Files
wasmtime/crates/cranelift/src/compiler.rs
Sam Parker 9c43749dfe [RFC] Dynamic Vector Support (#4200)
Introduce a new concept in the IR that allows a producer to create
dynamic vector types. An IR function can now contain global value(s)
that represent a dynamic scaling factor, for a given fixed-width
vector type. A dynamic type is then created by 'multiplying' the
corresponding global value with a fixed-width type. These new types
can be used just like the existing types and the type system has a
set of hard-coded dynamic types, such as I32X4XN, which the user
defined types map onto. The dynamic types are also used explicitly
to create dynamic stack slots, which have no set size like their
existing counterparts. New IR instructions are added to access these
new stack entities.

Currently, during codegen, the dynamic scaling factor has to be
lowered to a constant so the dynamic slots do eventually have a
compile-time known size, as do spill slots.

The current lowering for aarch64 just targets Neon, using a dynamic
scale of 1.

Copyright (c) 2022, Arm Limited.
2022-07-07 12:54:39 -07:00

944 lines
34 KiB
Rust

use crate::builder::LinkOptions;
use crate::debug::{DwarfSectionRelocTarget, ModuleMemoryOffset};
use crate::func_environ::{get_func_name, FuncEnvironment};
use crate::obj::ModuleTextBuilder;
use crate::{
blank_sig, func_signature, indirect_signature, value_type, wasmtime_call_conv,
CompiledFunction, CompiledFunctions, FunctionAddressMap, Relocation, RelocationTarget,
};
use anyhow::{Context as _, Result};
use cranelift_codegen::ir::{self, ExternalName, InstBuilder, MemFlags, Value};
use cranelift_codegen::isa::TargetIsa;
use cranelift_codegen::print_errors::pretty_error;
use cranelift_codegen::Context;
use cranelift_codegen::{settings, MachReloc, MachTrap};
use cranelift_codegen::{MachSrcLoc, MachStackMap};
use cranelift_entity::{EntityRef, PrimaryMap};
use cranelift_frontend::FunctionBuilder;
use cranelift_wasm::{
DefinedFuncIndex, FuncIndex, FuncTranslator, MemoryIndex, OwnedMemoryIndex, SignatureIndex,
WasmFuncType,
};
use object::write::{Object, StandardSegment, SymbolId};
use object::{RelocationEncoding, RelocationKind, SectionKind};
use std::any::Any;
use std::cmp;
use std::collections::BTreeMap;
use std::collections::HashMap;
use std::convert::TryFrom;
use std::mem;
use std::sync::Mutex;
use wasmtime_environ::{
AddressMapSection, CompileError, FilePos, FlagValue, FunctionBodyData, FunctionInfo,
InstructionAddressMap, Module, ModuleTranslation, ModuleTypes, StackMapInformation, Trampoline,
TrapCode, TrapEncodingBuilder, TrapInformation, Tunables, VMOffsets,
};
#[cfg(feature = "component-model")]
mod component;
struct CompilerContext {
func_translator: FuncTranslator,
codegen_context: Context,
}
impl Default for CompilerContext {
fn default() -> Self {
Self {
func_translator: FuncTranslator::new(),
codegen_context: Context::new(),
}
}
}
/// A compiler that compiles a WebAssembly module with Compiler, translating
/// the Wasm to Compiler IR, optimizing it and then translating to assembly.
pub(crate) struct Compiler {
contexts: Mutex<Vec<CompilerContext>>,
isa: Box<dyn TargetIsa>,
linkopts: LinkOptions,
}
impl Compiler {
pub(crate) fn new(isa: Box<dyn TargetIsa>, linkopts: LinkOptions) -> Compiler {
Compiler {
contexts: Default::default(),
isa,
linkopts,
}
}
fn take_context(&self) -> CompilerContext {
let candidate = self.contexts.lock().unwrap().pop();
candidate
.map(|mut ctx| {
ctx.codegen_context.clear();
ctx
})
.unwrap_or_else(Default::default)
}
fn save_context(&self, ctx: CompilerContext) {
self.contexts.lock().unwrap().push(ctx);
}
fn get_function_address_map(
&self,
context: &Context,
data: &FunctionBodyData<'_>,
body_len: u32,
tunables: &Tunables,
) -> FunctionAddressMap {
// Generate artificial srcloc for function start/end to identify boundary
// within module.
let data = data.body.get_binary_reader();
let offset = data.original_position();
let len = data.bytes_remaining();
assert!((offset + len) <= u32::max_value() as usize);
let start_srcloc = FilePos::new(offset as u32);
let end_srcloc = FilePos::new((offset + len) as u32);
// New-style backend: we have a `MachCompileResult` that will give us `MachSrcLoc` mapping
// tuples.
let instructions = if tunables.generate_address_map {
collect_address_maps(
body_len,
context
.mach_compile_result
.as_ref()
.unwrap()
.buffer
.get_srclocs_sorted()
.into_iter()
.map(|&MachSrcLoc { start, end, loc }| (loc, start, (end - start))),
)
} else {
Vec::new()
};
FunctionAddressMap {
instructions: instructions.into(),
start_srcloc,
end_srcloc,
body_offset: 0,
body_len,
}
}
}
impl wasmtime_environ::Compiler for Compiler {
fn compile_function(
&self,
translation: &ModuleTranslation<'_>,
func_index: DefinedFuncIndex,
mut input: FunctionBodyData<'_>,
tunables: &Tunables,
types: &ModuleTypes,
) -> Result<Box<dyn Any + Send>, CompileError> {
let isa = &*self.isa;
let module = &translation.module;
let func_index = module.func_index(func_index);
let CompilerContext {
mut func_translator,
codegen_context: mut context,
} = self.take_context();
context.func.name = get_func_name(func_index);
context.func.signature = func_signature(isa, translation, types, func_index);
if tunables.generate_native_debuginfo {
context.func.collect_debug_info();
}
let mut func_env = FuncEnvironment::new(isa, translation, types, tunables);
// The `stack_limit` global value below is the implementation of stack
// overflow checks in Wasmtime.
//
// The Wasm spec defines that stack overflows will raise a trap, and
// there's also an added constraint where as an embedder you frequently
// are running host-provided code called from wasm. WebAssembly and
// native code currently share the same call stack, so Wasmtime needs to
// make sure that host-provided code will have enough call-stack
// available to it.
//
// The way that stack overflow is handled here is by adding a prologue
// check to all functions for how much native stack is remaining. The
// `VMContext` pointer is the first argument to all functions, and the
// first field of this structure is `*const VMRuntimeLimits` and the
// first field of that is the stack limit. Note that the stack limit in
// this case means "if the stack pointer goes below this, trap". Each
// function which consumes stack space or isn't a leaf function starts
// off by loading the stack limit, checking it against the stack
// pointer, and optionally traps.
//
// This manual check allows the embedder to give wasm a relatively
// precise amount of stack allocation. Using this scheme we reserve a
// chunk of stack for wasm code relative from where wasm code was
// called. This ensures that native code called by wasm should have
// native stack space to run, and the numbers of stack spaces here
// should all be configurable for various embeddings.
//
// Note that this check is independent of each thread's stack guard page
// here. If the stack guard page is reached that's still considered an
// abort for the whole program since the runtime limits configured by
// the embedder should cause wasm to trap before it reaches that
// (ensuring the host has enough space as well for its functionality).
let vmctx = context
.func
.create_global_value(ir::GlobalValueData::VMContext);
let interrupts_ptr = context.func.create_global_value(ir::GlobalValueData::Load {
base: vmctx,
offset: i32::try_from(func_env.offsets.vmctx_runtime_limits())
.unwrap()
.into(),
global_type: isa.pointer_type(),
readonly: true,
});
let stack_limit = context.func.create_global_value(ir::GlobalValueData::Load {
base: interrupts_ptr,
offset: i32::try_from(func_env.offsets.vmruntime_limits_stack_limit())
.unwrap()
.into(),
global_type: isa.pointer_type(),
readonly: false,
});
context.func.stack_limit = Some(stack_limit);
func_translator.translate_body(
&mut input.validator,
input.body.clone(),
&mut context.func,
&mut func_env,
)?;
let mut code_buf: Vec<u8> = Vec::new();
context
.compile_and_emit(isa, &mut code_buf)
.map_err(|error| CompileError::Codegen(pretty_error(&context.func, error)))?;
let result = context.mach_compile_result.as_ref().unwrap();
let func_relocs = result
.buffer
.relocs()
.into_iter()
.map(mach_reloc_to_reloc)
.collect::<Vec<_>>();
let traps = result
.buffer
.traps()
.into_iter()
.map(mach_trap_to_trap)
.collect::<Vec<_>>();
let stack_maps = mach_stack_maps_to_stack_maps(result.buffer.stack_maps());
let unwind_info = if isa.flags().unwind_info() {
context
.create_unwind_info(isa)
.map_err(|error| CompileError::Codegen(pretty_error(&context.func, error)))?
} else {
None
};
let address_transform =
self.get_function_address_map(&context, &input, code_buf.len() as u32, tunables);
let ranges = if tunables.generate_native_debuginfo {
Some(
context
.mach_compile_result
.as_ref()
.unwrap()
.value_labels_ranges
.clone(),
)
} else {
None
};
let timing = cranelift_codegen::timing::take_current();
log::debug!("{:?} translated in {:?}", func_index, timing.total());
log::trace!("{:?} timing info\n{}", func_index, timing);
let length = u32::try_from(code_buf.len()).unwrap();
let sized_stack_slots = std::mem::take(&mut context.func.sized_stack_slots);
self.save_context(CompilerContext {
func_translator,
codegen_context: context,
});
Ok(Box::new(CompiledFunction {
body: code_buf,
relocations: func_relocs,
value_labels_ranges: ranges.unwrap_or(Default::default()),
sized_stack_slots,
unwind_info,
traps,
info: FunctionInfo {
start_srcloc: address_transform.start_srcloc,
stack_maps,
start: 0,
length,
},
address_map: address_transform,
}))
}
fn compile_host_to_wasm_trampoline(
&self,
ty: &WasmFuncType,
) -> Result<Box<dyn Any + Send>, CompileError> {
self.host_to_wasm_trampoline(ty)
.map(|x| Box::new(x) as Box<_>)
}
fn emit_obj(
&self,
translation: &ModuleTranslation,
funcs: PrimaryMap<DefinedFuncIndex, Box<dyn Any + Send>>,
compiled_trampolines: Vec<Box<dyn Any + Send>>,
tunables: &Tunables,
obj: &mut Object<'static>,
) -> Result<(PrimaryMap<DefinedFuncIndex, FunctionInfo>, Vec<Trampoline>)> {
let funcs: CompiledFunctions = funcs
.into_iter()
.map(|(_i, f)| *f.downcast().unwrap())
.collect();
let compiled_trampolines: Vec<CompiledFunction> = compiled_trampolines
.into_iter()
.map(|f| *f.downcast().unwrap())
.collect();
let mut builder = ModuleTextBuilder::new(obj, &translation.module, &*self.isa);
if self.linkopts.force_jump_veneers {
builder.force_veneers();
}
let mut addrs = AddressMapSection::default();
let mut traps = TrapEncodingBuilder::default();
let mut func_starts = Vec::with_capacity(funcs.len());
for (i, func) in funcs.iter() {
let range = builder.func(i, func);
if tunables.generate_address_map {
addrs.push(range.clone(), &func.address_map.instructions);
}
traps.push(range.clone(), &func.traps);
func_starts.push(range.start);
builder.append_padding(self.linkopts.padding_between_functions);
}
// Build trampolines for every signature that can be used by this module.
assert_eq!(
translation.exported_signatures.len(),
compiled_trampolines.len()
);
let mut trampolines = Vec::with_capacity(translation.exported_signatures.len());
for (i, func) in translation
.exported_signatures
.iter()
.zip(&compiled_trampolines)
{
assert!(func.traps.is_empty());
trampolines.push(builder.trampoline(*i, &func));
}
let symbols = builder.finish()?;
self.append_dwarf(obj, translation, &funcs, tunables, &symbols)?;
if tunables.generate_address_map {
addrs.append_to(obj);
}
traps.append_to(obj);
Ok((
funcs
.into_iter()
.zip(func_starts)
.map(|((_, mut f), start)| {
f.info.start = start;
f.info
})
.collect(),
trampolines,
))
}
fn emit_trampoline_obj(
&self,
ty: &WasmFuncType,
host_fn: usize,
obj: &mut Object<'static>,
) -> Result<(Trampoline, Trampoline)> {
let host_to_wasm = self.host_to_wasm_trampoline(ty)?;
let wasm_to_host = self.wasm_to_host_trampoline(ty, host_fn)?;
let module = Module::new();
let mut builder = ModuleTextBuilder::new(obj, &module, &*self.isa);
let a = builder.trampoline(SignatureIndex::new(0), &host_to_wasm);
let b = builder.trampoline(SignatureIndex::new(1), &wasm_to_host);
builder.finish()?;
Ok((a, b))
}
fn triple(&self) -> &target_lexicon::Triple {
self.isa.triple()
}
fn page_size_align(&self) -> u64 {
self.isa.code_section_alignment()
}
fn flags(&self) -> BTreeMap<String, FlagValue> {
self.isa
.flags()
.iter()
.map(|val| (val.name.to_string(), to_flag_value(&val)))
.collect()
}
fn isa_flags(&self) -> BTreeMap<String, FlagValue> {
self.isa
.isa_flags()
.iter()
.map(|val| (val.name.to_string(), to_flag_value(val)))
.collect()
}
#[cfg(feature = "component-model")]
fn component_compiler(&self) -> &dyn wasmtime_environ::component::ComponentCompiler {
self
}
}
fn to_flag_value(v: &settings::Value) -> FlagValue {
match v.kind() {
settings::SettingKind::Enum => FlagValue::Enum(v.as_enum().unwrap().into()),
settings::SettingKind::Num => FlagValue::Num(v.as_num().unwrap()),
settings::SettingKind::Bool => FlagValue::Bool(v.as_bool().unwrap()),
settings::SettingKind::Preset => unreachable!(),
}
}
impl Compiler {
fn host_to_wasm_trampoline(&self, ty: &WasmFuncType) -> Result<CompiledFunction, CompileError> {
let isa = &*self.isa;
let value_size = mem::size_of::<u128>();
let pointer_type = isa.pointer_type();
// The wasm signature we're calling in this trampoline has the actual
// ABI of the function signature described by `ty`
let wasm_signature = indirect_signature(isa, ty);
// The host signature has the `VMTrampoline` signature where the ABI is
// fixed.
let mut host_signature = blank_sig(isa, wasmtime_call_conv(isa));
host_signature.params.push(ir::AbiParam::new(pointer_type));
host_signature.params.push(ir::AbiParam::new(pointer_type));
let CompilerContext {
mut func_translator,
codegen_context: mut context,
} = self.take_context();
context.func = ir::Function::with_name_signature(ExternalName::user(0, 0), host_signature);
// This trampoline will load all the parameters from the `values_vec`
// that is passed in and then call the real function (also passed
// indirectly) with the specified ABI.
//
// All the results are then stored into the same `values_vec`.
let mut builder = FunctionBuilder::new(&mut context.func, func_translator.context());
let block0 = builder.create_block();
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
builder.seal_block(block0);
let (vmctx_ptr_val, caller_vmctx_ptr_val, callee_value, values_vec_ptr_val) = {
let params = builder.func.dfg.block_params(block0);
(params[0], params[1], params[2], params[3])
};
// Load the argument values out of `values_vec`.
let mut mflags = ir::MemFlags::trusted();
mflags.set_endianness(ir::Endianness::Little);
let callee_args = wasm_signature
.params
.iter()
.enumerate()
.map(|(i, r)| {
match i {
0 => vmctx_ptr_val,
1 => caller_vmctx_ptr_val,
_ =>
// i - 2 because vmctx and caller vmctx aren't passed through `values_vec`.
{
builder.ins().load(
r.value_type,
mflags,
values_vec_ptr_val,
((i - 2) * value_size) as i32,
)
}
}
})
.collect::<Vec<_>>();
// Call the indirect function pointer we were given
let new_sig = builder.import_signature(wasm_signature);
let call = builder
.ins()
.call_indirect(new_sig, callee_value, &callee_args);
let results = builder.func.dfg.inst_results(call).to_vec();
// Store the return values into `values_vec`.
for (i, r) in results.iter().enumerate() {
builder
.ins()
.store(mflags, *r, values_vec_ptr_val, (i * value_size) as i32);
}
builder.ins().return_(&[]);
builder.finalize();
let func = self.finish_trampoline(&mut context, isa)?;
self.save_context(CompilerContext {
func_translator,
codegen_context: context,
});
Ok(func)
}
/// Creates a trampoline for WebAssembly calling into the host where all the
/// arguments are spilled to the stack and results are loaded from the
/// stack.
///
/// This style of trampoline is currently only used with the
/// `Func::new`-style created functions in the Wasmtime embedding API. The
/// generated trampoline has a function signature appropriate to the `ty`
/// specified (e.g. a System-V ABI) and will call a `host_fn` that has a
/// type signature of:
///
/// ```ignore
/// extern "C" fn(*mut VMContext, *mut VMContext, *mut ValRaw, usize)
/// ```
///
/// where the first two arguments are forwarded from the trampoline
/// generated here itself, and the second two arguments are a pointer/length
/// into stack-space of this trampoline with storage for both the arguments
/// to the function and the results.
///
/// Note that `host_fn` is an immediate which is an actual function pointer
/// in this process. As such this compiled trampoline is not suitable for
/// serialization.
fn wasm_to_host_trampoline(
&self,
ty: &WasmFuncType,
host_fn: usize,
) -> Result<CompiledFunction, CompileError> {
let isa = &*self.isa;
let pointer_type = isa.pointer_type();
let wasm_signature = indirect_signature(isa, ty);
let mut host_signature = blank_sig(isa, wasmtime_call_conv(isa));
// The host signature has an added parameter for the `values_vec`
// input/output buffer in addition to the size of the buffer, in units
// of `ValRaw`.
host_signature.params.push(ir::AbiParam::new(pointer_type));
host_signature.params.push(ir::AbiParam::new(pointer_type));
let CompilerContext {
mut func_translator,
codegen_context: mut context,
} = self.take_context();
context.func =
ir::Function::with_name_signature(ir::ExternalName::user(0, 0), wasm_signature);
let mut builder = FunctionBuilder::new(&mut context.func, func_translator.context());
let block0 = builder.create_block();
let (values_vec_ptr_val, values_vec_len) =
self.wasm_to_host_spill_args(ty, &mut builder, block0);
let block_params = builder.func.dfg.block_params(block0);
let callee_args = [
block_params[0],
block_params[1],
values_vec_ptr_val,
builder
.ins()
.iconst(pointer_type, i64::from(values_vec_len)),
];
let new_sig = builder.import_signature(host_signature);
let callee_value = builder.ins().iconst(pointer_type, host_fn as i64);
builder
.ins()
.call_indirect(new_sig, callee_value, &callee_args);
self.wasm_to_host_load_results(ty, &mut builder, values_vec_ptr_val);
let func = self.finish_trampoline(&mut context, isa)?;
self.save_context(CompilerContext {
func_translator,
codegen_context: context,
});
Ok(func)
}
/// Used for spilling arguments in wasm-to-host trampolines into the stack
/// of the function of `builder` specified.
///
/// The `block0` is the entry block of the function and `ty` is the wasm
/// signature of the trampoline generated. This function will allocate a
/// stack slot suitable for storing both the arguments and return values of
/// the function, and then the arguments will all be stored in this block.
///
/// The stack slot pointer is returned in addition to the size, in units of
/// `ValRaw`, of the stack slot.
fn wasm_to_host_spill_args(
&self,
ty: &WasmFuncType,
builder: &mut FunctionBuilder,
block0: ir::Block,
) -> (Value, u32) {
let isa = &*self.isa;
let pointer_type = isa.pointer_type();
// Compute the size of the values vector.
let value_size = mem::size_of::<u128>();
let values_vec_len = cmp::max(ty.params().len(), ty.returns().len());
let values_vec_byte_size = u32::try_from(value_size * values_vec_len).unwrap();
let values_vec_len = u32::try_from(values_vec_len).unwrap();
let ss = builder.func.create_sized_stack_slot(ir::StackSlotData::new(
ir::StackSlotKind::ExplicitSlot,
values_vec_byte_size,
));
builder.append_block_params_for_function_params(block0);
builder.switch_to_block(block0);
builder.seal_block(block0);
// Note that loads and stores are unconditionally done in the
// little-endian format rather than the host's native-endianness,
// despite this load/store being unrelated to execution in wasm itself.
// For more details on this see the `ValRaw` type in the
// `wasmtime-runtime` crate.
let mut mflags = MemFlags::trusted();
mflags.set_endianness(ir::Endianness::Little);
let values_vec_ptr_val = builder.ins().stack_addr(pointer_type, ss, 0);
for i in 0..ty.params().len() {
let val = builder.func.dfg.block_params(block0)[i + 2];
builder
.ins()
.store(mflags, val, values_vec_ptr_val, (i * value_size) as i32);
}
(values_vec_ptr_val, values_vec_len)
}
/// Use for loading the results of a host call from a trampoline's stack
/// space.
///
/// This is intended to be used with the stack space allocated by
/// `wasm_to_host_spill_args` above. This is called after the function call
/// is made which will load results from the stack space and then return
/// them with the appropriate ABI (e.g. System-V).
fn wasm_to_host_load_results(
&self,
ty: &WasmFuncType,
builder: &mut FunctionBuilder,
values_vec_ptr_val: Value,
) {
let isa = &*self.isa;
let value_size = mem::size_of::<u128>();
// Note that this is little-endian like `wasm_to_host_spill_args` above,
// see notes there for more information.
let mut mflags = MemFlags::trusted();
mflags.set_endianness(ir::Endianness::Little);
let mut results = Vec::new();
for (i, r) in ty.returns().iter().enumerate() {
let load = builder.ins().load(
value_type(isa, *r),
mflags,
values_vec_ptr_val,
(i * value_size) as i32,
);
results.push(load);
}
builder.ins().return_(&results);
builder.finalize();
}
fn finish_trampoline(
&self,
context: &mut Context,
isa: &dyn TargetIsa,
) -> Result<CompiledFunction, CompileError> {
let mut code_buf = Vec::new();
context
.compile_and_emit(isa, &mut code_buf)
.map_err(|error| CompileError::Codegen(pretty_error(&context.func, error)))?;
let result = context.mach_compile_result.as_ref().unwrap();
// Processing relocations isn't the hardest thing in the world here but
// no trampoline should currently generate a relocation, so assert that
// they're all empty and if this ever trips in the future then handling
// will need to be added here to ensure they make their way into the
// `CompiledFunction` below.
assert!(result.buffer.relocs().is_empty());
let traps = result
.buffer
.traps()
.into_iter()
.map(mach_trap_to_trap)
.collect::<Vec<_>>();
let unwind_info = if isa.flags().unwind_info() {
context
.create_unwind_info(isa)
.map_err(|error| CompileError::Codegen(pretty_error(&context.func, error)))?
} else {
None
};
Ok(CompiledFunction {
body: code_buf,
unwind_info,
relocations: Vec::new(),
sized_stack_slots: Default::default(),
value_labels_ranges: Default::default(),
info: Default::default(),
address_map: Default::default(),
traps,
})
}
pub fn append_dwarf(
&self,
obj: &mut Object<'_>,
translation: &ModuleTranslation<'_>,
funcs: &CompiledFunctions,
tunables: &Tunables,
func_symbols: &PrimaryMap<DefinedFuncIndex, SymbolId>,
) -> Result<()> {
if !tunables.generate_native_debuginfo || funcs.len() == 0 {
return Ok(());
}
let ofs = VMOffsets::new(
self.isa
.triple()
.architecture
.pointer_width()
.unwrap()
.bytes(),
&translation.module,
);
let memory_offset = if ofs.num_imported_memories > 0 {
ModuleMemoryOffset::Imported(ofs.vmctx_vmmemory_import(MemoryIndex::new(0)))
} else if ofs.num_defined_memories > 0 {
// The addition of shared memory makes the following assumption,
// "owned memory index = 0", possibly false. If the first memory
// is a shared memory, the base pointer will not be stored in
// the `owned_memories` array. The following code should
// eventually be fixed to not only handle shared memories but
// also multiple memories.
assert_eq!(
ofs.num_defined_memories, ofs.num_owned_memories,
"the memory base pointer may be incorrect due to sharing memory"
);
ModuleMemoryOffset::Defined(
ofs.vmctx_vmmemory_definition_base(OwnedMemoryIndex::new(0)),
)
} else {
ModuleMemoryOffset::None
};
let dwarf_sections =
crate::debug::emit_dwarf(&*self.isa, &translation.debuginfo, &funcs, &memory_offset)
.with_context(|| "failed to emit DWARF debug information")?;
let (debug_bodies, debug_relocs): (Vec<_>, Vec<_>) = dwarf_sections
.iter()
.map(|s| ((s.name, &s.body), (s.name, &s.relocs)))
.unzip();
let mut dwarf_sections_ids = HashMap::new();
for (name, body) in debug_bodies {
let segment = obj.segment_name(StandardSegment::Debug).to_vec();
let section_id = obj.add_section(segment, name.as_bytes().to_vec(), SectionKind::Debug);
dwarf_sections_ids.insert(name, section_id);
obj.append_section_data(section_id, &body, 1);
}
// Write all debug data relocations.
for (name, relocs) in debug_relocs {
let section_id = *dwarf_sections_ids.get(name).unwrap();
for reloc in relocs {
let target_symbol = match reloc.target {
DwarfSectionRelocTarget::Func(index) => {
func_symbols[DefinedFuncIndex::new(index)]
}
DwarfSectionRelocTarget::Section(name) => {
obj.section_symbol(dwarf_sections_ids[name])
}
};
obj.add_relocation(
section_id,
object::write::Relocation {
offset: u64::from(reloc.offset),
size: reloc.size << 3,
kind: RelocationKind::Absolute,
encoding: RelocationEncoding::Generic,
symbol: target_symbol,
addend: i64::from(reloc.addend),
},
)?;
}
}
Ok(())
}
}
// Collects an iterator of `InstructionAddressMap` into a `Vec` for insertion
// into a `FunctionAddressMap`. This will automatically coalesce adjacent
// instructions which map to the same original source position.
fn collect_address_maps(
code_size: u32,
iter: impl IntoIterator<Item = (ir::SourceLoc, u32, u32)>,
) -> Vec<InstructionAddressMap> {
let mut iter = iter.into_iter();
let (mut cur_loc, mut cur_offset, mut cur_len) = match iter.next() {
Some(i) => i,
None => return Vec::new(),
};
let mut ret = Vec::new();
for (loc, offset, len) in iter {
// If this instruction is adjacent to the previous and has the same
// source location then we can "coalesce" it with the current
// instruction.
if cur_offset + cur_len == offset && loc == cur_loc {
cur_len += len;
continue;
}
// Push an entry for the previous source item.
ret.push(InstructionAddressMap {
srcloc: cvt(cur_loc),
code_offset: cur_offset,
});
// And push a "dummy" entry if necessary to cover the span of ranges,
// if any, between the previous source offset and this one.
if cur_offset + cur_len != offset {
ret.push(InstructionAddressMap {
srcloc: FilePos::default(),
code_offset: cur_offset + cur_len,
});
}
// Update our current location to get extended later or pushed on at
// the end.
cur_loc = loc;
cur_offset = offset;
cur_len = len;
}
ret.push(InstructionAddressMap {
srcloc: cvt(cur_loc),
code_offset: cur_offset,
});
if cur_offset + cur_len != code_size {
ret.push(InstructionAddressMap {
srcloc: FilePos::default(),
code_offset: cur_offset + cur_len,
});
}
return ret;
fn cvt(loc: ir::SourceLoc) -> FilePos {
if loc.is_default() {
FilePos::default()
} else {
FilePos::new(loc.bits())
}
}
}
fn mach_reloc_to_reloc(reloc: &MachReloc) -> Relocation {
let &MachReloc {
offset,
kind,
ref name,
addend,
} = reloc;
let reloc_target = if let ExternalName::User { namespace, index } = *name {
debug_assert_eq!(namespace, 0);
RelocationTarget::UserFunc(FuncIndex::from_u32(index))
} else if let ExternalName::LibCall(libcall) = *name {
RelocationTarget::LibCall(libcall)
} else {
panic!("unrecognized external name")
};
Relocation {
reloc: kind,
reloc_target,
offset,
addend,
}
}
const ALWAYS_TRAP_CODE: u16 = 100;
fn mach_trap_to_trap(trap: &MachTrap) -> TrapInformation {
let &MachTrap { offset, code } = trap;
TrapInformation {
code_offset: offset,
trap_code: match code {
ir::TrapCode::StackOverflow => TrapCode::StackOverflow,
ir::TrapCode::HeapOutOfBounds => TrapCode::HeapOutOfBounds,
ir::TrapCode::HeapMisaligned => TrapCode::HeapMisaligned,
ir::TrapCode::TableOutOfBounds => TrapCode::TableOutOfBounds,
ir::TrapCode::IndirectCallToNull => TrapCode::IndirectCallToNull,
ir::TrapCode::BadSignature => TrapCode::BadSignature,
ir::TrapCode::IntegerOverflow => TrapCode::IntegerOverflow,
ir::TrapCode::IntegerDivisionByZero => TrapCode::IntegerDivisionByZero,
ir::TrapCode::BadConversionToInteger => TrapCode::BadConversionToInteger,
ir::TrapCode::UnreachableCodeReached => TrapCode::UnreachableCodeReached,
ir::TrapCode::Interrupt => TrapCode::Interrupt,
ir::TrapCode::User(ALWAYS_TRAP_CODE) => TrapCode::AlwaysTrapAdapter,
// these should never be emitted by wasmtime-cranelift
ir::TrapCode::User(_) => unreachable!(),
},
}
}
fn mach_stack_maps_to_stack_maps(mach_stack_maps: &[MachStackMap]) -> Vec<StackMapInformation> {
// This is converting from Cranelift's representation of a stack map to
// Wasmtime's representation. They happen to align today but that may
// not always be true in the future.
let mut stack_maps = Vec::new();
for &MachStackMap {
offset_end,
ref stack_map,
..
} in mach_stack_maps
{
let stack_map = wasmtime_environ::StackMap::new(
stack_map.mapped_words(),
stack_map.as_slice().iter().map(|a| a.0),
);
stack_maps.push(StackMapInformation {
code_offset: offset_end,
stack_map,
});
}
stack_maps.sort_unstable_by_key(|info| info.code_offset);
stack_maps
}