When an instruction doesn't have a valid encoding for the target ISA, it needs to be legalized. Different legalization strategies can be expressed as separate XFormGroup objects. Make the choice of XFormGroup configurable per CPU mode, rather than depending on a hard-coded default. Add a CPUMode.legalize_type() method which assigns an XFormGroup to controlling type variables and lets you set a default. Add a `legalize` field to Level1Entry so the first-level hash table lookup gives us the configured default legalization action for the instruction's controlling type variable.
657 lines
23 KiB
Python
657 lines
23 KiB
Python
"""
|
|
Generate sources for instruction encoding.
|
|
|
|
The tables and functions generated here support the `TargetISA::encode()`
|
|
function which determines if a given instruction is legal, and if so, it's
|
|
`Encoding` data which consists of a *recipe* and some *encoding* bits.
|
|
|
|
The `encode` function doesn't actually generate the binary machine bits. Each
|
|
recipe has a corresponding hand-written function to do that after registers
|
|
are allocated.
|
|
|
|
This is the information available to us:
|
|
|
|
- The instruction to be encoded as an `Inst` reference.
|
|
- The data-flow graph containing the instruction, giving us access to the
|
|
`InstructionData` representation and the types of all values involved.
|
|
- A target ISA instance with shared and ISA-specific settings for evaluating
|
|
ISA predicates.
|
|
- The currently active CPU mode is determined by the ISA.
|
|
|
|
## Level 1 table lookup
|
|
|
|
The CPU mode provides the first table. The key is the instruction's controlling
|
|
type variable. If the instruction is not polymorphic, use `VOID` for the type
|
|
variable. The table values are level 2 tables.
|
|
|
|
## Level 2 table lookup
|
|
|
|
The level 2 table is keyed by the instruction's opcode. The table values are
|
|
*encoding lists*.
|
|
|
|
The two-level table lookup allows the level 2 tables to be much smaller with
|
|
good locality. Code in any given function usually only uses a few different
|
|
types, so many of the level 2 tables will be cold.
|
|
|
|
## Encoding lists
|
|
|
|
An encoding list is a non-empty sequence of list entries. Each entry has
|
|
one of these forms:
|
|
|
|
1. Instruction predicate, encoding recipe, and encoding bits. If the
|
|
instruction predicate is true, use this recipe and bits.
|
|
2. ISA predicate and skip-count. If the ISA predicate is false, skip the next
|
|
*skip-count* entries in the list. If the skip count is zero, stop
|
|
completely.
|
|
3. Stop. End of list marker. If this is reached, the instruction does not have
|
|
a legal encoding.
|
|
|
|
The instruction predicate is also used to distinguish between polymorphic
|
|
instructions with different types for secondary type variables.
|
|
"""
|
|
from __future__ import absolute_import
|
|
import srcgen
|
|
from constant_hash import compute_quadratic
|
|
from unique_table import UniqueSeqTable
|
|
from collections import OrderedDict, defaultdict
|
|
import math
|
|
import itertools
|
|
from cdsl.registers import RegClass, Register, Stack
|
|
from cdsl.predicates import FieldPredicate
|
|
|
|
try:
|
|
from typing import Sequence, Set, Tuple, List, Dict, Iterable, DefaultDict, TYPE_CHECKING # noqa
|
|
if TYPE_CHECKING:
|
|
from cdsl.isa import TargetISA, OperandConstraint, Encoding, CPUMode, EncRecipe # noqa
|
|
from cdsl.predicates import PredNode, PredLeaf # noqa
|
|
from cdsl.types import ValueType # noqa
|
|
from cdsl.instructions import Instruction # noqa
|
|
from cdsl.xform import XFormGroup # noqa
|
|
except ImportError:
|
|
pass
|
|
|
|
|
|
def emit_instp(instp, fmt):
|
|
# type: (PredNode, srcgen.Formatter) -> None
|
|
"""
|
|
Emit code for matching an instruction predicate against an
|
|
`InstructionData` reference called `inst`.
|
|
|
|
The generated code is a pattern match that falls through if the instruction
|
|
has an unexpected format. This should lead to a panic.
|
|
"""
|
|
iform = instp.predicate_context()
|
|
|
|
# Which fields do we need in the InstructionData pattern match?
|
|
# Collect the leaf predicates.
|
|
leafs = set() # type: Set[PredLeaf]
|
|
instp.predicate_leafs(leafs)
|
|
# All the leafs are FieldPredicate instances. Here we just care about
|
|
# the field names.
|
|
fnames = set() # type: Set[str]
|
|
for p in leafs:
|
|
assert isinstance(p, FieldPredicate)
|
|
fnames.add(p.field.rust_name())
|
|
fields = ', '.join(sorted(fnames))
|
|
|
|
with fmt.indented('{} => {{'.format(instp.number), '}'):
|
|
with fmt.indented(
|
|
'if let InstructionData::{} {{ {}, .. }} = *inst {{'
|
|
.format(iform.name, fields), '}'):
|
|
fmt.line('return {};'.format(instp.rust_predicate(0)))
|
|
|
|
|
|
def emit_instps(instps, fmt):
|
|
# type: (Sequence[PredNode], srcgen.Formatter) -> None
|
|
"""
|
|
Emit a function for matching instruction predicates.
|
|
"""
|
|
|
|
if not instps:
|
|
# If the ISA has no predicates, just emit a stub.
|
|
with fmt.indented(
|
|
'pub fn check_instp(_: &InstructionData, _: u16) ' +
|
|
'-> bool {', '}'):
|
|
fmt.line('unimplemented!()')
|
|
return
|
|
|
|
with fmt.indented(
|
|
'pub fn check_instp(inst: &InstructionData, instp_idx: u16) ' +
|
|
'-> bool {', '}'):
|
|
# The matches emitted by `emit_instp` need this.
|
|
fmt.line('use ir::instructions::InstructionFormat;')
|
|
with fmt.indented('match instp_idx {', '}'):
|
|
for instp in instps:
|
|
emit_instp(instp, fmt)
|
|
fmt.line('_ => panic!("Invalid instruction predicate")')
|
|
|
|
# The match cases will fall through if the instruction format is wrong.
|
|
fmt.line('panic!("Bad format {:?}/{} for instp {}",')
|
|
fmt.line(' InstructionFormat::from(inst),')
|
|
fmt.line(' inst.opcode(),')
|
|
fmt.line(' instp_idx);')
|
|
|
|
|
|
# Encoding lists are represented as u16 arrays.
|
|
CODE_BITS = 16
|
|
PRED_BITS = 12
|
|
PRED_MASK = (1 << PRED_BITS) - 1
|
|
|
|
# 0..CODE_ALWAYS means: Check instruction predicate and use the next two
|
|
# entries as a (recipe, encbits) pair if true. CODE_ALWAYS is the always-true
|
|
# predicate, smaller numbers refer to instruction predicates.
|
|
CODE_ALWAYS = PRED_MASK
|
|
|
|
# Codes above CODE_ALWAYS indicate an ISA predicate to be tested.
|
|
# `x & PRED_MASK` is the ISA predicate number to test.
|
|
# `(x >> PRED_BITS)*3` is the number of u16 table entries to skip if the ISA
|
|
# predicate is false. (The factor of three corresponds to the (inst-pred,
|
|
# recipe, encbits) triples.
|
|
#
|
|
# Finally, CODE_FAIL indicates the end of the list.
|
|
CODE_FAIL = (1 << CODE_BITS) - 1
|
|
|
|
|
|
def seq_doc(enc):
|
|
# type: (Encoding) -> Tuple[Tuple[int, int, int], str]
|
|
"""
|
|
Return a tuple containing u16 representations of the instruction predicate
|
|
an recipe / encbits.
|
|
|
|
Also return a doc string.
|
|
"""
|
|
if enc.instp:
|
|
p = enc.instp.number
|
|
doc = '--> {} when {}'.format(enc, enc.instp)
|
|
else:
|
|
p = CODE_ALWAYS
|
|
doc = '--> {}'.format(enc)
|
|
assert p <= CODE_ALWAYS
|
|
return ((p, enc.recipe.number, enc.encbits), doc)
|
|
|
|
|
|
class EncList(object):
|
|
"""
|
|
List of instructions for encoding a given type + opcode pair.
|
|
|
|
An encoding list contains a sequence of predicates and encoding recipes,
|
|
all encoded as u16 values.
|
|
|
|
:param inst: The instruction opcode being encoded.
|
|
:param ty: Value of the controlling type variable, or `None`.
|
|
"""
|
|
|
|
def __init__(self, inst, ty):
|
|
# type: (Instruction, ValueType) -> None
|
|
self.inst = inst
|
|
self.ty = ty
|
|
# List of applicable Encoding instances.
|
|
# These will have different predicates.
|
|
self.encodings = [] # type: List[Encoding]
|
|
|
|
def name(self):
|
|
# type: () -> str
|
|
name = self.inst.name
|
|
if self.ty:
|
|
name = '{}.{}'.format(name, self.ty.name)
|
|
if self.encodings:
|
|
name += ' ({})'.format(self.encodings[0].cpumode)
|
|
return name
|
|
|
|
def by_isap(self):
|
|
# type: () -> Iterable[Tuple[PredNode, Tuple[Encoding, ...]]]
|
|
"""
|
|
Group the encodings by ISA predicate without reordering them.
|
|
|
|
Yield a sequence of `(isap, (encs...))` tuples where `isap` is the ISA
|
|
predicate or `None`, and `(encs...)` is a tuple of encodings that all
|
|
have the same ISA predicate.
|
|
"""
|
|
maxlen = CODE_FAIL >> PRED_BITS
|
|
for isap, groupi in itertools.groupby(
|
|
self.encodings, lambda enc: enc.isap):
|
|
group = tuple(groupi)
|
|
# This probably never happens, but we can't express more than
|
|
# maxlen encodings per isap.
|
|
while len(group) > maxlen:
|
|
yield (isap, group[0:maxlen])
|
|
group = group[maxlen:]
|
|
yield (isap, group)
|
|
|
|
def encode(self, seq_table, doc_table, isa):
|
|
# type: (UniqueSeqTable, DefaultDict[int, List[str]], TargetISA) -> None # noqa
|
|
"""
|
|
Encode this list as a sequence of u16 numbers.
|
|
|
|
Adds the sequence to `seq_table` and records the returned offset as
|
|
`self.offset`.
|
|
|
|
Adds comment lines to `doc_table` keyed by seq_table offsets.
|
|
"""
|
|
words = list() # type: List[int]
|
|
docs = list() # type: List[Tuple[int, str]]
|
|
|
|
# Group our encodings by isap.
|
|
for isap, group in self.by_isap():
|
|
if isap:
|
|
# We have an ISA predicate covering `glen` encodings.
|
|
pnum = isa.settings.predicate_number[isap]
|
|
glen = len(group)
|
|
doc = 'skip {}x3 unless {}'.format(glen, isap)
|
|
docs.append((len(words), doc))
|
|
words.append((glen << PRED_BITS) | pnum)
|
|
|
|
for enc in group:
|
|
seq, doc = seq_doc(enc)
|
|
docs.append((len(words), doc))
|
|
words.extend(seq)
|
|
|
|
# Terminate the list.
|
|
words.append(CODE_FAIL)
|
|
|
|
self.offset = seq_table.add(words)
|
|
|
|
# Add doc comments.
|
|
doc_table[self.offset].append(
|
|
'{:06x}: {}'.format(self.offset, self.name()))
|
|
for pos, doc in docs:
|
|
doc_table[self.offset + pos].append(doc)
|
|
|
|
|
|
class Level2Table(object):
|
|
"""
|
|
Level 2 table mapping instruction opcodes to `EncList` objects.
|
|
|
|
A level 2 table can be completely empty if it only holds a custom
|
|
legalization action for `ty`.
|
|
|
|
:param ty: Controlling type variable of all entries, or `None`.
|
|
:param legalize: Default legalize action for `ty`.
|
|
"""
|
|
|
|
def __init__(self, ty, legalize):
|
|
# type: (ValueType, XFormGroup) -> None
|
|
self.ty = ty
|
|
self.legalize = legalize
|
|
# Maps inst -> EncList
|
|
self.lists = OrderedDict() # type: OrderedDict[Instruction, EncList]
|
|
|
|
def __getitem__(self, inst):
|
|
# type: (Instruction) -> EncList
|
|
ls = self.lists.get(inst)
|
|
if not ls:
|
|
ls = EncList(inst, self.ty)
|
|
self.lists[inst] = ls
|
|
return ls
|
|
|
|
def is_empty(self):
|
|
# type: () -> bool
|
|
"""
|
|
Check if this level 2 table is completely empty.
|
|
|
|
This can happen if the associated type simply has an overridden
|
|
legalize action.
|
|
"""
|
|
return len(self.lists) == 0
|
|
|
|
def enclists(self):
|
|
# type: () -> Iterable[EncList]
|
|
return iter(self.lists.values())
|
|
|
|
def layout_hashtable(self, level2_hashtables, level2_doc):
|
|
# type: (List[EncList], DefaultDict[int, List[str]]) -> None
|
|
"""
|
|
Compute the hash table mapping opcode -> enclist.
|
|
|
|
Append the hash table to `level2_hashtables` and record the offset.
|
|
"""
|
|
def hash_func(enclist):
|
|
# type: (EncList) -> int
|
|
return enclist.inst.number
|
|
hash_table = compute_quadratic(self.lists.values(), hash_func)
|
|
|
|
self.hash_table_offset = len(level2_hashtables)
|
|
self.hash_table_len = len(hash_table)
|
|
|
|
level2_doc[self.hash_table_offset].append(
|
|
'{:06x}: {}, {} entries'.format(
|
|
self.hash_table_offset,
|
|
self.ty,
|
|
self.hash_table_len))
|
|
level2_hashtables.extend(hash_table)
|
|
|
|
|
|
class Level1Table(object):
|
|
"""
|
|
Level 1 table mapping types to `Level2` objects.
|
|
"""
|
|
|
|
def __init__(self, cpumode):
|
|
# type: (CPUMode) -> None
|
|
self.cpumode = cpumode
|
|
self.tables = OrderedDict() # type: OrderedDict[ValueType, Level2Table] # noqa
|
|
|
|
if cpumode.default_legalize is None:
|
|
raise AssertionError(
|
|
'CPU mode {}.{} needs a default legalize action'
|
|
.format(cpumode.isa, cpumode))
|
|
self.legalize_code = cpumode.isa.legalize_code(
|
|
cpumode.default_legalize)
|
|
|
|
def __getitem__(self, ty):
|
|
# type: (ValueType) -> Level2Table
|
|
tbl = self.tables.get(ty)
|
|
if not tbl:
|
|
legalize = self.cpumode.get_legalize_action(ty)
|
|
# Allocate a legalization code in a predictable order.
|
|
self.cpumode.isa.legalize_code(legalize)
|
|
tbl = Level2Table(ty, legalize)
|
|
self.tables[ty] = tbl
|
|
return tbl
|
|
|
|
def l2tables(self):
|
|
# type: () -> Iterable[Level2Table]
|
|
return (l2 for l2 in self.tables.values() if not l2.is_empty())
|
|
|
|
|
|
def make_tables(cpumode):
|
|
# type: (CPUMode) -> Level1Table
|
|
"""
|
|
Generate tables for `cpumode` as described above.
|
|
"""
|
|
table = Level1Table(cpumode)
|
|
for enc in cpumode.encodings:
|
|
ty = enc.ctrl_typevar()
|
|
inst = enc.inst
|
|
table[ty][inst].encodings.append(enc)
|
|
|
|
# Ensure there are level 1 table entries for all types with a custom
|
|
# legalize action. Try to be stable relative to dict ordering.
|
|
for ty in sorted(cpumode.type_legalize.keys(), key=str):
|
|
table[ty]
|
|
|
|
return table
|
|
|
|
|
|
def encode_enclists(level1, seq_table, doc_table, isa):
|
|
# type: (Level1Table, UniqueSeqTable, DefaultDict[int, List[str]], TargetISA) -> None # noqa
|
|
"""
|
|
Compute encodings and doc comments for encoding lists in `level1`.
|
|
"""
|
|
for level2 in level1.l2tables():
|
|
for enclist in level2.enclists():
|
|
enclist.encode(seq_table, doc_table, isa)
|
|
|
|
|
|
def emit_enclists(seq_table, doc_table, fmt):
|
|
# type: (UniqueSeqTable, DefaultDict[int, List[str]], srcgen.Formatter) -> None # noqa
|
|
with fmt.indented(
|
|
'pub static ENCLISTS: [u16; {}] = ['.format(len(seq_table.table)),
|
|
'];'):
|
|
line = ''
|
|
for idx, entry in enumerate(seq_table.table):
|
|
if idx in doc_table:
|
|
if line:
|
|
fmt.line(line)
|
|
line = ''
|
|
for doc in doc_table[idx]:
|
|
fmt.comment(doc)
|
|
line += '{:#06x}, '.format(entry)
|
|
if line:
|
|
fmt.line(line)
|
|
|
|
|
|
def encode_level2_hashtables(level1, level2_hashtables, level2_doc):
|
|
# type: (Level1Table, List[EncList], DefaultDict[int, List[str]]) -> None
|
|
for level2 in level1.l2tables():
|
|
level2.layout_hashtable(level2_hashtables, level2_doc)
|
|
|
|
|
|
def emit_level2_hashtables(level2_hashtables, offt, level2_doc, fmt):
|
|
# type: (List[EncList], str, DefaultDict[int, List[str]], srcgen.Formatter) -> None # noqa
|
|
"""
|
|
Emit the big concatenation of level 2 hash tables.
|
|
"""
|
|
with fmt.indented(
|
|
'pub static LEVEL2: [Level2Entry<{}>; {}] = ['
|
|
.format(offt, len(level2_hashtables)),
|
|
'];'):
|
|
for offset, entry in enumerate(level2_hashtables):
|
|
if offset in level2_doc:
|
|
for doc in level2_doc[offset]:
|
|
fmt.comment(doc)
|
|
if entry:
|
|
fmt.line(
|
|
'Level2Entry ' +
|
|
'{{ opcode: Some(Opcode::{}), offset: {:#08x} }},'
|
|
.format(entry.inst.camel_name, entry.offset))
|
|
else:
|
|
fmt.line(
|
|
'Level2Entry ' +
|
|
'{ opcode: None, offset: 0 },')
|
|
|
|
|
|
def emit_level1_hashtable(cpumode, level1, offt, fmt):
|
|
# type: (CPUMode, Level1Table, str, srcgen.Formatter) -> None # noqa
|
|
"""
|
|
Emit a level 1 hash table for `cpumode`.
|
|
"""
|
|
def hash_func(level2):
|
|
# type: (Level2Table) -> int
|
|
return level2.ty.number if level2.ty is not None else 0
|
|
hash_table = compute_quadratic(level1.tables.values(), hash_func)
|
|
|
|
with fmt.indented(
|
|
'pub static LEVEL1_{}: [Level1Entry<{}>; {}] = ['
|
|
.format(cpumode.name.upper(), offt, len(hash_table)), '];'):
|
|
for level2 in hash_table:
|
|
# Empty hash table entry. Include the default legalization action.
|
|
if not level2:
|
|
fmt.format(
|
|
'Level1Entry {{ ty: types::VOID, log2len: !0, '
|
|
'offset: 0, legalize: {} }},',
|
|
level1.legalize_code)
|
|
continue
|
|
|
|
if level2.ty is not None:
|
|
tyname = level2.ty.rust_name()
|
|
else:
|
|
tyname = 'types::VOID'
|
|
|
|
lcode = cpumode.isa.legalize_code(level2.legalize)
|
|
|
|
# Empty level 2 table: Only a specialized legalization action, no
|
|
# actual table.
|
|
# Set an offset that is out of bounds, but make sure it doesn't
|
|
# overflow its type when adding `1<<log2len`.
|
|
if level2.is_empty():
|
|
fmt.format(
|
|
'Level1Entry {{ '
|
|
'ty: {}, log2len: 0, offset: !0 - 1, '
|
|
'legalize: {} }}, // {}',
|
|
tyname, lcode, level2.legalize)
|
|
continue
|
|
|
|
# Proper level 2 hash table.
|
|
l2l = int(math.log(level2.hash_table_len, 2))
|
|
assert l2l > 0, "Level2 hash table too small"
|
|
fmt.format(
|
|
'Level1Entry {{ '
|
|
'ty: {}, log2len: {}, offset: {:#08x}, '
|
|
'legalize: {} }}, // {}',
|
|
tyname, l2l, level2.hash_table_offset,
|
|
lcode, level2.legalize)
|
|
|
|
|
|
def offset_type(length):
|
|
# type: (int) -> str
|
|
"""
|
|
Compute an appropriate Rust integer type to use for offsets into a table of
|
|
the given length.
|
|
"""
|
|
if length <= 0x10000:
|
|
return 'u16'
|
|
else:
|
|
assert length <= 0x100000000, "Table too big"
|
|
return 'u32'
|
|
|
|
|
|
def emit_recipe_names(isa, fmt):
|
|
# type: (TargetISA, srcgen.Formatter) -> None
|
|
"""
|
|
Emit a table of encoding recipe names keyed by recipe number.
|
|
|
|
This is used for pretty-printing encodings.
|
|
"""
|
|
with fmt.indented(
|
|
'static RECIPE_NAMES: [&str; {}] = ['
|
|
.format(len(isa.all_recipes)), '];'):
|
|
for r in isa.all_recipes:
|
|
fmt.line('"{}",'.format(r.name))
|
|
|
|
|
|
def emit_recipe_constraints(isa, fmt):
|
|
# type: (TargetISA, srcgen.Formatter) -> None
|
|
"""
|
|
Emit a table of encoding recipe operand constraints keyed by recipe number.
|
|
|
|
These are used by the register allocator to pick registers that can be
|
|
properly encoded.
|
|
"""
|
|
with fmt.indented(
|
|
'static RECIPE_CONSTRAINTS: [RecipeConstraints; {}] = ['
|
|
.format(len(isa.all_recipes)), '];'):
|
|
for r in isa.all_recipes:
|
|
fmt.comment(r.name)
|
|
tied_i2o, tied_o2i = r.ties()
|
|
with fmt.indented('RecipeConstraints {', '},'):
|
|
emit_operand_constraints(r, r.ins, 'ins', tied_i2o, fmt)
|
|
emit_operand_constraints(r, r.outs, 'outs', tied_o2i, fmt)
|
|
fmt.format(
|
|
'fixed_ins: {},',
|
|
str(any(isinstance(c, Register)
|
|
for c in r.ins)).lower())
|
|
fmt.format(
|
|
'fixed_outs: {},',
|
|
str(any(isinstance(c, Register)
|
|
for c in r.outs)).lower())
|
|
fmt.format('tied_ops: {},', str(bool(tied_i2o)).lower())
|
|
|
|
|
|
def emit_operand_constraints(
|
|
recipe, # type: EncRecipe
|
|
seq, # type: Sequence[OperandConstraint]
|
|
field, # type: str
|
|
tied, # type: Dict[int, int]
|
|
fmt # type: srcgen.Formatter
|
|
):
|
|
# type: (...) -> None
|
|
"""
|
|
Emit a struct field initializer for an array of operand constraints.
|
|
"""
|
|
if len(seq) == 0:
|
|
fmt.line('{}: &[],'.format(field))
|
|
return
|
|
with fmt.indented('{}: &['.format(field), '],'):
|
|
for n, cons in enumerate(seq):
|
|
with fmt.indented('OperandConstraint {', '},'):
|
|
if isinstance(cons, RegClass):
|
|
if n in tied:
|
|
fmt.format('kind: ConstraintKind::Tied({}),', tied[n])
|
|
else:
|
|
fmt.line('kind: ConstraintKind::Reg,')
|
|
fmt.format('regclass: {},', cons)
|
|
elif isinstance(cons, Register):
|
|
assert n not in tied, "Can't tie fixed register operand"
|
|
fmt.format(
|
|
'kind: ConstraintKind::FixedReg({}),', cons.unit)
|
|
fmt.format('regclass: {},', cons.regclass)
|
|
elif isinstance(cons, int):
|
|
# This is a tied output constraint. It should never happen
|
|
# for input constraints.
|
|
assert cons == tied[n], "Invalid tied constraint"
|
|
fmt.format('kind: ConstraintKind::Tied({}),', cons)
|
|
fmt.format('regclass: {},', recipe.ins[cons])
|
|
elif isinstance(cons, Stack):
|
|
assert n not in tied, "Can't tie stack operand"
|
|
fmt.line('kind: ConstraintKind::Stack,')
|
|
fmt.format('regclass: {},', cons.regclass)
|
|
else:
|
|
raise AssertionError(
|
|
'Unsupported constraint {}'.format(cons))
|
|
|
|
|
|
def emit_recipe_sizing(isa, fmt):
|
|
# type: (TargetISA, srcgen.Formatter) -> None
|
|
"""
|
|
Emit a table of encoding recipe code size information.
|
|
"""
|
|
with fmt.indented(
|
|
'static RECIPE_SIZING: [RecipeSizing; {}] = ['
|
|
.format(len(isa.all_recipes)), '];'):
|
|
for r in isa.all_recipes:
|
|
fmt.comment(r.name)
|
|
with fmt.indented('RecipeSizing {', '},'):
|
|
fmt.format('bytes: {},', r.size)
|
|
if r.branch_range:
|
|
fmt.format(
|
|
'branch_range: '
|
|
'Some(BranchRange {{ origin: {}, bits: {} }}),',
|
|
*r.branch_range)
|
|
else:
|
|
fmt.line('branch_range: None,')
|
|
|
|
|
|
def gen_isa(isa, fmt):
|
|
# type: (TargetISA, srcgen.Formatter) -> None
|
|
# First assign numbers to relevant instruction predicates and generate the
|
|
# check_instp() function..
|
|
emit_instps(isa.all_instps, fmt)
|
|
|
|
# Level1 tables, one per CPU mode
|
|
level1_tables = dict()
|
|
|
|
# Tables for enclists with comments.
|
|
seq_table = UniqueSeqTable()
|
|
doc_table = defaultdict(list) # type: DefaultDict[int, List[str]]
|
|
|
|
# Single table containing all the level2 hash tables.
|
|
level2_hashtables = list() # type: List[EncList]
|
|
level2_doc = defaultdict(list) # type: DefaultDict[int, List[str]]
|
|
|
|
for cpumode in isa.cpumodes:
|
|
level2_doc[len(level2_hashtables)].append(cpumode.name)
|
|
level1 = make_tables(cpumode)
|
|
level1_tables[cpumode] = level1
|
|
encode_enclists(level1, seq_table, doc_table, isa)
|
|
encode_level2_hashtables(level1, level2_hashtables, level2_doc)
|
|
|
|
# Level 1 table encodes offsets into the level 2 table.
|
|
level1_offt = offset_type(len(level2_hashtables))
|
|
# Level 2 tables encodes offsets into seq_table.
|
|
level2_offt = offset_type(len(seq_table.table))
|
|
|
|
emit_enclists(seq_table, doc_table, fmt)
|
|
emit_level2_hashtables(level2_hashtables, level2_offt, level2_doc, fmt)
|
|
for cpumode in isa.cpumodes:
|
|
emit_level1_hashtable(
|
|
cpumode, level1_tables[cpumode], level1_offt, fmt)
|
|
|
|
emit_recipe_names(isa, fmt)
|
|
emit_recipe_constraints(isa, fmt)
|
|
emit_recipe_sizing(isa, fmt)
|
|
|
|
# Finally, tie it all together in an `EncInfo`.
|
|
with fmt.indented('pub static INFO: EncInfo = EncInfo {', '};'):
|
|
fmt.line('constraints: &RECIPE_CONSTRAINTS,')
|
|
fmt.line('sizing: &RECIPE_SIZING,')
|
|
fmt.line('names: &RECIPE_NAMES,')
|
|
|
|
|
|
def generate(isas, out_dir):
|
|
# type: (Sequence[TargetISA], str) -> None
|
|
for isa in isas:
|
|
fmt = srcgen.Formatter()
|
|
gen_isa(isa, fmt)
|
|
fmt.update_file('encoding-{}.rs'.format(isa.name), out_dir)
|