Files
wasmtime/lib/cretonne/meta/isa/intel/encodings.py
Jakob Stoklund Olesen 127b22af5f Make legalization actions configurable.
When an instruction doesn't have a valid encoding for the target ISA, it
needs to be legalized. Different legalization strategies can be
expressed as separate XFormGroup objects.

Make the choice of XFormGroup configurable per CPU mode, rather than
depending on a hard-coded default.

Add a CPUMode.legalize_type() method which assigns an XFormGroup to
controlling type variables and lets you set a default.

Add a `legalize` field to Level1Entry so the first-level hash table
lookup gives us the configured default legalization action for the
instruction's controlling type variable.
2017-07-24 12:49:06 -07:00

267 lines
8.7 KiB
Python

"""
Intel Encodings.
"""
from __future__ import absolute_import
from cdsl.predicates import IsUnsignedInt
from base import instructions as base
from base.formats import UnaryImm
from .defs import I32, I64
from . import recipes as r
from . import settings as cfg
from . import instructions as x86
from base.legalize import narrow, expand
I32.legalize_type(
default=narrow,
i32=expand,
f32=expand,
f64=expand)
I64.legalize_type(
default=narrow,
i32=expand,
i64=expand,
f32=expand,
f64=expand)
for inst, opc in [
(base.iadd, 0x01),
(base.isub, 0x29),
(base.band, 0x21),
(base.bor, 0x09),
(base.bxor, 0x31)]:
I32.enc(inst.i32, *r.rr(opc))
I64.enc(inst.i64, *r.rr.rex(opc, w=1))
I64.enc(inst.i32, *r.rr.rex(opc))
# REX-less encoding must come after REX encoding so we don't use it by
# default. Otherwise reg-alloc would never use r8 and up.
I64.enc(inst.i32, *r.rr(opc))
I32.enc(base.imul.i32, *r.rrx(0x0f, 0xaf))
I64.enc(base.imul.i64, *r.rrx.rex(0x0f, 0xaf, w=1))
I64.enc(base.imul.i32, *r.rrx.rex(0x0f, 0xaf))
I64.enc(base.imul.i32, *r.rrx(0x0f, 0xaf))
for inst, rrr in [
(x86.sdivmodx, 7),
(x86.udivmodx, 6)]:
I32.enc(inst.i32, *r.div(0xf7, rrr=rrr))
I64.enc(inst.i64, *r.div.rex(0xf7, rrr=rrr, w=1))
I64.enc(inst.i32, *r.div.rex(0xf7, rrr=rrr))
I64.enc(inst.i32, *r.div(0xf7, rrr=rrr))
I32.enc(base.copy.i32, *r.umr(0x89))
I64.enc(base.copy.i64, *r.umr.rex(0x89, w=1))
I64.enc(base.copy.i32, *r.umr.rex(0x89))
I64.enc(base.copy.i32, *r.umr(0x89))
I32.enc(base.regmove.i32, *r.rmov(0x89))
I64.enc(base.regmove.i64, *r.rmov.rex(0x89, w=1))
I64.enc(base.regmove.i32, *r.rmov.rex(0x89))
I64.enc(base.regmove.i32, *r.rmov(0x89))
# Immediate instructions with sign-extended 8-bit and 32-bit immediate.
for inst, rrr in [
(base.iadd_imm, 0),
(base.band_imm, 4),
(base.bor_imm, 1),
(base.bxor_imm, 6)]:
I32.enc(inst.i32, *r.rib(0x83, rrr=rrr))
I32.enc(inst.i32, *r.rid(0x81, rrr=rrr))
I64.enc(inst.i64, *r.rib.rex(0x83, rrr=rrr, w=1))
I64.enc(inst.i64, *r.rid.rex(0x81, rrr=rrr, w=1))
I64.enc(inst.i32, *r.rib.rex(0x83, rrr=rrr))
I64.enc(inst.i32, *r.rid.rex(0x81, rrr=rrr))
I64.enc(inst.i32, *r.rib(0x83, rrr=rrr))
I64.enc(inst.i32, *r.rid(0x81, rrr=rrr))
# TODO: band_imm.i64 with an unsigned 32-bit immediate can be encoded as
# band_imm.i32. Can even use the single-byte immediate for 0xffff_ffXX masks.
# Immediate constants.
I32.enc(base.iconst.i32, *r.puid(0xb8))
I64.enc(base.iconst.i32, *r.puid.rex(0xb8))
I64.enc(base.iconst.i32, *r.puid(0xb8))
# The 32-bit immediate movl also zero-extends to 64 bits.
I64.enc(base.iconst.i64, *r.puid.rex(0xb8),
instp=IsUnsignedInt(UnaryImm.imm, 32))
I64.enc(base.iconst.i64, *r.puid(0xb8),
instp=IsUnsignedInt(UnaryImm.imm, 32))
# Sign-extended 32-bit immediate.
I64.enc(base.iconst.i64, *r.uid.rex(0xc7, rrr=0, w=1))
# Finally, the 0xb8 opcode takes an 8-byte immediate with a REX.W prefix.
I64.enc(base.iconst.i64, *r.puiq.rex(0xb8, w=1))
# Shifts and rotates.
# Note that the dynamic shift amount is only masked by 5 or 6 bits; the 8-bit
# and 16-bit shifts would need explicit masking.
for inst, rrr in [
(base.rotl, 0),
(base.rotr, 1),
(base.ishl, 4),
(base.ushr, 5),
(base.sshr, 7)]:
I32.enc(inst.i32.i32, *r.rc(0xd3, rrr=rrr))
I64.enc(inst.i64.i64, *r.rc.rex(0xd3, rrr=rrr, w=1))
I64.enc(inst.i32.i32, *r.rc.rex(0xd3, rrr=rrr))
I64.enc(inst.i32.i32, *r.rc(0xd3, rrr=rrr))
# Population count.
I32.enc(base.popcnt.i32, *r.urm(0xf3, 0x0f, 0xb8), isap=cfg.use_popcnt)
I64.enc(base.popcnt.i64, *r.urm.rex(0xf3, 0x0f, 0xb8, w=1),
isap=cfg.use_popcnt)
I64.enc(base.popcnt.i32, *r.urm.rex(0xf3, 0x0f, 0xb8), isap=cfg.use_popcnt)
I64.enc(base.popcnt.i32, *r.urm(0xf3, 0x0f, 0xb8), isap=cfg.use_popcnt)
# Count leading zero bits.
I32.enc(base.clz.i32, *r.urm(0xf3, 0x0f, 0xbd), isap=cfg.use_lzcnt)
I64.enc(base.clz.i64, *r.urm.rex(0xf3, 0x0f, 0xbd, w=1),
isap=cfg.use_lzcnt)
I64.enc(base.clz.i32, *r.urm.rex(0xf3, 0x0f, 0xbd), isap=cfg.use_lzcnt)
I64.enc(base.clz.i32, *r.urm(0xf3, 0x0f, 0xbd), isap=cfg.use_lzcnt)
# Count trailing zero bits.
I32.enc(base.ctz.i32, *r.urm(0xf3, 0x0f, 0xbc), isap=cfg.use_bmi1)
I64.enc(base.ctz.i64, *r.urm.rex(0xf3, 0x0f, 0xbc, w=1),
isap=cfg.use_bmi1)
I64.enc(base.ctz.i32, *r.urm.rex(0xf3, 0x0f, 0xbc), isap=cfg.use_bmi1)
I64.enc(base.ctz.i32, *r.urm(0xf3, 0x0f, 0xbc), isap=cfg.use_bmi1)
# Loads and stores.
I32.enc(base.store.i32.i32, *r.st(0x89))
I32.enc(base.store.i32.i32, *r.stDisp8(0x89))
I32.enc(base.store.i32.i32, *r.stDisp32(0x89))
I32.enc(base.istore16.i32.i32, *r.st(0x66, 0x89))
I32.enc(base.istore16.i32.i32, *r.stDisp8(0x66, 0x89))
I32.enc(base.istore16.i32.i32, *r.stDisp32(0x66, 0x89))
I32.enc(base.istore8.i32.i32, *r.st_abcd(0x88))
I32.enc(base.istore8.i32.i32, *r.stDisp8_abcd(0x88))
I32.enc(base.istore8.i32.i32, *r.stDisp32_abcd(0x88))
I32.enc(base.load.i32.i32, *r.ld(0x8b))
I32.enc(base.load.i32.i32, *r.ldDisp8(0x8b))
I32.enc(base.load.i32.i32, *r.ldDisp32(0x8b))
I32.enc(base.uload16.i32.i32, *r.ld(0x0f, 0xb7))
I32.enc(base.uload16.i32.i32, *r.ldDisp8(0x0f, 0xb7))
I32.enc(base.uload16.i32.i32, *r.ldDisp32(0x0f, 0xb7))
I32.enc(base.sload16.i32.i32, *r.ld(0x0f, 0xbf))
I32.enc(base.sload16.i32.i32, *r.ldDisp8(0x0f, 0xbf))
I32.enc(base.sload16.i32.i32, *r.ldDisp32(0x0f, 0xbf))
I32.enc(base.uload8.i32.i32, *r.ld(0x0f, 0xb6))
I32.enc(base.uload8.i32.i32, *r.ldDisp8(0x0f, 0xb6))
I32.enc(base.uload8.i32.i32, *r.ldDisp32(0x0f, 0xb6))
I32.enc(base.sload8.i32.i32, *r.ld(0x0f, 0xbe))
I32.enc(base.sload8.i32.i32, *r.ldDisp8(0x0f, 0xbe))
I32.enc(base.sload8.i32.i32, *r.ldDisp32(0x0f, 0xbe))
#
# Call/return
#
I32.enc(base.call, *r.call_id(0xe8))
I32.enc(base.call_indirect.i32, *r.call_r(0xff, rrr=2))
I32.enc(base.x_return, *r.ret(0xc3))
I64.enc(base.x_return, *r.ret(0xc3))
#
# Branches
#
I32.enc(base.jump, *r.jmpb(0xeb))
I32.enc(base.jump, *r.jmpd(0xe9))
I64.enc(base.jump, *r.jmpb(0xeb))
I64.enc(base.jump, *r.jmpd(0xe9))
I32.enc(base.brz.i32, *r.tjccb(0x74))
I64.enc(base.brz.i64, *r.tjccb.rex(0x74, w=1))
I64.enc(base.brz.i32, *r.tjccb.rex(0x74))
I64.enc(base.brz.i32, *r.tjccb(0x74))
I32.enc(base.brnz.i32, *r.tjccb(0x75))
I64.enc(base.brnz.i64, *r.tjccb.rex(0x75, w=1))
I64.enc(base.brnz.i32, *r.tjccb.rex(0x75))
I64.enc(base.brnz.i32, *r.tjccb(0x75))
#
# Trap as ud2
#
I32.enc(base.trap, *r.noop(0x0f, 0x0b))
I64.enc(base.trap, *r.noop(0x0f, 0x0b))
#
# Comparisons
#
I32.enc(base.icmp.i32, *r.icscc(0x39))
I64.enc(base.icmp.i64, *r.icscc.rex(0x39, w=1))
I64.enc(base.icmp.i32, *r.icscc.rex(0x39))
I64.enc(base.icmp.i32, *r.icscc(0x39))
#
# Convert bool to int.
#
# This assumes that b1 is represented as an 8-bit low register with the value 0
# or 1.
I32.enc(base.bint.i32.b1, *r.urm_abcd(0x0f, 0xb6))
I64.enc(base.bint.i64.b1, *r.urm.rex(0x0f, 0xb6, w=1))
I64.enc(base.bint.i64.b1, *r.urm_abcd(0x0f, 0xb6)) # zext to i64 implicit.
I64.enc(base.bint.i32.b1, *r.urm.rex(0x0f, 0xb6))
I64.enc(base.bint.i32.b1, *r.urm_abcd(0x0f, 0xb6))
# Numerical conversions.
# Converting i64 to i32 is a no-op in 64-bit mode.
I64.enc(base.ireduce.i32.i64, r.null, 0)
I64.enc(base.sextend.i64.i32, *r.urm.rex(0x63, w=1))
# A 32-bit register copy clears the high 32 bits.
I64.enc(base.uextend.i64.i32, *r.umr.rex(0x89))
I64.enc(base.uextend.i64.i32, *r.umr(0x89))
#
# Floating point
#
# cvtsi2ss
I32.enc(base.fcvt_from_sint.f32.i32, *r.furm(0xf3, 0x0f, 0x2A))
I64.enc(base.fcvt_from_sint.f32.i32, *r.furm.rex(0xf3, 0x0f, 0x2A))
I64.enc(base.fcvt_from_sint.f32.i32, *r.furm(0xf3, 0x0f, 0x2A))
# cvtsi2sd
I32.enc(base.fcvt_from_sint.f64.i32, *r.furm(0xf2, 0x0f, 0x2A))
I64.enc(base.fcvt_from_sint.f64.i32, *r.furm.rex(0xf2, 0x0f, 0x2A))
I64.enc(base.fcvt_from_sint.f64.i32, *r.furm(0xf2, 0x0f, 0x2A))
# Binary arithmetic ops.
for inst, opc in [
(base.fadd, 0x58),
(base.fsub, 0x5c),
(base.fmul, 0x59),
(base.fdiv, 0x5e)]:
I32.enc(inst.f32, *r.frm(0xf3, 0x0f, opc))
I64.enc(inst.f32, *r.frm.rex(0xf3, 0x0f, opc))
I64.enc(inst.f32, *r.frm(0xf3, 0x0f, opc))
I32.enc(inst.f64, *r.frm(0xf2, 0x0f, opc))
I64.enc(inst.f64, *r.frm.rex(0xf2, 0x0f, opc))
I64.enc(inst.f64, *r.frm(0xf2, 0x0f, opc))
# Binary bitwise ops.
for inst, opc in [
(base.band, 0x54),
(base.band_not, 0x55),
(base.bor, 0x56),
(base.bxor, 0x57)]:
I32.enc(inst.f32, *r.frm(0x0f, opc))
I64.enc(inst.f32, *r.frm.rex(0x0f, opc))
I64.enc(inst.f32, *r.frm(0x0f, opc))
I32.enc(inst.f64, *r.frm(0x0f, opc))
I64.enc(inst.f64, *r.frm.rex(0x0f, opc))
I64.enc(inst.f64, *r.frm(0x0f, opc))