* Add initial support for fused adapter trampolines This commit lands a significant new piece of functionality to Wasmtime's implementation of the component model in the form of the implementation of fused adapter trampolines. Internally within a component core wasm modules can communicate with each other by having their exports `canon lift`'d to get `canon lower`'d into a different component. This signifies that two components are communicating through a statically known interface via the canonical ABI at this time. Previously Wasmtime was able to identify that this communication was happening but it simply panicked with `unimplemented!` upon seeing it. This commit is the beginning of filling out this panic location with an actual implementation. The implementation route chosen here for fused adapters is to use a WebAssembly module itself for the implementation. This means that, at compile time of a component, Wasmtime is generating core WebAssembly modules which then get recursively compiled within Wasmtime as well. The choice to use WebAssembly itself as the implementation of fused adapters stems from a few motivations: * This does not represent a significant increase in the "trusted compiler base" of Wasmtime. Getting the Wasm -> CLIF translation correct once is hard enough much less for an entirely different IR to CLIF. By generating WebAssembly no new interactions with Cranelift are added which drastically reduces the possibilities for mistakes. * Using WebAssembly means that component adapters are insulated from miscompilations and mistakes. If something goes wrong it's defined well within the WebAssembly specification how it goes wrong and what happens as a result. This means that the "blast zone" for a wrong adapter is the component instance but not the entire host itself. Accesses to linear memory are guaranteed to be in-bounds and otherwise handled via well-defined traps. * A fully-finished fused adapter compiler is expected to be a significant and quite complex component of Wasmtime. Functionality along these lines is expected to be needed for Web-based polyfills of the component model and by using core WebAssembly it provides the opportunity to share code between Wasmtime and these polyfills for the component model. * Finally the runtime implementation of managing WebAssembly modules is already implemented and quite easy to integrate with, so representing fused adapters with WebAssembly results in very little extra support necessary for the runtime implementation of instantiating and managing a component. The compiler added in this commit is dubbed Wasmtime's Fused Adapter Compiler of Trampolines (FACT) because who doesn't like deriving a name from an acronym. Currently the trampoline compiler is limited in its support for interface types and only supports a few primitives. I plan on filing future PRs to flesh out the support here for all the variants of `InterfaceType`. For now this PR is primarily focused on all of the other infrastructure for the addition of a trampoline compiler. With the choice to use core WebAssembly to implement fused adapters it means that adapters need to be inserted into a module. Unfortunately adapters cannot all go into a single WebAssembly module because adapters themselves have dependencies which may be provided transitively through instances that were instantiated with other adapters. This means that a significant chunk of this PR (`adapt.rs`) is dedicated to determining precisely which adapters go into precisely which adapter modules. This partitioning process attempts to make large modules wherever it can to cut down on core wasm instantiations but is likely not optimal as it's just a simple heuristic today. With all of this added together it's now possible to start writing `*.wast` tests that internally have adapted modules communicating with one another. A `fused.wast` test suite was added as part of this PR which is the beginning of tests for the support of the fused adapter compiler added in this PR. Currently this is primarily testing some various topologies of adapters along with direct/indirect modes. This will grow many more tests over time as more types are supported. Overall I'm not 100% satisfied with the testing story of this PR. When a test fails it's very difficult to debug since everything is written in the text format of WebAssembly meaning there's no "conveniences" to print out the state of the world when things go wrong and easily debug. I think this will become even more apparent as more tests are written for more types in subsequent PRs. At this time though I know of no better alternative other than leaning pretty heavily on fuzz-testing to ensure this is all exercised. * Fix an unused field warning * Fix tests in `wasmtime-runtime` * Add some more tests for compiled trampolines * Remap exports when injecting adapters The exports of a component were accidentally left unmapped which meant that they indexed the instance indexes pre-adapter module insertion. * Fix typo * Rebase conflicts
Cranelift Code Generator
A Bytecode Alliance project
Cranelift is a low-level retargetable code generator. It translates a target-independent intermediate representation into executable machine code.
For more information, see the documentation.
For an example of how to use the JIT, see the JIT Demo, which implements a toy language.
For an example of how to use Cranelift to run WebAssembly code, see Wasmtime, which implements a standalone, embeddable, VM using Cranelift.
Status
Cranelift currently supports enough functionality to run a wide variety of programs, including all the functionality needed to execute WebAssembly (MVP and various extensions like SIMD), although it needs to be used within an external WebAssembly embedding such as Wasmtime to be part of a complete WebAssembly implementation. It is also usable as a backend for non-WebAssembly use cases: for example, there is an effort to build a Rust compiler backend using Cranelift.
Cranelift is production-ready, and is used in production in several places, all within the context of Wasmtime. It is carefully fuzzed as part of Wasmtime with differential comparison against V8 and the executable Wasm spec, and the register allocator is separately fuzzed with symbolic verification. There is an active effort to formally verify Cranelift's instruction-selection backends. We take security seriously and have a security policy as a part of Bytecode Alliance.
Cranelift has three backends: x86-64, aarch64 (aka ARM64), and s390x (aka IBM Z). All three backends fully support enough functionality for Wasm MVP, and x86-64 and aarch64 fully support SIMD as well. On x86-64, Cranelift supports both the System V AMD64 ABI calling convention used on many platforms and the Windows x64 calling convention. On aarch64, Cranelift supports the standard Linux calling convention and also has specific support for macOS (i.e., M1 / Apple Silicon).
Cranelift's code quality is within range of competitiveness to browser JIT engines' optimizing tiers. A recent paper includes third-party benchmarks of Cranelift, driven by Wasmtime, against V8 and an LLVM-based Wasm engine, WAVM (Fig 22). The speed of Cranelift's generated code is ~2% slower than that of V8 (TurboFan), and ~14% slower than WAVM (LLVM). Its compilation speed, in the same paper, is measured as approximately an order of magnitude faster than WAVM (LLVM). We continue to work to improve both measures.
The core codegen crates have minimal dependencies and are carefully written to handle malicious or arbitrary compiler input: in particular, they do not use callstack recursion.
Cranelift performs some basic mitigations for Spectre attacks on heap bounds checks, table bounds checks, and indirect branch bounds checks; see #1032 for more.
Cranelift's APIs are not yet considered stable, though we do follow semantic-versioning (semver) with minor-version patch releases.
Cranelift generally requires the latest stable Rust to build as a policy, and is tested as such, but we can incorporate fixes for compilation with older Rust versions on a best-effort basis.
Contributing
If you're interested in contributing to Cranelift: thank you! We have a contributing guide which will help you getting involved in the Cranelift project.
Planned uses
Cranelift is designed to be a code generator for WebAssembly, but it is general enough to be useful elsewhere too. The initial planned uses that affected its design are:
- WebAssembly compiler for the SpiderMonkey engine in Firefox.
- Backend for the IonMonkey JavaScript JIT compiler in Firefox.
- Debug build backend for the Rust compiler.
- Wasmtime non-Web wasm engine.
Building Cranelift
Cranelift uses a conventional Cargo build process.
Cranelift consists of a collection of crates, and uses a Cargo
Workspace,
so for some cargo commands, such as cargo test, the --all is needed
to tell cargo to visit all of the crates.
test-all.sh at the top level is a script which runs all the cargo
tests and also performs code format, lint, and documentation checks.
Log configuration
Cranelift uses the log crate to log messages at various levels. It doesn't
specify any maximal logging level, so embedders can choose what it should be;
however, this can have an impact of Cranelift's code size. You can use log
features to reduce the maximum logging level. For instance if you want to limit
the level of logging to warn messages and above in release mode:
[dependency.log]
...
features = ["release_max_level_warn"]
Editor Support
Editor support for working with Cranelift IR (clif) files: