Files
wasmtime/crates/api/examples/memory.rs
Alex Crichton 16804673a2 Support parsing the text format in wasmtime crate (#813)
* Support parsing the text format in `wasmtime` crate

This commit adds support to the `wasmtime::Module` type to parse the
text format. This is often quite convenient to support in testing or
tinkering with the runtime. Additionally the `wat` parser is pretty
lightweight and easy to add to builds, so it's relatively easy for us to
support as well!

The exact manner that this is now supported comes with a few updates to
the existing API:

* A new optional feature of the `wasmtime` crate, `wat`, has been added.
  This is enabled by default.
* The `Module::new` API now takes `impl AsRef<[u8]>` instead of just
  `&[u8]`, and when the `wat` feature is enabled it will attempt to
  interpret it either as a wasm binary or as the text format. Note that
  this check is quite cheap since you just check the first byte.
* A `Module::from_file` API was added as a convenience to parse a file
  from disk, allowing error messages for `*.wat` files on disk to be a
  bit nicer.
* APIs like `Module::new_unchecked` and `Module::validate` remain
  unchanged, they require the binary format to be called.

The intention here is to make this as convenient as possible for new
developers of the `wasmtime` crate. By changing the default behavior
though this has ramifications such as, for example, supporting the text
format implicitly through the C API now.

* Handle review comments

* Update more tests to avoid usage of `wat` crate

* Go back to unchecked for now in wasm_module_new

Looks like C# tests rely on this?
2020-01-24 14:20:51 -06:00

161 lines
4.5 KiB
Rust

//! Translation of the memory example
use anyhow::{bail, ensure, Context as _, Error};
use wasmtime::*;
fn get_export_memory(exports: &[Extern], i: usize) -> Result<Memory, Error> {
if exports.len() <= i {
bail!("> Error accessing memory export {}!", i);
}
Ok(exports[i]
.memory()
.with_context(|| format!("> Error accessing memory export {}!", i))?
.clone())
}
fn get_export_func(exports: &[Extern], i: usize) -> Result<Func, Error> {
if exports.len() <= i {
bail!("> Error accessing function export {}!", i);
}
Ok(exports[i]
.func()
.with_context(|| format!("> Error accessing function export {}!", i))?
.clone())
}
macro_rules! check {
($actual:expr, $expected:expr) => {
if $actual != $expected {
bail!("> Error on result, expected {}, got {}", $expected, $actual);
}
};
}
macro_rules! check_ok {
($func:expr, $($p:expr),*) => {
if let Err(_) = $func.call(&[$($p.into()),*]) {
bail!("> Error on result, expected return");
}
}
}
macro_rules! check_trap {
($func:expr, $($p:expr),*) => {
if let Ok(_) = $func.call(&[$($p.into()),*]) {
bail!("> Error on result, expected trap");
}
}
}
macro_rules! call {
($func:expr, $($p:expr),*) => {
match $func.call(&[$($p.into()),*]) {
Ok(result) => {
let result: i32 = result[0].unwrap_i32();
result
}
Err(_) => { bail!("> Error on result, expected return"); }
}
}
}
fn main() -> Result<(), Error> {
// Initialize.
println!("Initializing...");
let store = Store::default();
// Load binary.
println!("Loading binary...");
let wat = r#"
(module
(memory (export "memory") 2 3)
(func (export "size") (result i32) (memory.size))
(func (export "load") (param i32) (result i32)
(i32.load8_s (local.get 0))
)
(func (export "store") (param i32 i32)
(i32.store8 (local.get 0) (local.get 1))
)
(data (i32.const 0x1000) "\01\02\03\04")
)
"#;
// Compile.
println!("Compiling module...");
let module = Module::new(&store, &wat).context("> Error compiling module!")?;
// Instantiate.
println!("Instantiating module...");
let instance = Instance::new(&module, &[]).context("> Error instantiating module!")?;
// Extract export.
println!("Extracting export...");
let exports = instance.exports();
ensure!(!exports.is_empty(), "> Error accessing exports!");
let memory = get_export_memory(&exports, 0)?;
let size_func = get_export_func(&exports, 1)?;
let load_func = get_export_func(&exports, 2)?;
let store_func = get_export_func(&exports, 3)?;
// Check initial memory.
println!("Checking memory...");
check!(memory.size(), 2u32);
check!(memory.data_size(), 0x20000usize);
check!(unsafe { memory.data_unchecked_mut()[0] }, 0);
check!(unsafe { memory.data_unchecked_mut()[0x1000] }, 1);
check!(unsafe { memory.data_unchecked_mut()[0x1003] }, 4);
check!(call!(size_func,), 2);
check!(call!(load_func, 0), 0);
check!(call!(load_func, 0x1000), 1);
check!(call!(load_func, 0x1003), 4);
check!(call!(load_func, 0x1ffff), 0);
check_trap!(load_func, 0x20000);
// Mutate memory.
println!("Mutating memory...");
unsafe {
memory.data_unchecked_mut()[0x1003] = 5;
}
check_ok!(store_func, 0x1002, 6);
check_trap!(store_func, 0x20000, 0);
check!(unsafe { memory.data_unchecked()[0x1002] }, 6);
check!(unsafe { memory.data_unchecked()[0x1003] }, 5);
check!(call!(load_func, 0x1002), 6);
check!(call!(load_func, 0x1003), 5);
// Grow memory.
println!("Growing memory...");
memory.grow(1)?;
check!(memory.size(), 3u32);
check!(memory.data_size(), 0x30000usize);
check!(call!(load_func, 0x20000), 0);
check_ok!(store_func, 0x20000, 0);
check_trap!(load_func, 0x30000);
check_trap!(store_func, 0x30000, 0);
memory.grow(1).unwrap_err();
memory.grow(0).unwrap();
// Create stand-alone memory.
// TODO(wasm+): Once Wasm allows multiple memories, turn this into import.
println!("Creating stand-alone memory...");
let memorytype = MemoryType::new(Limits::new(5, Some(5)));
let memory2 = Memory::new(&store, memorytype);
check!(memory2.size(), 5u32);
memory2.grow(1).unwrap_err();
memory2.grow(0).unwrap();
// Shut down.
println!("Shutting down...");
drop(store);
println!("Done.");
Ok(())
}