module.
|
|
func_names: Vec<FunctionName>,
|
|
|
|
/// The trampolines compiled into the text section and their start/length
|
|
/// relative to the start of the text section.
|
|
pub trampolines: Vec<(SignatureIndex, FunctionLoc)>,
|
|
|
|
/// General compilation metadata.
|
|
meta: Metadata,
|
|
}
|
|
|
|
#[derive(Serialize, Deserialize)]
|
|
struct FunctionName {
|
|
idx: FuncIndex,
|
|
offset: u32,
|
|
len: u32,
|
|
}
|
|
|
|
#[derive(Serialize, Deserialize)]
|
|
struct Metadata {
|
|
/// Whether or not native debug information is available in `obj`
|
|
native_debug_info_present: bool,
|
|
|
|
/// Whether or not the original wasm module contained debug information that
|
|
/// we skipped and did not parse.
|
|
has_unparsed_debuginfo: bool,
|
|
|
|
/// Offset in the original wasm file to the code section.
|
|
code_section_offset: u64,
|
|
|
|
/// Whether or not custom wasm-specific dwarf sections were inserted into
|
|
/// the ELF image.
|
|
///
|
|
/// Note that even if this flag is `true` sections may be missing if they
|
|
/// weren't found in the original wasm module itself.
|
|
has_wasm_debuginfo: bool,
|
|
|
|
/// Dwarf sections and the offsets at which they're stored in the
|
|
/// ELF_WASMTIME_DWARF
|
|
dwarf: Vec<(u8, Range<u64>)>,
|
|
}
|
|
|
|
/// Helper structure to create an ELF file as a compilation artifact.
|
|
///
|
|
/// This structure exposes the process which Wasmtime will encode a core wasm
|
|
/// module into an ELF file, notably managing data sections and all that good
|
|
/// business going into the final file.
|
|
pub struct ObjectBuilder<'a> {
|
|
/// The `object`-crate-defined ELF file write we're using.
|
|
obj: Object<'a>,
|
|
|
|
/// General compilation configuration.
|
|
tunables: &'a Tunables,
|
|
|
|
/// The section identifier for "rodata" which is where wasm data segments
|
|
/// will go.
|
|
data: SectionId,
|
|
|
|
/// The section identifier for function name information, or otherwise where
|
|
/// the `name` custom section of wasm is copied into.
|
|
///
|
|
/// This is optional and lazily created on demand.
|
|
names: Option<SectionId>,
|
|
|
|
/// The section identifier for dwarf information copied from the original
|
|
/// wasm files.
|
|
///
|
|
/// This is optional and lazily created on demand.
|
|
dwarf: Option<SectionId>,
|
|
}
|
|
|
|
impl<'a> ObjectBuilder<'a> {
|
|
/// Creates a new builder for the `obj` specified.
|
|
pub fn new(mut obj: Object<'a>, tunables: &'a Tunables) -> ObjectBuilder<'a> {
|
|
let data = obj.add_section(
|
|
obj.segment_name(StandardSegment::Data).to_vec(),
|
|
obj::ELF_WASM_DATA.as_bytes().to_vec(),
|
|
SectionKind::ReadOnlyData,
|
|
);
|
|
ObjectBuilder {
|
|
obj,
|
|
tunables,
|
|
data,
|
|
names: None,
|
|
dwarf: None,
|
|
}
|
|
}
|
|
|
|
/// Completes compilation of the `translation` specified, inserting
|
|
/// everything necessary into the `Object` being built.
|
|
///
|
|
/// This function will consume the final results of compiling a wasm module
|
|
/// and finish the ELF image in-progress as part of `self.obj` by appending
|
|
/// any compiler-agnostic sections.
|
|
///
|
|
/// The auxiliary `CompiledModuleInfo` structure returned here has also been
|
|
/// serialized into the object returned, but if the caller will quickly
|
|
/// turn-around and invoke `CompiledModule::from_artifacts` after this then
|
|
/// the information can be passed to that method to avoid extra
|
|
/// deserialization. This is done to avoid a serialize-then-deserialize for
|
|
/// API calls like `Module::new` where the compiled module is immediately
|
|
/// going to be used.
|
|
///
|
|
/// The various arguments here are:
|
|
///
|
|
/// * `translation` - the core wasm translation that's being completed.
|
|
///
|
|
/// * `funcs` - compilation metadata about functions within the translation
|
|
/// as well as where the functions are located in the text section.
|
|
///
|
|
/// * `trampolines` - list of all trampolines necessary for this module
|
|
/// and where they're located in the text section.
|
|
///
|
|
/// Returns the `CompiledModuleInfo` corresopnding to this core wasm module
|
|
/// as a result of this append operation. This is then serialized into the
|
|
/// final artifact by the caller.
|
|
pub fn append(
|
|
&mut self,
|
|
translation: ModuleTranslation<'_>,
|
|
funcs: PrimaryMap<DefinedFuncIndex, (WasmFunctionInfo, FunctionLoc)>,
|
|
trampolines: Vec<(SignatureIndex, FunctionLoc)>,
|
|
) -> Result<CompiledModuleInfo> {
|
|
let ModuleTranslation {
|
|
mut module,
|
|
debuginfo,
|
|
has_unparsed_debuginfo,
|
|
data,
|
|
data_align,
|
|
passive_data,
|
|
..
|
|
} = translation;
|
|
|
|
// Place all data from the wasm module into a section which will the
|
|
// source of the data later at runtime. This additionally keeps track of
|
|
// the offset of
|
|
let mut total_data_len = 0;
|
|
let data_offset = self
|
|
.obj
|
|
.append_section_data(self.data, &[], data_align.unwrap_or(1));
|
|
for (i, data) in data.iter().enumerate() {
|
|
// The first data segment has its alignment specified as the alignment
|
|
// for the entire section, but everything afterwards is adjacent so it
|
|
// has alignment of 1.
|
|
let align = if i == 0 { data_align.unwrap_or(1) } else { 1 };
|
|
self.obj.append_section_data(self.data, data, align);
|
|
total_data_len += data.len();
|
|
}
|
|
for data in passive_data.iter() {
|
|
self.obj.append_section_data(self.data, data, 1);
|
|
}
|
|
|
|
// If any names are present in the module then the `ELF_NAME_DATA` section
|
|
// is create and appended.
|
|
let mut func_names = Vec::new();
|
|
if debuginfo.name_section.func_names.len() > 0 {
|
|
let name_id = *self.names.get_or_insert_with(|| {
|
|
self.obj.add_section(
|
|
self.obj.segment_name(StandardSegment::Data).to_vec(),
|
|
obj::ELF_NAME_DATA.as_bytes().to_vec(),
|
|
SectionKind::ReadOnlyData,
|
|
)
|
|
});
|
|
let mut sorted_names = debuginfo.name_section.func_names.iter().collect::<Vec<_>>();
|
|
sorted_names.sort_by_key(|(idx, _name)| *idx);
|
|
for (idx, name) in sorted_names {
|
|
let offset = self.obj.append_section_data(name_id, name.as_bytes(), 1);
|
|
let offset = match u32::try_from(offset) {
|
|
Ok(offset) => offset,
|
|
Err(_) => bail!("name section too large (> 4gb)"),
|
|
};
|
|
let len = u32::try_from(name.len()).unwrap();
|
|
func_names.push(FunctionName {
|
|
idx: *idx,
|
|
offset,
|
|
len,
|
|
});
|
|
}
|
|
}
|
|
|
|
// Data offsets in `MemoryInitialization` are offsets within the
|
|
// `translation.data` list concatenated which is now present in the data
|
|
// segment that's appended to the object. Increase the offsets by
|
|
// `self.data_size` to account for any previously added module.
|
|
let data_offset = u32::try_from(data_offset).unwrap();
|
|
match &mut module.memory_initialization {
|
|
MemoryInitialization::Segmented(list) => {
|
|
for segment in list {
|
|
segment.data.start = segment.data.start.checked_add(data_offset).unwrap();
|
|
segment.data.end = segment.data.end.checked_add(data_offset).unwrap();
|
|
}
|
|
}
|
|
MemoryInitialization::Static { map } => {
|
|
for (_, segment) in map {
|
|
if let Some(segment) = segment {
|
|
segment.data.start = segment.data.start.checked_add(data_offset).unwrap();
|
|
segment.data.end = segment.data.end.checked_add(data_offset).unwrap();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Data offsets for passive data are relative to the start of
|
|
// `translation.passive_data` which was appended to the data segment
|
|
// of this object, after active data in `translation.data`. Update the
|
|
// offsets to account prior modules added in addition to active data.
|
|
let data_offset = data_offset + u32::try_from(total_data_len).unwrap();
|
|
for (_, range) in module.passive_data_map.iter_mut() {
|
|
range.start = range.start.checked_add(data_offset).unwrap();
|
|
range.end = range.end.checked_add(data_offset).unwrap();
|
|
}
|
|
|
|
// Insert the wasm raw wasm-based debuginfo into the output, if
|
|
// requested. Note that this is distinct from the native debuginfo
|
|
// possibly generated by the native compiler, hence these sections
|
|
// getting wasm-specific names.
|
|
let mut dwarf = Vec::new();
|
|
if self.tunables.parse_wasm_debuginfo {
|
|
self.push_debug(&mut dwarf, &debuginfo.dwarf.debug_abbrev);
|
|
self.push_debug(&mut dwarf, &debuginfo.dwarf.debug_addr);
|
|
self.push_debug(&mut dwarf, &debuginfo.dwarf.debug_aranges);
|
|
self.push_debug(&mut dwarf, &debuginfo.dwarf.debug_info);
|
|
self.push_debug(&mut dwarf, &debuginfo.dwarf.debug_line);
|
|
self.push_debug(&mut dwarf, &debuginfo.dwarf.debug_line_str);
|
|
self.push_debug(&mut dwarf, &debuginfo.dwarf.debug_str);
|
|
self.push_debug(&mut dwarf, &debuginfo.dwarf.debug_str_offsets);
|
|
self.push_debug(&mut dwarf, &debuginfo.debug_ranges);
|
|
self.push_debug(&mut dwarf, &debuginfo.debug_rnglists);
|
|
}
|
|
// Sort this for binary-search-lookup later in `symbolize_context`.
|
|
dwarf.sort_by_key(|(id, _)| *id);
|
|
|
|
Ok(CompiledModuleInfo {
|
|
module,
|
|
funcs,
|
|
trampolines,
|
|
func_names,
|
|
meta: Metadata {
|
|
native_debug_info_present: self.tunables.generate_native_debuginfo,
|
|
has_unparsed_debuginfo,
|
|
code_section_offset: debuginfo.wasm_file.code_section_offset,
|
|
has_wasm_debuginfo: self.tunables.parse_wasm_debuginfo,
|
|
dwarf,
|
|
},
|
|
})
|
|
}
|
|
|
|
fn push_debug<'b, T>(&mut self, dwarf: &mut Vec<(u8, Range<u64>)>, section: &T)
|
|
where
|
|
T: gimli::Section<gimli::EndianSlice<'b, gimli::LittleEndian>>,
|
|
{
|
|
let data = section.reader().slice();
|
|
if data.is_empty() {
|
|
return;
|
|
}
|
|
let section_id = *self.dwarf.get_or_insert_with(|| {
|
|
self.obj.add_section(
|
|
self.obj.segment_name(StandardSegment::Debug).to_vec(),
|
|
obj::ELF_WASMTIME_DWARF.as_bytes().to_vec(),
|
|
SectionKind::Debug,
|
|
)
|
|
});
|
|
let offset = self.obj.append_section_data(section_id, data, 1);
|
|
dwarf.push((T::id() as u8, offset..offset + data.len() as u64));
|
|
}
|
|
|
|
/// Creates the `ELF_WASMTIME_INFO` section from the given serializable data
|
|
/// structure.
|
|
pub fn serialize_info<T>(&mut self, info: &T)
|
|
where
|
|
T: serde::Serialize,
|
|
{
|
|
let section = self.obj.add_section(
|
|
self.obj.segment_name(StandardSegment::Data).to_vec(),
|
|
obj::ELF_WASMTIME_INFO.as_bytes().to_vec(),
|
|
SectionKind::ReadOnlyData,
|
|
);
|
|
let data = bincode::serialize(info).unwrap();
|
|
self.obj.set_section_data(section, data, 1);
|
|
}
|
|
|
|
/// Creates a new `MmapVec` from `self.`
|
|
///
|
|
/// The returned `MmapVec` will contain the serialized version of `self`
|
|
/// and is sized appropriately to the exact size of the object serialized.
|
|
pub fn finish(self) -> Result<MmapVec> {
|
|
let mut result = ObjectMmap::default();
|
|
return match self.obj.emit(&mut result) {
|
|
Ok(()) => {
|
|
assert!(result.mmap.is_some(), "no reserve");
|
|
let mmap = result.mmap.expect("reserve not called");
|
|
assert_eq!(mmap.len(), result.len);
|
|
Ok(mmap)
|
|
}
|
|
Err(e) => match result.err.take() {
|
|
Some(original) => Err(original.context(e)),
|
|
None => Err(e.into()),
|
|
},
|
|
};
|
|
|
|
/// Helper struct to implement the `WritableBuffer` trait from the `object`
|
|
/// crate.
|
|
///
|
|
/// This enables writing an object directly into an mmap'd memory so it's
|
|
/// immediately usable for execution after compilation. This implementation
|
|
/// relies on a call to `reserve` happening once up front with all the needed
|
|
/// data, and the mmap internally does not attempt to grow afterwards.
|
|
#[derive(Default)]
|
|
struct ObjectMmap {
|
|
mmap: Option<MmapVec>,
|
|
len: usize,
|
|
err: Option<Error>,
|
|
}
|
|
|
|
impl WritableBuffer for ObjectMmap {
|
|
fn len(&self) -> usize {
|
|
self.len
|
|
}
|
|
|
|
fn reserve(&mut self, additional: usize) -> Result<(), ()> {
|
|
assert!(self.mmap.is_none(), "cannot reserve twice");
|
|
self.mmap = match MmapVec::with_capacity(additional) {
|
|
Ok(mmap) => Some(mmap),
|
|
Err(e) => {
|
|
self.err = Some(e);
|
|
return Err(());
|
|
}
|
|
};
|
|
Ok(())
|
|
}
|
|
|
|
fn resize(&mut self, new_len: usize) {
|
|
// Resizing always appends 0 bytes and since new mmaps start out as 0
|
|
// bytes we don't actually need to do anything as part of this other
|
|
// than update our own length.
|
|
if new_len <= self.len {
|
|
return;
|
|
}
|
|
self.len = new_len;
|
|
}
|
|
|
|
fn write_bytes(&mut self, val: &[u8]) {
|
|
let mmap = self.mmap.as_mut().expect("write before reserve");
|
|
mmap[self.len..][..val.len()].copy_from_slice(val);
|
|
self.len += val.len();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A compiled wasm module, ready to be instantiated.
|
|
pub struct CompiledModule {
|
|
module: Arc<Module>,
|
|
funcs: PrimaryMap<DefinedFuncIndex, (WasmFunctionInfo, FunctionLoc)>,
|
|
trampolines: Vec<(SignatureIndex, FunctionLoc)>,
|
|
meta: Metadata,
|
|
code_memory: Arc<CodeMemory>,
|
|
dbg_jit_registration: Option<GdbJitImageRegistration>,
|
|
/// A unique ID used to register this module with the engine.
|
|
unique_id: CompiledModuleId,
|
|
func_names: Vec<FunctionName>,
|
|
}
|
|
|
|
impl CompiledModule {
|
|
/// Creates `CompiledModule` directly from a precompiled artifact.
|
|
///
|
|
/// The `code_memory` argument is expected to be the result of a previous
|
|
/// call to `ObjectBuilder::finish` above. This is an ELF image, at this
|
|
/// time, which contains all necessary information to create a
|
|
/// `CompiledModule` from a compilation.
|
|
///
|
|
/// This method also takes `info`, an optionally-provided deserialization
|
|
/// of the artifacts' compilation metadata section. If this information is
|
|
/// not provided then the information will be
|
|
/// deserialized from the image of the compilation artifacts. Otherwise it
|
|
/// will be assumed to be what would otherwise happen if the section were
|
|
/// to be deserialized.
|
|
///
|
|
/// The `profiler` argument here is used to inform JIT profiling runtimes
|
|
/// about new code that is loaded.
|
|
pub fn from_artifacts(
|
|
code_memory: Arc<CodeMemory>,
|
|
info: CompiledModuleInfo,
|
|
profiler: &dyn ProfilingAgent,
|
|
id_allocator: &CompiledModuleIdAllocator,
|
|
) -> Result<Self> {
|
|
let mut ret = Self {
|
|
module: Arc::new(info.module),
|
|
funcs: info.funcs,
|
|
trampolines: info.trampolines,
|
|
dbg_jit_registration: None,
|
|
code_memory,
|
|
meta: info.meta,
|
|
unique_id: id_allocator.alloc(),
|
|
func_names: info.func_names,
|
|
};
|
|
ret.register_debug_and_profiling(profiler)?;
|
|
|
|
Ok(ret)
|
|
}
|
|
|
|
fn register_debug_and_profiling(&mut self, profiler: &dyn ProfilingAgent) -> Result<()> {
|
|
// Register GDB JIT images; initialize profiler and load the wasm module.
|
|
if self.meta.native_debug_info_present {
|
|
let text = self.text();
|
|
let bytes = create_gdbjit_image(self.mmap().to_vec(), (text.as_ptr(), text.len()))
|
|
.context("failed to create jit image for gdb")?;
|
|
profiler.module_load(self, Some(&bytes));
|
|
let reg = GdbJitImageRegistration::register(bytes);
|
|
self.dbg_jit_registration = Some(reg);
|
|
} else {
|
|
profiler.module_load(self, None);
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Get this module's unique ID. It is unique with respect to a
|
|
/// single allocator (which is ordinarily held on a Wasm engine).
|
|
pub fn unique_id(&self) -> CompiledModuleId {
|
|
self.unique_id
|
|
}
|
|
|
|
/// Returns the underlying memory which contains the compiled module's
|
|
/// image.
|
|
pub fn mmap(&self) -> &MmapVec {
|
|
self.code_memory.mmap()
|
|
}
|
|
|
|
/// Returns the underlying owned mmap of this compiled image.
|
|
pub fn code_memory(&self) -> &Arc<CodeMemory> {
|
|
&self.code_memory
|
|
}
|
|
|
|
/// Returns the text section of the ELF image for this compiled module.
|
|
///
|
|
/// This memory should have the read/execute permissions.
|
|
pub fn text(&self) -> &[u8] {
|
|
self.code_memory.text()
|
|
}
|
|
|
|
/// Return a reference-counting pointer to a module.
|
|
pub fn module(&self) -> &Arc<Module> {
|
|
&self.module
|
|
}
|
|
|
|
/// Looks up the `name` section name for the function index `idx`, if one
|
|
/// was specified in the original wasm module.
|
|
pub fn func_name(&self, idx: FuncIndex) -> Option<&str> {
|
|
// Find entry for `idx`, if present.
|
|
let i = self.func_names.binary_search_by_key(&idx, |n| n.idx).ok()?;
|
|
let name = &self.func_names[i];
|
|
|
|
// Here we `unwrap` the `from_utf8` but this can theoretically be a
|
|
// `from_utf8_unchecked` if we really wanted since this section is
|
|
// guaranteed to only have valid utf-8 data. Until it's a problem it's
|
|
// probably best to double-check this though.
|
|
let data = self.code_memory().func_name_data();
|
|
Some(str::from_utf8(&data[name.offset as usize..][..name.len as usize]).unwrap())
|
|
}
|
|
|
|
/// Return a reference to a mutable module (if possible).
|
|
pub fn module_mut(&mut self) -> Option<&mut Module> {
|
|
Arc::get_mut(&mut self.module)
|
|
}
|
|
|
|
/// Returns an iterator over all functions defined within this module with
|
|
/// their index and their body in memory.
|
|
#[inline]
|
|
pub fn finished_functions(
|
|
&self,
|
|
) -> impl ExactSizeIterator<Item = (DefinedFuncIndex, &[u8])> + '_ {
|
|
self.funcs
|
|
.iter()
|
|
.map(move |(i, _)| (i, self.finished_function(i)))
|
|
}
|
|
|
|
/// Returns the body of the function that `index` points to.
|
|
#[inline]
|
|
pub fn finished_function(&self, index: DefinedFuncIndex) -> &[u8] {
|
|
let (_, loc) = &self.funcs[index];
|
|
&self.text()[loc.start as usize..][..loc.length as usize]
|
|
}
|
|
|
|
/// Returns the per-signature trampolines for this module.
|
|
pub fn trampolines(&self) -> impl Iterator<Item = (SignatureIndex, VMTrampoline, usize)> + '_ {
|
|
let text = self.text();
|
|
self.trampolines.iter().map(move |(signature, loc)| {
|
|
(
|
|
*signature,
|
|
unsafe {
|
|
let ptr = &text[loc.start as usize];
|
|
std::mem::transmute::<*const u8, VMTrampoline>(ptr)
|
|
},
|
|
loc.length as usize,
|
|
)
|
|
})
|
|
}
|
|
|
|
/// Returns the stack map information for all functions defined in this
|
|
/// module.
|
|
///
|
|
/// The iterator returned iterates over the span of the compiled function in
|
|
/// memory with the stack maps associated with those bytes.
|
|
pub fn stack_maps(&self) -> impl Iterator<Item = (&[u8], &[StackMapInformation])> {
|
|
self.finished_functions()
|
|
.map(|(_, f)| f)
|
|
.zip(self.funcs.values().map(|f| &f.0.stack_maps[..]))
|
|
}
|
|
|
|
/// Lookups a defined function by a program counter value.
|
|
///
|
|
/// Returns the defined function index and the relative address of
|
|
/// `text_offset` within the function itself.
|
|
pub fn func_by_text_offset(&self, text_offset: usize) -> Option<(DefinedFuncIndex, u32)> {
|
|
let text_offset = u32::try_from(text_offset).unwrap();
|
|
|
|
let index = match self
|
|
.funcs
|
|
.binary_search_values_by_key(&text_offset, |(_, loc)| {
|
|
debug_assert!(loc.length > 0);
|
|
// Return the inclusive "end" of the function
|
|
loc.start + loc.length - 1
|
|
}) {
|
|
Ok(k) => {
|
|
// Exact match, pc is at the end of this function
|
|
k
|
|
}
|
|
Err(k) => {
|
|
// Not an exact match, k is where `pc` would be "inserted"
|
|
// Since we key based on the end, function `k` might contain `pc`,
|
|
// so we'll validate on the range check below
|
|
k
|
|
}
|
|
};
|
|
|
|
let (_, loc) = self.funcs.get(index)?;
|
|
let start = loc.start;
|
|
let end = loc.start + loc.length;
|
|
|
|
if text_offset < start || end < text_offset {
|
|
return None;
|
|
}
|
|
|
|
Some((index, text_offset - loc.start))
|
|
}
|
|
|
|
/// Gets the function location information for a given function index.
|
|
pub fn func_loc(&self, index: DefinedFuncIndex) -> &FunctionLoc {
|
|
&self
|
|
.funcs
|
|
.get(index)
|
|
.expect("defined function should be present")
|
|
.1
|
|
}
|
|
|
|
/// Gets the function information for a given function index.
|
|
pub fn wasm_func_info(&self, index: DefinedFuncIndex) -> &WasmFunctionInfo {
|
|
&self
|
|
.funcs
|
|
.get(index)
|
|
.expect("defined function should be present")
|
|
.0
|
|
}
|
|
|
|
/// Creates a new symbolication context which can be used to further
|
|
/// symbolicate stack traces.
|
|
///
|
|
/// Basically this makes a thing which parses debuginfo and can tell you
|
|
/// what filename and line number a wasm pc comes from.
|
|
pub fn symbolize_context(&self) -> Result<Option<SymbolizeContext<'_>>> {
|
|
use gimli::EndianSlice;
|
|
if !self.meta.has_wasm_debuginfo {
|
|
return Ok(None);
|
|
}
|
|
let dwarf = gimli::Dwarf::load(|id| -> Result<_> {
|
|
// Lookup the `id` in the `dwarf` array prepared for this module
|
|
// during module serialization where it's sorted by the `id` key. If
|
|
// found this is a range within the general module's concatenated
|
|
// dwarf section which is extracted here, otherwise it's just an
|
|
// empty list to represent that it's not present.
|
|
let data = self
|
|
.meta
|
|
.dwarf
|
|
.binary_search_by_key(&(id as u8), |(id, _)| *id)
|
|
.map(|i| {
|
|
let (_, range) = &self.meta.dwarf[i];
|
|
&self.code_memory().dwarf()[range.start as usize..range.end as usize]
|
|
})
|
|
.unwrap_or(&[]);
|
|
Ok(EndianSlice::new(data, gimli::LittleEndian))
|
|
})?;
|
|
let cx = addr2line::Context::from_dwarf(dwarf)
|
|
.context("failed to create addr2line dwarf mapping context")?;
|
|
Ok(Some(SymbolizeContext {
|
|
inner: cx,
|
|
code_section_offset: self.meta.code_section_offset,
|
|
}))
|
|
}
|
|
|
|
/// Returns whether the original wasm module had unparsed debug information
|
|
/// based on the tunables configuration.
|
|
pub fn has_unparsed_debuginfo(&self) -> bool {
|
|
self.meta.has_unparsed_debuginfo
|
|
}
|
|
|
|
/// Indicates whether this module came with n address map such that lookups
|
|
/// via `wasmtime_environ::lookup_file_pos` will succeed.
|
|
///
|
|
/// If this function returns `false` then `lookup_file_pos` will always
|
|
/// return `None`.
|
|
pub fn has_address_map(&self) -> bool {
|
|
!self.code_memory.address_map_data().is_empty()
|
|
}
|
|
|
|
/// Returns the bounds, in host memory, of where this module's compiled
|
|
/// image resides.
|
|
pub fn image_range(&self) -> Range<usize> {
|
|
let base = self.mmap().as_ptr() as usize;
|
|
let len = self.mmap().len();
|
|
base..base + len
|
|
}
|
|
}
|
|
|
|
type Addr2LineContext<'a> = addr2line::Context<gimli::EndianSlice<'a, gimli::LittleEndian>>;
|
|
|
|
/// A context which contains dwarf debug information to translate program
|
|
/// counters back to filenames and line numbers.
|
|
pub struct SymbolizeContext<'a> {
|
|
inner: Addr2LineContext<'a>,
|
|
code_section_offset: u64,
|
|
}
|
|
|
|
impl<'a> SymbolizeContext<'a> {
|
|
/// Returns access to the [`addr2line::Context`] which can be used to query
|
|
/// frame information with.
|
|
pub fn addr2line(&self) -> &Addr2LineContext<'a> {
|
|
&self.inner
|
|
}
|
|
|
|
/// Returns the offset of the code section in the original wasm file, used
|
|
/// to calculate lookup values into the DWARF.
|
|
pub fn code_section_offset(&self) -> u64 {
|
|
self.code_section_offset
|
|
}
|
|
}
|
|
|
|
/// Returns the range of `inner` within `outer`, such that `outer[range]` is the
|
|
/// same as `inner`.
|
|
///
|
|
/// This method requires that `inner` is a sub-slice of `outer`, and if that
|
|
/// isn't true then this method will panic.
|
|
pub fn subslice_range(inner: &[u8], outer: &[u8]) -> Range<usize> {
|
|
if inner.len() == 0 {
|
|
return 0..0;
|
|
}
|
|
|
|
assert!(outer.as_ptr() <= inner.as_ptr());
|
|
assert!((&inner[inner.len() - 1] as *const _) <= (&outer[outer.len() - 1] as *const _));
|
|
|
|
let start = inner.as_ptr() as usize - outer.as_ptr() as usize;
|
|
start..start + inner.len()
|
|
}
|