Files
wasmtime/cranelift/codegen/src/isa/aarch64/abi.rs

964 lines
31 KiB
Rust

//! Implementation of the standard AArch64 ABI.
use crate::ir;
use crate::ir::types;
use crate::ir::types::*;
use crate::ir::{ArgumentExtension, StackSlot};
use crate::isa;
use crate::isa::aarch64::{self, inst::*};
use crate::machinst::*;
use crate::settings;
use alloc::vec::Vec;
use regalloc::{RealReg, Reg, RegClass, Set, SpillSlot, Writable};
use log::debug;
/// A location for an argument or return value.
#[derive(Clone, Copy, Debug)]
enum ABIArg {
/// In a real register.
Reg(RealReg, ir::Type),
/// Arguments only: on stack, at given offset from SP at entry.
Stack(i64, ir::Type),
}
/// AArch64 ABI information shared between body (callee) and caller.
struct ABISig {
args: Vec<ABIArg>,
rets: Vec<ABIArg>,
stack_arg_space: i64,
call_conv: isa::CallConv,
}
// Spidermonkey specific ABI convention.
/// This is SpiderMonkey's `WasmTableCallSigReg`.
static BALDRDASH_SIG_REG: u8 = 10;
/// This is SpiderMonkey's `WasmTlsReg`.
static BALDRDASH_TLS_REG: u8 = 23;
// These two lists represent the registers the JIT may *not* use at any point in generated code.
//
// So these are callee-preserved from the JIT's point of view, and every register not in this list
// has to be caller-preserved by definition.
//
// Keep these lists in sync with the NonAllocatableMask set in Spidermonkey's
// Architecture-arm64.cpp.
// Indexed by physical register number.
#[rustfmt::skip]
static BALDRDASH_JIT_CALLEE_SAVED_GPR: &[bool] = &[
/* 0 = */ false, false, false, false, false, false, false, false,
/* 8 = */ false, false, false, false, false, false, false, false,
/* 16 = */ true /* x16 / ip1 */, true /* x17 / ip2 */, true /* x18 / TLS */, false,
/* 20 = */ false, false, false, false,
/* 24 = */ false, false, false, false,
// There should be 28, the pseudo stack pointer in this list, however the wasm stubs trash it
// gladly right now.
/* 28 = */ false, false, true /* x30 = FP */, false /* x31 = SP */
];
#[rustfmt::skip]
static BALDRDASH_JIT_CALLEE_SAVED_FPU: &[bool] = &[
/* 0 = */ false, false, false, false, false, false, false, false,
/* 8 = */ false, false, false, false, false, false, false, false,
/* 16 = */ false, false, false, false, false, false, false, false,
/* 24 = */ false, false, false, false, false, false, false, true /* v31 / d31 */
];
/// Try to fill a Baldrdash register, returning it if it was found.
fn try_fill_baldrdash_reg(call_conv: isa::CallConv, param: &ir::AbiParam) -> Option<ABIArg> {
if call_conv.extends_baldrdash() {
match &param.purpose {
&ir::ArgumentPurpose::VMContext => {
// This is SpiderMonkey's `WasmTlsReg`.
Some(ABIArg::Reg(
xreg(BALDRDASH_TLS_REG).to_real_reg(),
ir::types::I64,
))
}
&ir::ArgumentPurpose::SignatureId => {
// This is SpiderMonkey's `WasmTableCallSigReg`.
Some(ABIArg::Reg(
xreg(BALDRDASH_SIG_REG).to_real_reg(),
ir::types::I64,
))
}
_ => None,
}
} else {
None
}
}
/// Process a list of parameters or return values and allocate them to X-regs,
/// V-regs, and stack slots.
///
/// Returns the list of argument locations, and the stack-space used (rounded up
/// to a 16-byte-aligned boundary).
fn compute_arg_locs(call_conv: isa::CallConv, params: &[ir::AbiParam]) -> (Vec<ABIArg>, i64) {
// See AArch64 ABI (https://c9x.me/compile/bib/abi-arm64.pdf), sections 5.4.
let mut next_xreg = 0;
let mut next_vreg = 0;
let mut next_stack: u64 = 0;
let mut ret = vec![];
for param in params {
// Validate "purpose".
match &param.purpose {
&ir::ArgumentPurpose::VMContext
| &ir::ArgumentPurpose::Normal
| &ir::ArgumentPurpose::SignatureId => {}
_ => panic!(
"Unsupported argument purpose {:?} in signature: {:?}",
param.purpose, params
),
}
if in_int_reg(param.value_type) {
if let Some(param) = try_fill_baldrdash_reg(call_conv, param) {
ret.push(param);
} else if next_xreg < 8 {
ret.push(ABIArg::Reg(xreg(next_xreg).to_real_reg(), param.value_type));
next_xreg += 1;
} else {
ret.push(ABIArg::Stack(next_stack as i64, param.value_type));
next_stack += 8;
}
} else if in_vec_reg(param.value_type) {
if next_vreg < 8 {
ret.push(ABIArg::Reg(vreg(next_vreg).to_real_reg(), param.value_type));
next_vreg += 1;
} else {
let size: u64 = match param.value_type {
F32 | F64 => 8,
_ => panic!("Unsupported vector-reg argument type"),
};
// Align.
debug_assert!(size.is_power_of_two());
next_stack = (next_stack + size - 1) & !(size - 1);
ret.push(ABIArg::Stack(next_stack as i64, param.value_type));
next_stack += size;
}
}
}
next_stack = (next_stack + 15) & !15;
(ret, next_stack as i64)
}
impl ABISig {
fn from_func_sig(sig: &ir::Signature) -> ABISig {
// Compute args and retvals from signature.
// TODO: pass in arg-mode or ret-mode. (Does not matter
// for the types of arguments/return values that we support.)
let (args, stack_arg_space) = compute_arg_locs(sig.call_conv, &sig.params);
let (rets, _) = compute_arg_locs(sig.call_conv, &sig.returns);
// Verify that there are no return values on the stack.
debug_assert!(rets.iter().all(|a| match a {
&ABIArg::Stack(..) => false,
_ => true,
}));
ABISig {
args,
rets,
stack_arg_space,
call_conv: sig.call_conv,
}
}
}
/// AArch64 ABI object for a function body.
pub struct AArch64ABIBody {
/// Signature: arg and retval regs.
sig: ABISig,
/// Offsets to each stackslot.
stackslots: Vec<u32>,
/// Total stack size of all stackslots.
stackslots_size: u32,
/// Clobbered registers, from regalloc.
clobbered: Set<Writable<RealReg>>,
/// Total number of spillslots, from regalloc.
spillslots: Option<usize>,
/// Total frame size.
frame_size: Option<u32>,
/// Calling convention this function expects.
call_conv: isa::CallConv,
/// The settings controlling this function's compilation.
flags: settings::Flags,
}
fn in_int_reg(ty: ir::Type) -> bool {
match ty {
types::I8 | types::I16 | types::I32 | types::I64 => true,
types::B1 | types::B8 | types::B16 | types::B32 | types::B64 => true,
_ => false,
}
}
fn in_vec_reg(ty: ir::Type) -> bool {
match ty {
types::F32 | types::F64 => true,
_ => false,
}
}
impl AArch64ABIBody {
/// Create a new body ABI instance.
pub fn new(f: &ir::Function, flags: settings::Flags) -> Self {
debug!("AArch64 ABI: func signature {:?}", f.signature);
let sig = ABISig::from_func_sig(&f.signature);
let call_conv = f.signature.call_conv;
// Only these calling conventions are supported.
debug_assert!(
call_conv == isa::CallConv::SystemV
|| call_conv == isa::CallConv::Fast
|| call_conv == isa::CallConv::Cold
|| call_conv.extends_baldrdash(),
"Unsupported calling convention: {:?}",
call_conv
);
// Compute stackslot locations and total stackslot size.
let mut stack_offset: u32 = 0;
let mut stackslots = vec![];
for (stackslot, data) in f.stack_slots.iter() {
let off = stack_offset;
stack_offset += data.size;
stack_offset = (stack_offset + 7) & !7;
debug_assert_eq!(stackslot.as_u32() as usize, stackslots.len());
stackslots.push(off);
}
Self {
sig,
stackslots,
stackslots_size: stack_offset,
clobbered: Set::empty(),
spillslots: None,
frame_size: None,
call_conv,
flags,
}
}
/// Returns the size of a function call frame (including return address and FP) for this
/// function's body.
fn frame_size(&self) -> i64 {
if self.call_conv.extends_baldrdash() {
let num_words = self.flags.baldrdash_prologue_words() as i64;
debug_assert!(num_words > 0, "baldrdash must set baldrdash_prologue_words");
debug_assert_eq!(num_words % 2, 0, "stack must be 16-aligned");
num_words * 8
} else {
16 // frame pointer + return address.
}
}
}
fn load_stack_from_fp(fp_offset: i64, into_reg: Writable<Reg>, ty: Type) -> Inst {
let mem = MemArg::FPOffset(fp_offset);
match ty {
types::B1
| types::B8
| types::I8
| types::B16
| types::I16
| types::B32
| types::I32
| types::B64
| types::I64 => Inst::ULoad64 {
rd: into_reg,
mem,
srcloc: None,
},
types::F32 => Inst::FpuLoad32 {
rd: into_reg,
mem,
srcloc: None,
},
types::F64 => Inst::FpuLoad64 {
rd: into_reg,
mem,
srcloc: None,
},
_ => unimplemented!("load_stack_from_fp({})", ty),
}
}
fn store_stack(mem: MemArg, from_reg: Reg, ty: Type) -> Inst {
match ty {
types::B1
| types::B8
| types::I8
| types::B16
| types::I16
| types::B32
| types::I32
| types::B64
| types::I64 => Inst::Store64 {
rd: from_reg,
mem,
srcloc: None,
},
types::F32 => Inst::FpuStore32 {
rd: from_reg,
mem,
srcloc: None,
},
types::F64 => Inst::FpuStore64 {
rd: from_reg,
mem,
srcloc: None,
},
_ => unimplemented!("store_stack({})", ty),
}
}
fn is_callee_save(call_conv: isa::CallConv, r: RealReg) -> bool {
if call_conv.extends_baldrdash() {
match r.get_class() {
RegClass::I64 => {
let enc = r.get_hw_encoding();
return BALDRDASH_JIT_CALLEE_SAVED_GPR[enc];
}
RegClass::V128 => {
let enc = r.get_hw_encoding();
return BALDRDASH_JIT_CALLEE_SAVED_FPU[enc];
}
_ => unimplemented!("baldrdash callee saved on non-i64 reg classes"),
};
}
match r.get_class() {
RegClass::I64 => {
// x19 - x28 inclusive are callee-saves.
r.get_hw_encoding() >= 19 && r.get_hw_encoding() <= 28
}
RegClass::V128 => {
// v8 - v15 inclusive are callee-saves.
r.get_hw_encoding() >= 8 && r.get_hw_encoding() <= 15
}
_ => panic!("Unexpected RegClass"),
}
}
fn get_callee_saves(
call_conv: isa::CallConv,
regs: Vec<Writable<RealReg>>,
) -> (Vec<Writable<RealReg>>, Vec<Writable<RealReg>>) {
let mut int_saves = vec![];
let mut vec_saves = vec![];
for reg in regs.into_iter() {
if is_callee_save(call_conv, reg.to_reg()) {
match reg.to_reg().get_class() {
RegClass::I64 => int_saves.push(reg),
RegClass::V128 => vec_saves.push(reg),
_ => panic!("Unexpected RegClass"),
}
}
}
(int_saves, vec_saves)
}
fn is_caller_save(call_conv: isa::CallConv, r: RealReg) -> bool {
if call_conv.extends_baldrdash() {
match r.get_class() {
RegClass::I64 => {
let enc = r.get_hw_encoding();
if !BALDRDASH_JIT_CALLEE_SAVED_GPR[enc] {
return true;
}
// Otherwise, fall through to preserve native's ABI caller-saved.
}
RegClass::V128 => {
let enc = r.get_hw_encoding();
if !BALDRDASH_JIT_CALLEE_SAVED_FPU[enc] {
return true;
}
// Otherwise, fall through to preserve native's ABI caller-saved.
}
_ => unimplemented!("baldrdash callee saved on non-i64 reg classes"),
};
}
match r.get_class() {
RegClass::I64 => {
// x0 - x17 inclusive are caller-saves.
r.get_hw_encoding() <= 17
}
RegClass::V128 => {
// v0 - v7 inclusive and v16 - v31 inclusive are caller-saves.
r.get_hw_encoding() <= 7 || (r.get_hw_encoding() >= 16 && r.get_hw_encoding() <= 31)
}
_ => panic!("Unexpected RegClass"),
}
}
fn get_caller_saves_set(call_conv: isa::CallConv) -> Set<Writable<Reg>> {
let mut set = Set::empty();
for i in 0..29 {
let x = writable_xreg(i);
if is_caller_save(call_conv, x.to_reg().to_real_reg()) {
set.insert(x);
}
}
for i in 0..32 {
let v = writable_vreg(i);
if is_caller_save(call_conv, v.to_reg().to_real_reg()) {
set.insert(v);
}
}
set
}
impl ABIBody for AArch64ABIBody {
type I = Inst;
fn flags(&self) -> &settings::Flags {
&self.flags
}
fn liveins(&self) -> Set<RealReg> {
let mut set: Set<RealReg> = Set::empty();
for &arg in &self.sig.args {
if let ABIArg::Reg(r, _) = arg {
set.insert(r);
}
}
set
}
fn liveouts(&self) -> Set<RealReg> {
let mut set: Set<RealReg> = Set::empty();
for &ret in &self.sig.rets {
if let ABIArg::Reg(r, _) = ret {
set.insert(r);
}
}
set
}
fn num_args(&self) -> usize {
self.sig.args.len()
}
fn num_retvals(&self) -> usize {
self.sig.rets.len()
}
fn num_stackslots(&self) -> usize {
self.stackslots.len()
}
fn gen_copy_arg_to_reg(&self, idx: usize, into_reg: Writable<Reg>) -> Inst {
match &self.sig.args[idx] {
&ABIArg::Reg(r, ty) => Inst::gen_move(into_reg, r.to_reg(), ty),
&ABIArg::Stack(off, ty) => load_stack_from_fp(off + self.frame_size(), into_reg, ty),
}
}
fn gen_copy_reg_to_retval(
&self,
idx: usize,
from_reg: Writable<Reg>,
ext: ArgumentExtension,
) -> Vec<Inst> {
let mut ret = Vec::new();
match &self.sig.rets[idx] {
&ABIArg::Reg(r, ty) => {
let from_bits = aarch64::lower::ty_bits(ty) as u8;
let dest_reg = Writable::from_reg(r.to_reg());
match (ext, from_bits) {
(ArgumentExtension::Uext, n) if n < 64 => {
ret.push(Inst::Extend {
rd: dest_reg,
rn: from_reg.to_reg(),
signed: false,
from_bits,
to_bits: 64,
});
}
(ArgumentExtension::Sext, n) if n < 64 => {
ret.push(Inst::Extend {
rd: dest_reg,
rn: from_reg.to_reg(),
signed: true,
from_bits,
to_bits: 64,
});
}
_ => ret.push(Inst::gen_move(dest_reg, from_reg.to_reg(), ty)),
};
}
&ABIArg::Stack(off, ty) => {
let from_bits = aarch64::lower::ty_bits(ty) as u8;
// Trash the from_reg; it should be its last use.
match (ext, from_bits) {
(ArgumentExtension::Uext, n) if n < 64 => {
ret.push(Inst::Extend {
rd: from_reg,
rn: from_reg.to_reg(),
signed: false,
from_bits,
to_bits: 64,
});
}
(ArgumentExtension::Sext, n) if n < 64 => {
ret.push(Inst::Extend {
rd: from_reg,
rn: from_reg.to_reg(),
signed: true,
from_bits,
to_bits: 64,
});
}
_ => {}
};
ret.push(store_stack(
MemArg::FPOffset(off + self.frame_size()),
from_reg.to_reg(),
ty,
))
}
}
ret
}
fn gen_ret(&self) -> Inst {
Inst::Ret {}
}
fn gen_epilogue_placeholder(&self) -> Inst {
Inst::EpiloguePlaceholder {}
}
fn set_num_spillslots(&mut self, slots: usize) {
self.spillslots = Some(slots);
}
fn set_clobbered(&mut self, clobbered: Set<Writable<RealReg>>) {
self.clobbered = clobbered;
}
fn load_stackslot(
&self,
slot: StackSlot,
offset: u32,
ty: Type,
into_reg: Writable<Reg>,
) -> Inst {
// Offset from beginning of stackslot area, which is at FP - stackslots_size.
let stack_off = self.stackslots[slot.as_u32() as usize] as i64;
let fp_off: i64 = -(self.stackslots_size as i64) + stack_off + (offset as i64);
load_stack_from_fp(fp_off, into_reg, ty)
}
fn store_stackslot(&self, slot: StackSlot, offset: u32, ty: Type, from_reg: Reg) -> Inst {
// Offset from beginning of stackslot area, which is at FP - stackslots_size.
let stack_off = self.stackslots[slot.as_u32() as usize] as i64;
let fp_off: i64 = -(self.stackslots_size as i64) + stack_off + (offset as i64);
store_stack(MemArg::FPOffset(fp_off), from_reg, ty)
}
fn stackslot_addr(&self, slot: StackSlot, offset: u32, into_reg: Writable<Reg>) -> Inst {
// Offset from beginning of stackslot area, which is at FP - stackslots_size.
let stack_off = self.stackslots[slot.as_u32() as usize] as i64;
let fp_off: i64 = -(self.stackslots_size as i64) + stack_off + (offset as i64);
Inst::LoadAddr {
rd: into_reg,
mem: MemArg::FPOffset(fp_off),
}
}
// Load from a spillslot.
fn load_spillslot(&self, slot: SpillSlot, ty: Type, into_reg: Writable<Reg>) -> Inst {
// Note that when spills/fills are generated, we don't yet know how many
// spillslots there will be, so we allocate *downward* from the beginning
// of the stackslot area. Hence: FP - stackslot_size - 8*spillslot -
// sizeof(ty).
let islot = slot.get() as i64;
let ty_size = self.get_spillslot_size(into_reg.to_reg().get_class(), ty) * 8;
let fp_off: i64 = -(self.stackslots_size as i64) - (8 * islot) - ty_size as i64;
load_stack_from_fp(fp_off, into_reg, ty)
}
// Store to a spillslot.
fn store_spillslot(&self, slot: SpillSlot, ty: Type, from_reg: Reg) -> Inst {
let islot = slot.get() as i64;
let ty_size = self.get_spillslot_size(from_reg.get_class(), ty) * 8;
let fp_off: i64 = -(self.stackslots_size as i64) - (8 * islot) - ty_size as i64;
store_stack(MemArg::FPOffset(fp_off), from_reg, ty)
}
fn gen_prologue(&mut self) -> Vec<Inst> {
let mut insts = vec![];
if !self.call_conv.extends_baldrdash() {
// stp fp (x29), lr (x30), [sp, #-16]!
insts.push(Inst::StoreP64 {
rt: fp_reg(),
rt2: link_reg(),
mem: PairMemArg::PreIndexed(
writable_stack_reg(),
SImm7Scaled::maybe_from_i64(-16, types::I64).unwrap(),
),
});
// mov fp (x29), sp. This uses the ADDI rd, rs, 0 form of `MOV` because
// the usual encoding (`ORR`) does not work with SP.
insts.push(Inst::AluRRImm12 {
alu_op: ALUOp::Add64,
rd: writable_fp_reg(),
rn: stack_reg(),
imm12: Imm12 {
bits: 0,
shift12: false,
},
});
}
let mut total_stacksize = self.stackslots_size + 8 * self.spillslots.unwrap() as u32;
if self.call_conv.extends_baldrdash() {
debug_assert!(
!self.flags.enable_probestack(),
"baldrdash does not expect cranelift to emit stack probes"
);
total_stacksize += self.flags.baldrdash_prologue_words() as u32 * 8;
}
let total_stacksize = (total_stacksize + 15) & !15; // 16-align the stack.
if !self.call_conv.extends_baldrdash() && total_stacksize > 0 {
// sub sp, sp, #total_stacksize
if let Some(imm12) = Imm12::maybe_from_u64(total_stacksize as u64) {
let sub_inst = Inst::AluRRImm12 {
alu_op: ALUOp::Sub64,
rd: writable_stack_reg(),
rn: stack_reg(),
imm12,
};
insts.push(sub_inst);
} else {
let tmp = writable_spilltmp_reg();
let const_inst = Inst::LoadConst64 {
rd: tmp,
const_data: total_stacksize as u64,
};
let sub_inst = Inst::AluRRRExtend {
alu_op: ALUOp::Sub64,
rd: writable_stack_reg(),
rn: stack_reg(),
rm: tmp.to_reg(),
extendop: ExtendOp::UXTX,
};
insts.push(const_inst);
insts.push(sub_inst);
}
}
// Save clobbered registers.
let (clobbered_int, clobbered_vec) =
get_callee_saves(self.call_conv, self.clobbered.to_vec());
for reg_pair in clobbered_int.chunks(2) {
let (r1, r2) = if reg_pair.len() == 2 {
// .to_reg().to_reg(): Writable<RealReg> --> RealReg --> Reg
(reg_pair[0].to_reg().to_reg(), reg_pair[1].to_reg().to_reg())
} else {
(reg_pair[0].to_reg().to_reg(), zero_reg())
};
debug_assert!(r1.get_class() == RegClass::I64);
debug_assert!(r2.get_class() == RegClass::I64);
// stp r1, r2, [sp, #-16]!
insts.push(Inst::StoreP64 {
rt: r1,
rt2: r2,
mem: PairMemArg::PreIndexed(
writable_stack_reg(),
SImm7Scaled::maybe_from_i64(-16, types::I64).unwrap(),
),
});
}
let vec_save_bytes = clobbered_vec.len() * 16;
if vec_save_bytes != 0 {
insts.push(Inst::AluRRImm12 {
alu_op: ALUOp::Sub64,
rd: writable_stack_reg(),
rn: stack_reg(),
imm12: Imm12::maybe_from_u64(vec_save_bytes as u64).unwrap(),
});
}
for (i, reg) in clobbered_vec.iter().enumerate() {
insts.push(Inst::FpuStore128 {
rd: reg.to_reg().to_reg(),
mem: MemArg::Unscaled(stack_reg(), SImm9::maybe_from_i64((i * 16) as i64).unwrap()),
srcloc: None,
});
}
self.frame_size = Some(total_stacksize);
insts
}
fn gen_epilogue(&self) -> Vec<Inst> {
let mut insts = vec![];
// Restore clobbered registers.
let (clobbered_int, clobbered_vec) =
get_callee_saves(self.call_conv, self.clobbered.to_vec());
for (i, reg) in clobbered_vec.iter().enumerate() {
insts.push(Inst::FpuLoad128 {
rd: Writable::from_reg(reg.to_reg().to_reg()),
mem: MemArg::Unscaled(stack_reg(), SImm9::maybe_from_i64((i * 16) as i64).unwrap()),
srcloc: None,
});
}
let vec_save_bytes = clobbered_vec.len() * 16;
if vec_save_bytes != 0 {
insts.push(Inst::AluRRImm12 {
alu_op: ALUOp::Add64,
rd: writable_stack_reg(),
rn: stack_reg(),
imm12: Imm12::maybe_from_u64(vec_save_bytes as u64).unwrap(),
});
}
for reg_pair in clobbered_int.chunks(2).rev() {
let (r1, r2) = if reg_pair.len() == 2 {
(
reg_pair[0].map(|r| r.to_reg()),
reg_pair[1].map(|r| r.to_reg()),
)
} else {
(reg_pair[0].map(|r| r.to_reg()), writable_zero_reg())
};
debug_assert!(r1.to_reg().get_class() == RegClass::I64);
debug_assert!(r2.to_reg().get_class() == RegClass::I64);
// ldp r1, r2, [sp], #16
insts.push(Inst::LoadP64 {
rt: r1,
rt2: r2,
mem: PairMemArg::PostIndexed(
writable_stack_reg(),
SImm7Scaled::maybe_from_i64(16, types::I64).unwrap(),
),
});
}
if !self.call_conv.extends_baldrdash() {
// The MOV (alias of ORR) interprets x31 as XZR, so use an ADD here.
// MOV to SP is an alias of ADD.
insts.push(Inst::AluRRImm12 {
alu_op: ALUOp::Add64,
rd: writable_stack_reg(),
rn: fp_reg(),
imm12: Imm12 {
bits: 0,
shift12: false,
},
});
insts.push(Inst::LoadP64 {
rt: writable_fp_reg(),
rt2: writable_link_reg(),
mem: PairMemArg::PostIndexed(
writable_stack_reg(),
SImm7Scaled::maybe_from_i64(16, types::I64).unwrap(),
),
});
insts.push(Inst::Ret {});
}
debug!("Epilogue: {:?}", insts);
insts
}
fn frame_size(&self) -> u32 {
self.frame_size
.expect("frame size not computed before prologue generation")
}
fn get_spillslot_size(&self, rc: RegClass, ty: Type) -> u32 {
// We allocate in terms of 8-byte slots.
match (rc, ty) {
(RegClass::I64, _) => 1,
(RegClass::V128, F32) | (RegClass::V128, F64) => 1,
(RegClass::V128, _) => 2,
_ => panic!("Unexpected register class!"),
}
}
fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg, ty: Type) -> Inst {
self.store_spillslot(to_slot, ty, from_reg.to_reg())
}
fn gen_reload(&self, to_reg: Writable<RealReg>, from_slot: SpillSlot, ty: Type) -> Inst {
self.load_spillslot(from_slot, ty, to_reg.map(|r| r.to_reg()))
}
}
enum CallDest {
ExtName(ir::ExternalName),
Reg(Reg),
}
/// AArch64 ABI object for a function call.
pub struct AArch64ABICall {
sig: ABISig,
uses: Set<Reg>,
defs: Set<Writable<Reg>>,
dest: CallDest,
loc: ir::SourceLoc,
opcode: ir::Opcode,
}
fn abisig_to_uses_and_defs(sig: &ABISig) -> (Set<Reg>, Set<Writable<Reg>>) {
// Compute uses: all arg regs.
let mut uses = Set::empty();
for arg in &sig.args {
match arg {
&ABIArg::Reg(reg, _) => uses.insert(reg.to_reg()),
_ => {}
}
}
// Compute defs: all retval regs, and all caller-save (clobbered) regs.
let mut defs = get_caller_saves_set(sig.call_conv);
for ret in &sig.rets {
match ret {
&ABIArg::Reg(reg, _) => defs.insert(Writable::from_reg(reg.to_reg())),
_ => {}
}
}
(uses, defs)
}
impl AArch64ABICall {
/// Create a callsite ABI object for a call directly to the specified function.
pub fn from_func(
sig: &ir::Signature,
extname: &ir::ExternalName,
loc: ir::SourceLoc,
) -> AArch64ABICall {
let sig = ABISig::from_func_sig(sig);
let (uses, defs) = abisig_to_uses_and_defs(&sig);
AArch64ABICall {
sig,
uses,
defs,
dest: CallDest::ExtName(extname.clone()),
loc,
opcode: ir::Opcode::Call,
}
}
/// Create a callsite ABI object for a call to a function pointer with the
/// given signature.
pub fn from_ptr(
sig: &ir::Signature,
ptr: Reg,
loc: ir::SourceLoc,
opcode: ir::Opcode,
) -> AArch64ABICall {
let sig = ABISig::from_func_sig(sig);
let (uses, defs) = abisig_to_uses_and_defs(&sig);
AArch64ABICall {
sig,
uses,
defs,
dest: CallDest::Reg(ptr),
loc,
opcode,
}
}
}
fn adjust_stack(amt: u64, is_sub: bool) -> Vec<Inst> {
if amt > 0 {
let alu_op = if is_sub { ALUOp::Sub64 } else { ALUOp::Add64 };
if let Some(imm12) = Imm12::maybe_from_u64(amt) {
vec![Inst::AluRRImm12 {
alu_op,
rd: writable_stack_reg(),
rn: stack_reg(),
imm12,
}]
} else {
let const_load = Inst::LoadConst64 {
rd: writable_spilltmp_reg(),
const_data: amt,
};
let adj = Inst::AluRRRExtend {
alu_op,
rd: writable_stack_reg(),
rn: stack_reg(),
rm: spilltmp_reg(),
extendop: ExtendOp::UXTX,
};
vec![const_load, adj]
}
} else {
vec![]
}
}
impl ABICall for AArch64ABICall {
type I = Inst;
fn num_args(&self) -> usize {
self.sig.args.len()
}
fn gen_stack_pre_adjust(&self) -> Vec<Inst> {
adjust_stack(self.sig.stack_arg_space as u64, /* is_sub = */ true)
}
fn gen_stack_post_adjust(&self) -> Vec<Inst> {
adjust_stack(self.sig.stack_arg_space as u64, /* is_sub = */ false)
}
fn gen_copy_reg_to_arg(&self, idx: usize, from_reg: Reg) -> Inst {
match &self.sig.args[idx] {
&ABIArg::Reg(reg, ty) => Inst::gen_move(Writable::from_reg(reg.to_reg()), from_reg, ty),
&ABIArg::Stack(off, ty) => store_stack(MemArg::SPOffset(off), from_reg, ty),
}
}
fn gen_copy_retval_to_reg(&self, idx: usize, into_reg: Writable<Reg>) -> Inst {
match &self.sig.rets[idx] {
&ABIArg::Reg(reg, ty) => Inst::gen_move(into_reg, reg.to_reg(), ty),
_ => unimplemented!(),
}
}
fn gen_call(&self) -> Vec<Inst> {
let (uses, defs) = (self.uses.clone(), self.defs.clone());
match &self.dest {
&CallDest::ExtName(ref name) => vec![Inst::Call {
dest: name.clone(),
uses,
defs,
loc: self.loc,
opcode: self.opcode,
}],
&CallDest::Reg(reg) => vec![Inst::CallInd {
rn: reg,
uses,
defs,
loc: self.loc,
opcode: self.opcode,
}],
}
}
}