2411 lines
94 KiB
Rust
2411 lines
94 KiB
Rust
//! Implementation of a vanilla ABI, shared between several machines. The
|
|
//! implementation here assumes that arguments will be passed in registers
|
|
//! first, then additional args on the stack; that the stack grows downward,
|
|
//! contains a standard frame (return address and frame pointer), and the
|
|
//! compiler is otherwise free to allocate space below that with its choice of
|
|
//! layout; and that the machine has some notion of caller- and callee-save
|
|
//! registers. Most modern machines, e.g. x86-64 and AArch64, should fit this
|
|
//! mold and thus both of these backends use this shared implementation.
|
|
//!
|
|
//! See the documentation in specific machine backends for the "instantiation"
|
|
//! of this generic ABI, i.e., which registers are caller/callee-save, arguments
|
|
//! and return values, and any other special requirements.
|
|
//!
|
|
//! For now the implementation here assumes a 64-bit machine, but we intend to
|
|
//! make this 32/64-bit-generic shortly.
|
|
//!
|
|
//! # Vanilla ABI
|
|
//!
|
|
//! First, arguments and return values are passed in registers up to a certain
|
|
//! fixed count, after which they overflow onto the stack. Multiple return
|
|
//! values either fit in registers, or are returned in a separate return-value
|
|
//! area on the stack, given by a hidden extra parameter.
|
|
//!
|
|
//! Note that the exact stack layout is up to us. We settled on the
|
|
//! below design based on several requirements. In particular, we need
|
|
//! to be able to generate instructions (or instruction sequences) to
|
|
//! access arguments, stack slots, and spill slots before we know how
|
|
//! many spill slots or clobber-saves there will be, because of our
|
|
//! pass structure. We also prefer positive offsets to negative
|
|
//! offsets because of an asymmetry in some machines' addressing modes
|
|
//! (e.g., on AArch64, positive offsets have a larger possible range
|
|
//! without a long-form sequence to synthesize an arbitrary
|
|
//! offset). We also need clobber-save registers to be "near" the
|
|
//! frame pointer: Windows unwind information requires it to be within
|
|
//! 240 bytes of RBP. Finally, it is not allowed to access memory
|
|
//! below the current SP value.
|
|
//!
|
|
//! We assume that a prologue first pushes the frame pointer (and
|
|
//! return address above that, if the machine does not do that in
|
|
//! hardware). We set FP to point to this two-word frame record. We
|
|
//! store all other frame slots below this two-word frame record, with
|
|
//! the stack pointer remaining at or below this fixed frame storage
|
|
//! for the rest of the function. We can then access frame storage
|
|
//! slots using positive offsets from SP. In order to allow codegen
|
|
//! for the latter before knowing how SP might be adjusted around
|
|
//! callsites, we implement a "nominal SP" tracking feature by which a
|
|
//! fixup (distance between actual SP and a "nominal" SP) is known at
|
|
//! each instruction.
|
|
//!
|
|
//! Note that if we ever support dynamic stack-space allocation (for
|
|
//! `alloca`), we will need a way to reference spill slots and stack
|
|
//! slots without "nominal SP", because we will no longer be able to
|
|
//! know a static offset from SP to the slots at any particular
|
|
//! program point. Probably the best solution at that point will be to
|
|
//! revert to using the frame pointer as the reference for all slots,
|
|
//! and creating a "nominal FP" synthetic addressing mode (analogous
|
|
//! to "nominal SP" today) to allow generating spill/reload and
|
|
//! stackslot accesses before we know how large the clobber-saves will
|
|
//! be.
|
|
//!
|
|
//! # Stack Layout
|
|
//!
|
|
//! The stack looks like:
|
|
//!
|
|
//! ```plain
|
|
//! (high address)
|
|
//!
|
|
//! +---------------------------+
|
|
//! | ... |
|
|
//! | stack args |
|
|
//! | (accessed via FP) |
|
|
//! +---------------------------+
|
|
//! SP at function entry -----> | return address |
|
|
//! +---------------------------+
|
|
//! FP after prologue --------> | FP (pushed by prologue) |
|
|
//! +---------------------------+
|
|
//! | ... |
|
|
//! | clobbered callee-saves |
|
|
//! unwind-frame base ----> | (pushed by prologue) |
|
|
//! +---------------------------+
|
|
//! | ... |
|
|
//! | spill slots |
|
|
//! | (accessed via nominal SP) |
|
|
//! | ... |
|
|
//! | stack slots |
|
|
//! | (accessed via nominal SP) |
|
|
//! nominal SP ---------------> | (alloc'd by prologue) |
|
|
//! (SP at end of prologue) +---------------------------+
|
|
//! | [alignment as needed] |
|
|
//! | ... |
|
|
//! | args for call |
|
|
//! SP before making a call --> | (pushed at callsite) |
|
|
//! +---------------------------+
|
|
//!
|
|
//! (low address)
|
|
//! ```
|
|
//!
|
|
//! # Multi-value Returns
|
|
//!
|
|
//! We support multi-value returns by using multiple return-value
|
|
//! registers. In some cases this is an extension of the base system
|
|
//! ABI. See each platform's `abi.rs` implementation for details.
|
|
|
|
use crate::binemit::StackMap;
|
|
use crate::entity::{PrimaryMap, SecondaryMap};
|
|
use crate::fx::FxHashMap;
|
|
use crate::ir::types::*;
|
|
use crate::ir::{ArgumentExtension, ArgumentPurpose, DynamicStackSlot, Signature, StackSlot};
|
|
use crate::isa::TargetIsa;
|
|
use crate::settings;
|
|
use crate::settings::ProbestackStrategy;
|
|
use crate::CodegenResult;
|
|
use crate::{ir, isa};
|
|
use crate::{machinst::*, trace};
|
|
use alloc::vec::Vec;
|
|
use regalloc2::{PReg, PRegSet};
|
|
use smallvec::{smallvec, SmallVec};
|
|
use std::collections::HashMap;
|
|
use std::convert::TryFrom;
|
|
use std::marker::PhantomData;
|
|
use std::mem;
|
|
|
|
/// A small vector of instructions (with some reasonable size); appropriate for
|
|
/// a small fixed sequence implementing one operation.
|
|
pub type SmallInstVec<I> = SmallVec<[I; 4]>;
|
|
|
|
/// A type used by backends to track argument-binding info in the "args"
|
|
/// pseudoinst. The pseudoinst holds a vec of `ArgPair` structs.
|
|
#[derive(Clone, Debug)]
|
|
pub struct ArgPair {
|
|
/// The vreg that is defined by this args pseudoinst.
|
|
pub vreg: Writable<Reg>,
|
|
/// The preg that the arg arrives in; this constrains the vreg's
|
|
/// placement at the pseudoinst.
|
|
pub preg: Reg,
|
|
}
|
|
|
|
/// A type used by backends to track return register binding info in the "ret"
|
|
/// pseudoinst. The pseudoinst holds a vec of `RetPair` structs.
|
|
#[derive(Clone, Debug)]
|
|
pub struct RetPair {
|
|
/// The vreg that is returned by this pseudionst.
|
|
pub vreg: Reg,
|
|
/// The preg that the arg is returned through; this constrains the vreg's
|
|
/// placement at the pseudoinst.
|
|
pub preg: Reg,
|
|
}
|
|
|
|
/// A location for (part of) an argument or return value. These "storage slots"
|
|
/// are specified for each register-sized part of an argument.
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
|
pub enum ABIArgSlot {
|
|
/// In a real register.
|
|
Reg {
|
|
/// Register that holds this arg.
|
|
reg: RealReg,
|
|
/// Value type of this arg.
|
|
ty: ir::Type,
|
|
/// Should this arg be zero- or sign-extended?
|
|
extension: ir::ArgumentExtension,
|
|
},
|
|
/// Arguments only: on stack, at given offset from SP at entry.
|
|
Stack {
|
|
/// Offset of this arg relative to the base of stack args.
|
|
offset: i64,
|
|
/// Value type of this arg.
|
|
ty: ir::Type,
|
|
/// Should this arg be zero- or sign-extended?
|
|
extension: ir::ArgumentExtension,
|
|
},
|
|
}
|
|
|
|
impl ABIArgSlot {
|
|
/// The type of the value that will be stored in this slot.
|
|
pub fn get_type(&self) -> ir::Type {
|
|
match self {
|
|
ABIArgSlot::Reg { ty, .. } => *ty,
|
|
ABIArgSlot::Stack { ty, .. } => *ty,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A vector of `ABIArgSlot`s. Inline capacity for one element because basically
|
|
/// 100% of values use one slot. Only `i128`s need multiple slots, and they are
|
|
/// super rare (and never happen with Wasm).
|
|
pub type ABIArgSlotVec = SmallVec<[ABIArgSlot; 1]>;
|
|
|
|
/// An ABIArg is composed of one or more parts. This allows for a CLIF-level
|
|
/// Value to be passed with its parts in more than one location at the ABI
|
|
/// level. For example, a 128-bit integer may be passed in two 64-bit registers,
|
|
/// or even a 64-bit register and a 64-bit stack slot, on a 64-bit machine. The
|
|
/// number of "parts" should correspond to the number of registers used to store
|
|
/// this type according to the machine backend.
|
|
///
|
|
/// As an invariant, the `purpose` for every part must match. As a further
|
|
/// invariant, a `StructArg` part cannot appear with any other part.
|
|
#[derive(Clone, Debug)]
|
|
pub enum ABIArg {
|
|
/// Storage slots (registers or stack locations) for each part of the
|
|
/// argument value. The number of slots must equal the number of register
|
|
/// parts used to store a value of this type.
|
|
Slots {
|
|
/// Slots, one per register part.
|
|
slots: ABIArgSlotVec,
|
|
/// Purpose of this arg.
|
|
purpose: ir::ArgumentPurpose,
|
|
},
|
|
/// Structure argument. We reserve stack space for it, but the CLIF-level
|
|
/// semantics are a little weird: the value passed to the call instruction,
|
|
/// and received in the corresponding block param, is a *pointer*. On the
|
|
/// caller side, we memcpy the data from the passed-in pointer to the stack
|
|
/// area; on the callee side, we compute a pointer to this stack area and
|
|
/// provide that as the argument's value.
|
|
StructArg {
|
|
/// Register or stack slot holding a pointer to the buffer as passed
|
|
/// by the caller to the callee. If None, the ABI defines the buffer
|
|
/// to reside at a well-known location (i.e. at `offset` below).
|
|
pointer: Option<ABIArgSlot>,
|
|
/// Offset of this arg relative to base of stack args.
|
|
offset: i64,
|
|
/// Size of this arg on the stack.
|
|
size: u64,
|
|
/// Purpose of this arg.
|
|
purpose: ir::ArgumentPurpose,
|
|
},
|
|
/// Implicit argument. Similar to a StructArg, except that we have the
|
|
/// target type, not a pointer type, at the CLIF-level. This argument is
|
|
/// still being passed via reference implicitly.
|
|
ImplicitPtrArg {
|
|
/// Register or stack slot holding a pointer to the buffer.
|
|
pointer: ABIArgSlot,
|
|
/// Offset of the argument buffer.
|
|
offset: i64,
|
|
/// Type of the implicit argument.
|
|
ty: Type,
|
|
/// Purpose of this arg.
|
|
purpose: ir::ArgumentPurpose,
|
|
},
|
|
}
|
|
|
|
impl ABIArg {
|
|
/// Create an ABIArg from one register.
|
|
pub fn reg(
|
|
reg: RealReg,
|
|
ty: ir::Type,
|
|
extension: ir::ArgumentExtension,
|
|
purpose: ir::ArgumentPurpose,
|
|
) -> ABIArg {
|
|
ABIArg::Slots {
|
|
slots: smallvec![ABIArgSlot::Reg { reg, ty, extension }],
|
|
purpose,
|
|
}
|
|
}
|
|
|
|
/// Create an ABIArg from one stack slot.
|
|
pub fn stack(
|
|
offset: i64,
|
|
ty: ir::Type,
|
|
extension: ir::ArgumentExtension,
|
|
purpose: ir::ArgumentPurpose,
|
|
) -> ABIArg {
|
|
ABIArg::Slots {
|
|
slots: smallvec![ABIArgSlot::Stack {
|
|
offset,
|
|
ty,
|
|
extension,
|
|
}],
|
|
purpose,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Are we computing information about arguments or return values? Much of the
|
|
/// handling is factored out into common routines; this enum allows us to
|
|
/// distinguish which case we're handling.
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
|
pub enum ArgsOrRets {
|
|
/// Arguments.
|
|
Args,
|
|
/// Return values.
|
|
Rets,
|
|
}
|
|
|
|
/// Abstract location for a machine-specific ABI impl to translate into the
|
|
/// appropriate addressing mode.
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub enum StackAMode {
|
|
/// Offset from the frame pointer, possibly making use of a specific type
|
|
/// for a scaled indexing operation.
|
|
FPOffset(i64, ir::Type),
|
|
/// Offset from the nominal stack pointer, possibly making use of a specific
|
|
/// type for a scaled indexing operation.
|
|
NominalSPOffset(i64, ir::Type),
|
|
/// Offset from the real stack pointer, possibly making use of a specific
|
|
/// type for a scaled indexing operation.
|
|
SPOffset(i64, ir::Type),
|
|
}
|
|
|
|
impl StackAMode {
|
|
/// Offset by an addend.
|
|
pub fn offset(self, addend: i64) -> Self {
|
|
match self {
|
|
StackAMode::FPOffset(off, ty) => StackAMode::FPOffset(off + addend, ty),
|
|
StackAMode::NominalSPOffset(off, ty) => StackAMode::NominalSPOffset(off + addend, ty),
|
|
StackAMode::SPOffset(off, ty) => StackAMode::SPOffset(off + addend, ty),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Trait implemented by machine-specific backend to represent ISA flags.
|
|
pub trait IsaFlags: Clone {
|
|
/// Get a flag indicating whether forward-edge CFI is enabled.
|
|
fn is_forward_edge_cfi_enabled(&self) -> bool {
|
|
false
|
|
}
|
|
}
|
|
|
|
/// Used as an out-parameter to accumulate a sequence of `ABIArg`s in
|
|
/// `ABIMachineSpec::compute_arg_locs`. Wraps the shared allocation for all
|
|
/// `ABIArg`s in `SigSet` and exposes just the args for the current
|
|
/// `compute_arg_locs` call.
|
|
pub struct ArgsAccumulator<'a> {
|
|
sig_set_abi_args: &'a mut Vec<ABIArg>,
|
|
start: usize,
|
|
}
|
|
|
|
impl<'a> ArgsAccumulator<'a> {
|
|
fn new(sig_set_abi_args: &'a mut Vec<ABIArg>) -> Self {
|
|
let start = sig_set_abi_args.len();
|
|
ArgsAccumulator {
|
|
sig_set_abi_args,
|
|
start,
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn push(&mut self, arg: ABIArg) {
|
|
self.sig_set_abi_args.push(arg)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn args(&self) -> &[ABIArg] {
|
|
&self.sig_set_abi_args[self.start..]
|
|
}
|
|
|
|
#[inline]
|
|
pub fn args_mut(&mut self) -> &mut [ABIArg] {
|
|
&mut self.sig_set_abi_args[self.start..]
|
|
}
|
|
}
|
|
|
|
/// Trait implemented by machine-specific backend to provide information about
|
|
/// register assignments and to allow generating the specific instructions for
|
|
/// stack loads/saves, prologues/epilogues, etc.
|
|
pub trait ABIMachineSpec {
|
|
/// The instruction type.
|
|
type I: VCodeInst;
|
|
|
|
/// The ISA flags type.
|
|
type F: IsaFlags;
|
|
|
|
/// Returns the number of bits in a word, that is 32/64 for 32/64-bit architecture.
|
|
fn word_bits() -> u32;
|
|
|
|
/// Returns the number of bytes in a word.
|
|
fn word_bytes() -> u32 {
|
|
return Self::word_bits() / 8;
|
|
}
|
|
|
|
/// Returns word-size integer type.
|
|
fn word_type() -> Type {
|
|
match Self::word_bits() {
|
|
32 => I32,
|
|
64 => I64,
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
|
|
/// Returns word register class.
|
|
fn word_reg_class() -> RegClass {
|
|
RegClass::Int
|
|
}
|
|
|
|
/// Returns required stack alignment in bytes.
|
|
fn stack_align(call_conv: isa::CallConv) -> u32;
|
|
|
|
/// Process a list of parameters or return values and allocate them to registers
|
|
/// and stack slots.
|
|
///
|
|
/// The argument locations should be pushed onto the given `ArgsAccumulator`
|
|
/// in order.
|
|
///
|
|
/// Returns the stack-space used (rounded up to as alignment requires), and
|
|
/// if `add_ret_area_ptr` was passed, the index of the extra synthetic arg
|
|
/// that was added.
|
|
fn compute_arg_locs<'a, I>(
|
|
call_conv: isa::CallConv,
|
|
flags: &settings::Flags,
|
|
params: I,
|
|
args_or_rets: ArgsOrRets,
|
|
add_ret_area_ptr: bool,
|
|
args: ArgsAccumulator<'_>,
|
|
) -> CodegenResult<(u32, Option<usize>)>
|
|
where
|
|
I: IntoIterator<Item = &'a ir::AbiParam>;
|
|
|
|
/// Returns the offset from FP to the argument area, i.e., jumping over the saved FP, return
|
|
/// address, and maybe other standard elements depending on ABI (e.g. Wasm TLS reg).
|
|
fn fp_to_arg_offset(call_conv: isa::CallConv, flags: &settings::Flags) -> i64;
|
|
|
|
/// Generate a load from the stack.
|
|
fn gen_load_stack(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;
|
|
|
|
/// Generate a store to the stack.
|
|
fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Self::I;
|
|
|
|
/// Generate a move.
|
|
fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self::I;
|
|
|
|
/// Generate an integer-extend operation.
|
|
fn gen_extend(
|
|
to_reg: Writable<Reg>,
|
|
from_reg: Reg,
|
|
is_signed: bool,
|
|
from_bits: u8,
|
|
to_bits: u8,
|
|
) -> Self::I;
|
|
|
|
/// Generate an "args" pseudo-instruction to capture input args in
|
|
/// registers.
|
|
fn gen_args(isa_flags: &Self::F, args: Vec<ArgPair>) -> Self::I;
|
|
|
|
/// Generate a return instruction.
|
|
fn gen_ret(setup_frame: bool, isa_flags: &Self::F, rets: Vec<RetPair>) -> Self::I;
|
|
|
|
/// Generate an add-with-immediate. Note that even if this uses a scratch
|
|
/// register, it must satisfy two requirements:
|
|
///
|
|
/// - The add-imm sequence must only clobber caller-save registers, because
|
|
/// it will be placed in the prologue before the clobbered callee-save
|
|
/// registers are saved.
|
|
///
|
|
/// - The add-imm sequence must work correctly when `from_reg` and/or
|
|
/// `into_reg` are the register returned by `get_stacklimit_reg()`.
|
|
fn gen_add_imm(into_reg: Writable<Reg>, from_reg: Reg, imm: u32) -> SmallInstVec<Self::I>;
|
|
|
|
/// Generate a sequence that traps with a `TrapCode::StackOverflow` code if
|
|
/// the stack pointer is less than the given limit register (assuming the
|
|
/// stack grows downward).
|
|
fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec<Self::I>;
|
|
|
|
/// Generate an instruction to compute an address of a stack slot (FP- or
|
|
/// SP-based offset).
|
|
fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;
|
|
|
|
/// Get a fixed register to use to compute a stack limit. This is needed for
|
|
/// certain sequences generated after the register allocator has already
|
|
/// run. This must satisfy two requirements:
|
|
///
|
|
/// - It must be a caller-save register, because it will be clobbered in the
|
|
/// prologue before the clobbered callee-save registers are saved.
|
|
///
|
|
/// - It must be safe to pass as an argument and/or destination to
|
|
/// `gen_add_imm()`. This is relevant when an addition with a large
|
|
/// immediate needs its own temporary; it cannot use the same fixed
|
|
/// temporary as this one.
|
|
fn get_stacklimit_reg() -> Reg;
|
|
|
|
/// Generate a store to the given [base+offset] address.
|
|
fn gen_load_base_offset(into_reg: Writable<Reg>, base: Reg, offset: i32, ty: Type) -> Self::I;
|
|
|
|
/// Generate a load from the given [base+offset] address.
|
|
fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Self::I;
|
|
|
|
/// Adjust the stack pointer up or down.
|
|
fn gen_sp_reg_adjust(amount: i32) -> SmallInstVec<Self::I>;
|
|
|
|
/// Generate a meta-instruction that adjusts the nominal SP offset.
|
|
fn gen_nominal_sp_adj(amount: i32) -> Self::I;
|
|
|
|
/// Generates the mandatory part of the prologue, irrespective of whether
|
|
/// the usual frame-setup sequence for this architecture is required or not,
|
|
/// e.g. extra unwind instructions.
|
|
fn gen_prologue_start(
|
|
_setup_frame: bool,
|
|
_call_conv: isa::CallConv,
|
|
_flags: &settings::Flags,
|
|
_isa_flags: &Self::F,
|
|
) -> SmallInstVec<Self::I> {
|
|
// By default, generates nothing.
|
|
smallvec![]
|
|
}
|
|
|
|
/// Generate the usual frame-setup sequence for this architecture: e.g.,
|
|
/// `push rbp / mov rbp, rsp` on x86-64, or `stp fp, lr, [sp, #-16]!` on
|
|
/// AArch64.
|
|
fn gen_prologue_frame_setup(flags: &settings::Flags) -> SmallInstVec<Self::I>;
|
|
|
|
/// Generate the usual frame-restore sequence for this architecture.
|
|
fn gen_epilogue_frame_restore(flags: &settings::Flags) -> SmallInstVec<Self::I>;
|
|
|
|
/// Generate a probestack call.
|
|
fn gen_probestack(insts: &mut SmallInstVec<Self::I>, frame_size: u32);
|
|
|
|
/// Generate a inline stack probe.
|
|
fn gen_inline_probestack(insts: &mut SmallInstVec<Self::I>, frame_size: u32, guard_size: u32);
|
|
|
|
/// Get all clobbered registers that are callee-saved according to the ABI; the result
|
|
/// contains the registers in a sorted order.
|
|
fn get_clobbered_callee_saves(
|
|
call_conv: isa::CallConv,
|
|
flags: &settings::Flags,
|
|
sig: &Signature,
|
|
regs: &[Writable<RealReg>],
|
|
) -> Vec<Writable<RealReg>>;
|
|
|
|
/// Determine whether it is necessary to generate the usual frame-setup
|
|
/// sequence (refer to gen_prologue_frame_setup()).
|
|
fn is_frame_setup_needed(
|
|
is_leaf: bool,
|
|
stack_args_size: u32,
|
|
num_clobbered_callee_saves: usize,
|
|
fixed_frame_storage_size: u32,
|
|
) -> bool;
|
|
|
|
/// Generate a clobber-save sequence. The implementation here should return
|
|
/// a sequence of instructions that "push" or otherwise save to the stack all
|
|
/// registers written/modified by the function body that are callee-saved.
|
|
/// The sequence of instructions should adjust the stack pointer downward,
|
|
/// and should align as necessary according to ABI requirements.
|
|
///
|
|
/// Returns stack bytes used as well as instructions. Does not adjust
|
|
/// nominal SP offset; caller will do that.
|
|
fn gen_clobber_save(
|
|
call_conv: isa::CallConv,
|
|
setup_frame: bool,
|
|
flags: &settings::Flags,
|
|
clobbered_callee_saves: &[Writable<RealReg>],
|
|
fixed_frame_storage_size: u32,
|
|
outgoing_args_size: u32,
|
|
) -> (u64, SmallVec<[Self::I; 16]>);
|
|
|
|
/// Generate a clobber-restore sequence. This sequence should perform the
|
|
/// opposite of the clobber-save sequence generated above, assuming that SP
|
|
/// going into the sequence is at the same point that it was left when the
|
|
/// clobber-save sequence finished.
|
|
fn gen_clobber_restore(
|
|
call_conv: isa::CallConv,
|
|
sig: &Signature,
|
|
flags: &settings::Flags,
|
|
clobbers: &[Writable<RealReg>],
|
|
fixed_frame_storage_size: u32,
|
|
outgoing_args_size: u32,
|
|
) -> SmallVec<[Self::I; 16]>;
|
|
|
|
/// Generate a call instruction/sequence. This method is provided one
|
|
/// temporary register to use to synthesize the called address, if needed.
|
|
fn gen_call(
|
|
dest: &CallDest,
|
|
uses: CallArgList,
|
|
defs: CallRetList,
|
|
clobbers: PRegSet,
|
|
opcode: ir::Opcode,
|
|
tmp: Writable<Reg>,
|
|
callee_conv: isa::CallConv,
|
|
caller_conv: isa::CallConv,
|
|
) -> SmallVec<[Self::I; 2]>;
|
|
|
|
/// Generate a memcpy invocation. Used to set up struct
|
|
/// args. Takes `src`, `dst` as read-only inputs and passes a temporary
|
|
/// allocator.
|
|
fn gen_memcpy<F: FnMut(Type) -> Writable<Reg>>(
|
|
call_conv: isa::CallConv,
|
|
dst: Reg,
|
|
src: Reg,
|
|
size: usize,
|
|
alloc_tmp: F,
|
|
) -> SmallVec<[Self::I; 8]>;
|
|
|
|
/// Get the number of spillslots required for the given register-class.
|
|
fn get_number_of_spillslots_for_value(rc: RegClass, target_vector_bytes: u32) -> u32;
|
|
|
|
/// Get the current virtual-SP offset from an instruction-emission state.
|
|
fn get_virtual_sp_offset_from_state(s: &<Self::I as MachInstEmit>::State) -> i64;
|
|
|
|
/// Get the "nominal SP to FP" offset from an instruction-emission state.
|
|
fn get_nominal_sp_to_fp(s: &<Self::I as MachInstEmit>::State) -> i64;
|
|
|
|
/// Get all caller-save registers, that is, registers that we expect
|
|
/// not to be saved across a call to a callee with the given ABI.
|
|
fn get_regs_clobbered_by_call(call_conv_of_callee: isa::CallConv) -> PRegSet;
|
|
|
|
/// Get the needed extension mode, given the mode attached to the argument
|
|
/// in the signature and the calling convention. The input (the attribute in
|
|
/// the signature) specifies what extension type should be done *if* the ABI
|
|
/// requires extension to the full register; this method's return value
|
|
/// indicates whether the extension actually *will* be done.
|
|
fn get_ext_mode(
|
|
call_conv: isa::CallConv,
|
|
specified: ir::ArgumentExtension,
|
|
) -> ir::ArgumentExtension;
|
|
}
|
|
|
|
/// The id of an ABI signature within the `SigSet`.
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
|
|
pub struct Sig(u32);
|
|
cranelift_entity::entity_impl!(Sig);
|
|
|
|
impl Sig {
|
|
fn prev(self) -> Option<Sig> {
|
|
self.0.checked_sub(1).map(Sig)
|
|
}
|
|
}
|
|
|
|
/// ABI information shared between body (callee) and caller.
|
|
#[derive(Clone, Debug)]
|
|
pub struct SigData {
|
|
/// Currently both return values and arguments are stored in a continuous space vector
|
|
/// in `SigSet::abi_args`.
|
|
///
|
|
/// ```plain
|
|
/// +----------------------------------------------+
|
|
/// | return values |
|
|
/// | ... |
|
|
/// rets_end --> +----------------------------------------------+
|
|
/// | arguments |
|
|
/// | ... |
|
|
/// args_end --> +----------------------------------------------+
|
|
///
|
|
/// ```
|
|
///
|
|
/// Note we only store two offsets as rets_end == args_start, and rets_start == prev.args_end.
|
|
///
|
|
/// Argument location ending offset (regs or stack slots). Stack offsets are relative to
|
|
/// SP on entry to function.
|
|
///
|
|
/// This is a index into the `SigSet::abi_args`.
|
|
args_end: u32,
|
|
|
|
/// Return-value location ending offset. Stack offsets are relative to the return-area
|
|
/// pointer.
|
|
///
|
|
/// This is a index into the `SigSet::abi_args`.
|
|
rets_end: u32,
|
|
|
|
/// Space on stack used to store arguments. We're storing the size in u32 to
|
|
/// reduce the size of the struct.
|
|
sized_stack_arg_space: u32,
|
|
|
|
/// Space on stack used to store return values. We're storing the size in u32 to
|
|
/// reduce the size of the struct.
|
|
sized_stack_ret_space: u32,
|
|
|
|
/// Index in `args` of the stack-return-value-area argument.
|
|
stack_ret_arg: Option<u16>,
|
|
|
|
/// Calling convention used.
|
|
call_conv: isa::CallConv,
|
|
}
|
|
|
|
impl SigData {
|
|
/// Get total stack space required for arguments.
|
|
pub fn sized_stack_arg_space(&self) -> i64 {
|
|
self.sized_stack_arg_space.into()
|
|
}
|
|
|
|
/// Get total stack space required for return values.
|
|
pub fn sized_stack_ret_space(&self) -> i64 {
|
|
self.sized_stack_ret_space.into()
|
|
}
|
|
|
|
/// Get calling convention used.
|
|
pub fn call_conv(&self) -> isa::CallConv {
|
|
self.call_conv
|
|
}
|
|
}
|
|
|
|
/// A (mostly) deduplicated set of ABI signatures.
|
|
///
|
|
/// We say "mostly" because we do not dedupe between signatures interned via
|
|
/// `ir::SigRef` (direct and indirect calls; the vast majority of signatures in
|
|
/// this set) vs via `ir::Signature` (the callee itself and libcalls). Doing
|
|
/// this final bit of deduplication would require filling out the
|
|
/// `ir_signature_to_abi_sig`, which is a bunch of allocations (not just the
|
|
/// hash map itself but params and returns vecs in each signature) that we want
|
|
/// to avoid.
|
|
///
|
|
/// In general, prefer using the `ir::SigRef`-taking methods to the
|
|
/// `ir::Signature`-taking methods when you can get away with it, as they don't
|
|
/// require cloning non-copy types that will trigger heap allocations.
|
|
///
|
|
/// This type can be indexed by `Sig` to access its associated `SigData`.
|
|
pub struct SigSet {
|
|
/// Interned `ir::Signature`s that we already have an ABI signature for.
|
|
ir_signature_to_abi_sig: FxHashMap<ir::Signature, Sig>,
|
|
|
|
/// Interned `ir::SigRef`s that we already have an ABI signature for.
|
|
ir_sig_ref_to_abi_sig: SecondaryMap<ir::SigRef, Option<Sig>>,
|
|
|
|
/// A single, shared allocation for all `ABIArg`s used by all
|
|
/// `SigData`s. Each `SigData` references its args/rets via indices into
|
|
/// this allocation.
|
|
abi_args: Vec<ABIArg>,
|
|
|
|
/// The actual ABI signatures, keyed by `Sig`.
|
|
sigs: PrimaryMap<Sig, SigData>,
|
|
}
|
|
|
|
impl SigSet {
|
|
/// Construct a new `SigSet`, interning all of the signatures used by the
|
|
/// given function.
|
|
pub fn new<M>(func: &ir::Function, flags: &settings::Flags) -> CodegenResult<Self>
|
|
where
|
|
M: ABIMachineSpec,
|
|
{
|
|
let arg_estimate = func.dfg.signatures.len() * 6;
|
|
|
|
let mut sigs = SigSet {
|
|
ir_signature_to_abi_sig: FxHashMap::default(),
|
|
ir_sig_ref_to_abi_sig: SecondaryMap::with_capacity(func.dfg.signatures.len()),
|
|
abi_args: Vec::with_capacity(arg_estimate),
|
|
sigs: PrimaryMap::with_capacity(1 + func.dfg.signatures.len()),
|
|
};
|
|
|
|
sigs.make_abi_sig_from_ir_signature::<M>(func.signature.clone(), flags)?;
|
|
for sig_ref in func.dfg.signatures.keys() {
|
|
sigs.make_abi_sig_from_ir_sig_ref::<M>(sig_ref, &func.dfg, flags)?;
|
|
}
|
|
|
|
Ok(sigs)
|
|
}
|
|
|
|
/// Have we already interned an ABI signature for the given `ir::Signature`?
|
|
pub fn have_abi_sig_for_signature(&self, signature: &ir::Signature) -> bool {
|
|
self.ir_signature_to_abi_sig.contains_key(signature)
|
|
}
|
|
|
|
/// Construct and intern an ABI signature for the given `ir::Signature`.
|
|
pub fn make_abi_sig_from_ir_signature<M>(
|
|
&mut self,
|
|
signature: ir::Signature,
|
|
flags: &settings::Flags,
|
|
) -> CodegenResult<Sig>
|
|
where
|
|
M: ABIMachineSpec,
|
|
{
|
|
// Because the `HashMap` entry API requires taking ownership of the
|
|
// lookup key -- and we want to avoid unnecessary clones of
|
|
// `ir::Signature`s, even at the cost of duplicate lookups -- we can't
|
|
// have a single, get-or-create-style method for interning
|
|
// `ir::Signature`s into ABI signatures. So at least (debug) assert that
|
|
// we aren't creating duplicate ABI signatures for the same
|
|
// `ir::Signature`.
|
|
debug_assert!(!self.have_abi_sig_for_signature(&signature));
|
|
|
|
let sig_data = self.from_func_sig::<M>(&signature, flags)?;
|
|
let sig = self.sigs.push(sig_data);
|
|
self.ir_signature_to_abi_sig.insert(signature, sig);
|
|
Ok(sig)
|
|
}
|
|
|
|
fn make_abi_sig_from_ir_sig_ref<M>(
|
|
&mut self,
|
|
sig_ref: ir::SigRef,
|
|
dfg: &ir::DataFlowGraph,
|
|
flags: &settings::Flags,
|
|
) -> CodegenResult<Sig>
|
|
where
|
|
M: ABIMachineSpec,
|
|
{
|
|
if let Some(sig) = self.ir_sig_ref_to_abi_sig[sig_ref] {
|
|
return Ok(sig);
|
|
}
|
|
let signature = &dfg.signatures[sig_ref];
|
|
let sig_data = self.from_func_sig::<M>(signature, flags)?;
|
|
let sig = self.sigs.push(sig_data);
|
|
self.ir_sig_ref_to_abi_sig[sig_ref] = Some(sig);
|
|
Ok(sig)
|
|
}
|
|
|
|
/// Get the already-interned ABI signature id for the given `ir::SigRef`.
|
|
pub fn abi_sig_for_sig_ref(&self, sig_ref: ir::SigRef) -> Sig {
|
|
self.ir_sig_ref_to_abi_sig
|
|
.get(sig_ref)
|
|
// Should have a secondary map entry...
|
|
.expect("must call `make_abi_sig_from_ir_sig_ref` before `get_abi_sig_for_sig_ref`")
|
|
// ...and that entry should be initialized.
|
|
.expect("must call `make_abi_sig_from_ir_sig_ref` before `get_abi_sig_for_sig_ref`")
|
|
}
|
|
|
|
/// Get the already-interned ABI signature id for the given `ir::Signature`.
|
|
pub fn abi_sig_for_signature(&self, signature: &ir::Signature) -> Sig {
|
|
self.ir_signature_to_abi_sig
|
|
.get(signature)
|
|
.copied()
|
|
.expect("must call `make_abi_sig_from_ir_signature` before `get_abi_sig_for_signature`")
|
|
}
|
|
|
|
pub fn from_func_sig<M: ABIMachineSpec>(
|
|
&mut self,
|
|
sig: &ir::Signature,
|
|
flags: &settings::Flags,
|
|
) -> CodegenResult<SigData> {
|
|
let sret = missing_struct_return(sig);
|
|
let returns = sret.as_ref().into_iter().chain(&sig.returns);
|
|
|
|
// Compute args and retvals from signature. Handle retvals first,
|
|
// because we may need to add a return-area arg to the args.
|
|
|
|
// NOTE: We rely on the order of the args (rets -> args) inserted to compute the offsets in
|
|
// `SigSet::args()` and `SigSet::rets()`. Therefore, we cannot change the two
|
|
// compute_arg_locs order.
|
|
let (sized_stack_ret_space, _) = M::compute_arg_locs(
|
|
sig.call_conv,
|
|
flags,
|
|
returns,
|
|
ArgsOrRets::Rets,
|
|
/* extra ret-area ptr = */ false,
|
|
ArgsAccumulator::new(&mut self.abi_args),
|
|
)?;
|
|
let rets_end = u32::try_from(self.abi_args.len()).unwrap();
|
|
|
|
let need_stack_return_area = sized_stack_ret_space > 0;
|
|
let (sized_stack_arg_space, stack_ret_arg) = M::compute_arg_locs(
|
|
sig.call_conv,
|
|
flags,
|
|
&sig.params,
|
|
ArgsOrRets::Args,
|
|
need_stack_return_area,
|
|
ArgsAccumulator::new(&mut self.abi_args),
|
|
)?;
|
|
let args_end = u32::try_from(self.abi_args.len()).unwrap();
|
|
|
|
trace!(
|
|
"ABISig: sig {:?} => args end = {} rets end = {}
|
|
arg stack = {} ret stack = {} stack_ret_arg = {:?}",
|
|
sig,
|
|
args_end,
|
|
rets_end,
|
|
sized_stack_arg_space,
|
|
sized_stack_ret_space,
|
|
need_stack_return_area,
|
|
);
|
|
|
|
let stack_ret_arg = stack_ret_arg.map(|s| u16::try_from(s).unwrap());
|
|
Ok(SigData {
|
|
args_end,
|
|
rets_end,
|
|
sized_stack_arg_space,
|
|
sized_stack_ret_space,
|
|
stack_ret_arg,
|
|
call_conv: sig.call_conv,
|
|
})
|
|
}
|
|
|
|
/// Get this signature's ABI arguments.
|
|
pub fn args(&self, sig: Sig) -> &[ABIArg] {
|
|
let sig_data = &self.sigs[sig];
|
|
// Please see comments in `SigSet::from_func_sig` of how we store the offsets.
|
|
let start = usize::try_from(sig_data.rets_end).unwrap();
|
|
let end = usize::try_from(sig_data.args_end).unwrap();
|
|
&self.abi_args[start..end]
|
|
}
|
|
|
|
/// Get information specifying how to pass the implicit pointer
|
|
/// to the return-value area on the stack, if required.
|
|
pub fn get_ret_arg(&self, sig: Sig) -> Option<ABIArg> {
|
|
let sig_data = &self.sigs[sig];
|
|
if let Some(i) = sig_data.stack_ret_arg {
|
|
Some(self.args(sig)[usize::from(i)].clone())
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Get information specifying how to pass one argument.
|
|
pub fn get_arg(&self, sig: Sig, idx: usize) -> ABIArg {
|
|
self.args(sig)[idx].clone()
|
|
}
|
|
|
|
/// Get this signature's ABI returns.
|
|
pub fn rets(&self, sig: Sig) -> &[ABIArg] {
|
|
let sig_data = &self.sigs[sig];
|
|
// Please see comments in `SigSet::from_func_sig` of how we store the offsets.
|
|
let start = usize::try_from(sig.prev().map_or(0, |prev| self.sigs[prev].args_end)).unwrap();
|
|
let end = usize::try_from(sig_data.rets_end).unwrap();
|
|
&self.abi_args[start..end]
|
|
}
|
|
|
|
/// Get information specifying how to pass one return value.
|
|
pub fn get_ret(&self, sig: Sig, idx: usize) -> ABIArg {
|
|
self.rets(sig)[idx].clone()
|
|
}
|
|
|
|
/// Return all clobbers for the callsite.
|
|
pub fn call_clobbers<M: ABIMachineSpec>(&self, sig: Sig) -> PRegSet {
|
|
let sig_data = &self.sigs[sig];
|
|
// Get clobbers: all caller-saves. These may include return value
|
|
// regs, which we will remove from the clobber set below.
|
|
let mut clobbers = M::get_regs_clobbered_by_call(sig_data.call_conv);
|
|
|
|
// Remove retval regs from clobbers. Skip StructRets: these
|
|
// are not, semantically, returns at the CLIF level, so we
|
|
// treat such a value as a clobber instead.
|
|
for ret in self.rets(sig) {
|
|
if let &ABIArg::Slots {
|
|
ref slots, purpose, ..
|
|
} = ret
|
|
{
|
|
if purpose == ir::ArgumentPurpose::StructReturn {
|
|
continue;
|
|
}
|
|
for slot in slots {
|
|
match slot {
|
|
&ABIArgSlot::Reg { reg, .. } => {
|
|
log::trace!("call_clobbers: retval reg {:?}", reg);
|
|
clobbers.remove(PReg::from(reg));
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
clobbers
|
|
}
|
|
|
|
/// Get the number of arguments expected.
|
|
pub fn num_args(&self, sig: Sig) -> usize {
|
|
let len = self.args(sig).len();
|
|
if self.sigs[sig].stack_ret_arg.is_some() {
|
|
len - 1
|
|
} else {
|
|
len
|
|
}
|
|
}
|
|
|
|
/// Get the number of return values expected.
|
|
pub fn num_rets(&self, sig: Sig) -> usize {
|
|
self.rets(sig).len()
|
|
}
|
|
}
|
|
|
|
// NB: we do _not_ implement `IndexMut` because these signatures are
|
|
// deduplicated and shared!
|
|
impl std::ops::Index<Sig> for SigSet {
|
|
type Output = SigData;
|
|
|
|
fn index(&self, sig: Sig) -> &Self::Output {
|
|
&self.sigs[sig]
|
|
}
|
|
}
|
|
|
|
/// ABI object for a function body.
|
|
pub struct Callee<M: ABIMachineSpec> {
|
|
/// CLIF-level signature, possibly normalized.
|
|
ir_sig: ir::Signature,
|
|
/// Signature: arg and retval regs.
|
|
sig: Sig,
|
|
/// Defined dynamic types.
|
|
dynamic_type_sizes: HashMap<Type, u32>,
|
|
/// Offsets to each dynamic stackslot.
|
|
dynamic_stackslots: PrimaryMap<DynamicStackSlot, u32>,
|
|
/// Offsets to each sized stackslot.
|
|
sized_stackslots: PrimaryMap<StackSlot, u32>,
|
|
/// Total stack size of all stackslots
|
|
stackslots_size: u32,
|
|
/// Stack size to be reserved for outgoing arguments.
|
|
outgoing_args_size: u32,
|
|
/// Register-argument defs, to be provided to the `args`
|
|
/// pseudo-inst, and pregs to constrain them to.
|
|
reg_args: Vec<ArgPair>,
|
|
/// Clobbered registers, from regalloc.
|
|
clobbered: Vec<Writable<RealReg>>,
|
|
/// Total number of spillslots, including for 'dynamic' types, from regalloc.
|
|
spillslots: Option<usize>,
|
|
/// Storage allocated for the fixed part of the stack frame. This is
|
|
/// usually the same as the total frame size below.
|
|
fixed_frame_storage_size: u32,
|
|
/// "Total frame size", as defined by "distance between FP and nominal SP".
|
|
/// Some items are pushed below nominal SP, so the function may actually use
|
|
/// more stack than this would otherwise imply. It is simply the initial
|
|
/// frame/allocation size needed for stackslots and spillslots.
|
|
total_frame_size: Option<u32>,
|
|
/// The register holding the return-area pointer, if needed.
|
|
ret_area_ptr: Option<Writable<Reg>>,
|
|
/// Temp registers required for argument setup, if needed.
|
|
arg_temp_reg: Vec<Option<Writable<Reg>>>,
|
|
/// Calling convention this function expects.
|
|
call_conv: isa::CallConv,
|
|
/// The settings controlling this function's compilation.
|
|
flags: settings::Flags,
|
|
/// The ISA-specific flag values controlling this function's compilation.
|
|
isa_flags: M::F,
|
|
/// Whether or not this function is a "leaf", meaning it calls no other
|
|
/// functions
|
|
is_leaf: bool,
|
|
/// If this function has a stack limit specified, then `Reg` is where the
|
|
/// stack limit will be located after the instructions specified have been
|
|
/// executed.
|
|
///
|
|
/// Note that this is intended for insertion into the prologue, if
|
|
/// present. Also note that because the instructions here execute in the
|
|
/// prologue this happens after legalization/register allocation/etc so we
|
|
/// need to be extremely careful with each instruction. The instructions are
|
|
/// manually register-allocated and carefully only use caller-saved
|
|
/// registers and keep nothing live after this sequence of instructions.
|
|
stack_limit: Option<(Reg, SmallInstVec<M::I>)>,
|
|
/// Are we to invoke the probestack function in the prologue? If so,
|
|
/// what is the minimum size at which we must invoke it?
|
|
probestack_min_frame: Option<u32>,
|
|
/// Whether it is necessary to generate the usual frame-setup sequence.
|
|
setup_frame: bool,
|
|
|
|
_mach: PhantomData<M>,
|
|
}
|
|
|
|
fn get_special_purpose_param_register(
|
|
f: &ir::Function,
|
|
sigs: &SigSet,
|
|
sig: Sig,
|
|
purpose: ir::ArgumentPurpose,
|
|
) -> Option<Reg> {
|
|
let idx = f.signature.special_param_index(purpose)?;
|
|
match &sigs.args(sig)[idx] {
|
|
&ABIArg::Slots { ref slots, .. } => match &slots[0] {
|
|
&ABIArgSlot::Reg { reg, .. } => Some(reg.into()),
|
|
_ => None,
|
|
},
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
impl<M: ABIMachineSpec> Callee<M> {
|
|
/// Create a new body ABI instance.
|
|
pub fn new<'a>(
|
|
f: &ir::Function,
|
|
isa: &dyn TargetIsa,
|
|
isa_flags: &M::F,
|
|
sigs: &SigSet,
|
|
) -> CodegenResult<Self> {
|
|
trace!("ABI: func signature {:?}", f.signature);
|
|
|
|
let flags = isa.flags().clone();
|
|
let sig = sigs.abi_sig_for_signature(&f.signature);
|
|
|
|
let call_conv = f.signature.call_conv;
|
|
// Only these calling conventions are supported.
|
|
debug_assert!(
|
|
call_conv == isa::CallConv::SystemV
|
|
|| call_conv == isa::CallConv::Fast
|
|
|| call_conv == isa::CallConv::Cold
|
|
|| call_conv.extends_windows_fastcall()
|
|
|| call_conv == isa::CallConv::AppleAarch64
|
|
|| call_conv == isa::CallConv::WasmtimeSystemV
|
|
|| call_conv == isa::CallConv::WasmtimeAppleAarch64,
|
|
"Unsupported calling convention: {:?}",
|
|
call_conv
|
|
);
|
|
|
|
// Compute sized stackslot locations and total stackslot size.
|
|
let mut sized_stack_offset: u32 = 0;
|
|
let mut sized_stackslots = PrimaryMap::new();
|
|
for (stackslot, data) in f.sized_stack_slots.iter() {
|
|
let off = sized_stack_offset;
|
|
sized_stack_offset += data.size;
|
|
let mask = M::word_bytes() - 1;
|
|
sized_stack_offset = (sized_stack_offset + mask) & !mask;
|
|
debug_assert_eq!(stackslot.as_u32() as usize, sized_stackslots.len());
|
|
sized_stackslots.push(off);
|
|
}
|
|
|
|
// Compute dynamic stackslot locations and total stackslot size.
|
|
let mut dynamic_stackslots = PrimaryMap::new();
|
|
let mut dynamic_stack_offset: u32 = sized_stack_offset;
|
|
for (stackslot, data) in f.dynamic_stack_slots.iter() {
|
|
debug_assert_eq!(stackslot.as_u32() as usize, dynamic_stackslots.len());
|
|
let off = dynamic_stack_offset;
|
|
let ty = f
|
|
.get_concrete_dynamic_ty(data.dyn_ty)
|
|
.unwrap_or_else(|| panic!("invalid dynamic vector type: {}", data.dyn_ty));
|
|
dynamic_stack_offset += isa.dynamic_vector_bytes(ty);
|
|
let mask = M::word_bytes() - 1;
|
|
dynamic_stack_offset = (dynamic_stack_offset + mask) & !mask;
|
|
dynamic_stackslots.push(off);
|
|
}
|
|
let stackslots_size = dynamic_stack_offset;
|
|
|
|
let mut dynamic_type_sizes = HashMap::with_capacity(f.dfg.dynamic_types.len());
|
|
for (dyn_ty, _data) in f.dfg.dynamic_types.iter() {
|
|
let ty = f
|
|
.get_concrete_dynamic_ty(dyn_ty)
|
|
.unwrap_or_else(|| panic!("invalid dynamic vector type: {}", dyn_ty));
|
|
let size = isa.dynamic_vector_bytes(ty);
|
|
dynamic_type_sizes.insert(ty, size);
|
|
}
|
|
|
|
// Figure out what instructions, if any, will be needed to check the
|
|
// stack limit. This can either be specified as a special-purpose
|
|
// argument or as a global value which often calculates the stack limit
|
|
// from the arguments.
|
|
let stack_limit =
|
|
get_special_purpose_param_register(f, sigs, sig, ir::ArgumentPurpose::StackLimit)
|
|
.map(|reg| (reg, smallvec![]))
|
|
.or_else(|| {
|
|
f.stack_limit
|
|
.map(|gv| gen_stack_limit::<M>(f, sigs, sig, gv))
|
|
});
|
|
|
|
// Determine whether a probestack call is required for large enough
|
|
// frames (and the minimum frame size if so).
|
|
let probestack_min_frame = if flags.enable_probestack() {
|
|
assert!(
|
|
!flags.probestack_func_adjusts_sp(),
|
|
"SP-adjusting probestack not supported in new backends"
|
|
);
|
|
Some(1 << flags.probestack_size_log2())
|
|
} else {
|
|
None
|
|
};
|
|
|
|
Ok(Self {
|
|
ir_sig: ensure_struct_return_ptr_is_returned(&f.signature),
|
|
sig,
|
|
dynamic_stackslots,
|
|
dynamic_type_sizes,
|
|
sized_stackslots,
|
|
stackslots_size,
|
|
outgoing_args_size: 0,
|
|
reg_args: vec![],
|
|
clobbered: vec![],
|
|
spillslots: None,
|
|
fixed_frame_storage_size: 0,
|
|
total_frame_size: None,
|
|
ret_area_ptr: None,
|
|
arg_temp_reg: vec![],
|
|
call_conv,
|
|
flags,
|
|
isa_flags: isa_flags.clone(),
|
|
is_leaf: f.is_leaf(),
|
|
stack_limit,
|
|
probestack_min_frame,
|
|
setup_frame: true,
|
|
_mach: PhantomData,
|
|
})
|
|
}
|
|
|
|
/// Inserts instructions necessary for checking the stack limit into the
|
|
/// prologue.
|
|
///
|
|
/// This function will generate instructions necessary for perform a stack
|
|
/// check at the header of a function. The stack check is intended to trap
|
|
/// if the stack pointer goes below a particular threshold, preventing stack
|
|
/// overflow in wasm or other code. The `stack_limit` argument here is the
|
|
/// register which holds the threshold below which we're supposed to trap.
|
|
/// This function is known to allocate `stack_size` bytes and we'll push
|
|
/// instructions onto `insts`.
|
|
///
|
|
/// Note that the instructions generated here are special because this is
|
|
/// happening so late in the pipeline (e.g. after register allocation). This
|
|
/// means that we need to do manual register allocation here and also be
|
|
/// careful to not clobber any callee-saved or argument registers. For now
|
|
/// this routine makes do with the `spilltmp_reg` as one temporary
|
|
/// register, and a second register of `tmp2` which is caller-saved. This
|
|
/// should be fine for us since no spills should happen in this sequence of
|
|
/// instructions, so our register won't get accidentally clobbered.
|
|
///
|
|
/// No values can be live after the prologue, but in this case that's ok
|
|
/// because we just need to perform a stack check before progressing with
|
|
/// the rest of the function.
|
|
fn insert_stack_check(
|
|
&self,
|
|
stack_limit: Reg,
|
|
stack_size: u32,
|
|
insts: &mut SmallInstVec<M::I>,
|
|
) {
|
|
// With no explicit stack allocated we can just emit the simple check of
|
|
// the stack registers against the stack limit register, and trap if
|
|
// it's out of bounds.
|
|
if stack_size == 0 {
|
|
insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
|
|
return;
|
|
}
|
|
|
|
// Note that the 32k stack size here is pretty special. See the
|
|
// documentation in x86/abi.rs for why this is here. The general idea is
|
|
// that we're protecting against overflow in the addition that happens
|
|
// below.
|
|
if stack_size >= 32 * 1024 {
|
|
insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
|
|
}
|
|
|
|
// Add the `stack_size` to `stack_limit`, placing the result in
|
|
// `scratch`.
|
|
//
|
|
// Note though that `stack_limit`'s register may be the same as
|
|
// `scratch`. If our stack size doesn't fit into an immediate this
|
|
// means we need a second scratch register for loading the stack size
|
|
// into a register.
|
|
let scratch = Writable::from_reg(M::get_stacklimit_reg());
|
|
insts.extend(M::gen_add_imm(scratch, stack_limit, stack_size).into_iter());
|
|
insts.extend(M::gen_stack_lower_bound_trap(scratch.to_reg()));
|
|
}
|
|
}
|
|
|
|
/// Generates the instructions necessary for the `gv` to be materialized into a
|
|
/// register.
|
|
///
|
|
/// This function will return a register that will contain the result of
|
|
/// evaluating `gv`. It will also return any instructions necessary to calculate
|
|
/// the value of the register.
|
|
///
|
|
/// Note that global values are typically lowered to instructions via the
|
|
/// standard legalization pass. Unfortunately though prologue generation happens
|
|
/// so late in the pipeline that we can't use these legalization passes to
|
|
/// generate the instructions for `gv`. As a result we duplicate some lowering
|
|
/// of `gv` here and support only some global values. This is similar to what
|
|
/// the x86 backend does for now, and hopefully this can be somewhat cleaned up
|
|
/// in the future too!
|
|
///
|
|
/// Also note that this function will make use of `writable_spilltmp_reg()` as a
|
|
/// temporary register to store values in if necessary. Currently after we write
|
|
/// to this register there's guaranteed to be no spilled values between where
|
|
/// it's used, because we're not participating in register allocation anyway!
|
|
fn gen_stack_limit<M: ABIMachineSpec>(
|
|
f: &ir::Function,
|
|
sigs: &SigSet,
|
|
sig: Sig,
|
|
gv: ir::GlobalValue,
|
|
) -> (Reg, SmallInstVec<M::I>) {
|
|
let mut insts = smallvec![];
|
|
let reg = generate_gv::<M>(f, sigs, sig, gv, &mut insts);
|
|
return (reg, insts);
|
|
}
|
|
|
|
fn generate_gv<M: ABIMachineSpec>(
|
|
f: &ir::Function,
|
|
sigs: &SigSet,
|
|
sig: Sig,
|
|
gv: ir::GlobalValue,
|
|
insts: &mut SmallInstVec<M::I>,
|
|
) -> Reg {
|
|
match f.global_values[gv] {
|
|
// Return the direct register the vmcontext is in
|
|
ir::GlobalValueData::VMContext => {
|
|
get_special_purpose_param_register(f, sigs, sig, ir::ArgumentPurpose::VMContext)
|
|
.expect("no vmcontext parameter found")
|
|
}
|
|
// Load our base value into a register, then load from that register
|
|
// in to a temporary register.
|
|
ir::GlobalValueData::Load {
|
|
base,
|
|
offset,
|
|
global_type: _,
|
|
readonly: _,
|
|
} => {
|
|
let base = generate_gv::<M>(f, sigs, sig, base, insts);
|
|
let into_reg = Writable::from_reg(M::get_stacklimit_reg());
|
|
insts.push(M::gen_load_base_offset(
|
|
into_reg,
|
|
base,
|
|
offset.into(),
|
|
M::word_type(),
|
|
));
|
|
return into_reg.to_reg();
|
|
}
|
|
ref other => panic!("global value for stack limit not supported: {}", other),
|
|
}
|
|
}
|
|
|
|
fn gen_load_stack_multi<M: ABIMachineSpec>(
|
|
from: StackAMode,
|
|
dst: ValueRegs<Writable<Reg>>,
|
|
ty: Type,
|
|
) -> SmallInstVec<M::I> {
|
|
let mut ret = smallvec![];
|
|
let (_, tys) = M::I::rc_for_type(ty).unwrap();
|
|
let mut offset = 0;
|
|
// N.B.: registers are given in the `ValueRegs` in target endian order.
|
|
for (&dst, &ty) in dst.regs().iter().zip(tys.iter()) {
|
|
ret.push(M::gen_load_stack(from.offset(offset), dst, ty));
|
|
offset += ty.bytes() as i64;
|
|
}
|
|
ret
|
|
}
|
|
|
|
fn gen_store_stack_multi<M: ABIMachineSpec>(
|
|
from: StackAMode,
|
|
src: ValueRegs<Reg>,
|
|
ty: Type,
|
|
) -> SmallInstVec<M::I> {
|
|
let mut ret = smallvec![];
|
|
let (_, tys) = M::I::rc_for_type(ty).unwrap();
|
|
let mut offset = 0;
|
|
// N.B.: registers are given in the `ValueRegs` in target endian order.
|
|
for (&src, &ty) in src.regs().iter().zip(tys.iter()) {
|
|
ret.push(M::gen_store_stack(from.offset(offset), src, ty));
|
|
offset += ty.bytes() as i64;
|
|
}
|
|
ret
|
|
}
|
|
|
|
/// If the signature needs to be legalized, then return the struct-return
|
|
/// parameter that should be prepended to its returns. Otherwise, return `None`.
|
|
fn missing_struct_return(sig: &ir::Signature) -> Option<ir::AbiParam> {
|
|
let struct_ret_index = sig.special_param_index(ArgumentPurpose::StructReturn)?;
|
|
if !sig.uses_special_return(ArgumentPurpose::StructReturn) {
|
|
return Some(sig.params[struct_ret_index]);
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
fn ensure_struct_return_ptr_is_returned(sig: &ir::Signature) -> ir::Signature {
|
|
let mut sig = sig.clone();
|
|
if let Some(sret) = missing_struct_return(&sig) {
|
|
sig.returns.insert(0, sret);
|
|
}
|
|
sig
|
|
}
|
|
|
|
/// ### Pre-Regalloc Functions
|
|
///
|
|
/// These methods of `Callee` may only be called before regalloc.
|
|
impl<M: ABIMachineSpec> Callee<M> {
|
|
/// Access the (possibly legalized) signature.
|
|
pub fn signature(&self) -> &ir::Signature {
|
|
debug_assert!(
|
|
missing_struct_return(&self.ir_sig).is_none(),
|
|
"`Callee::ir_sig` is always legalized"
|
|
);
|
|
&self.ir_sig
|
|
}
|
|
|
|
/// Does the ABI-body code need temp registers (and if so, of what type)?
|
|
/// They will be provided to `init()` as the `temps` arg if so.
|
|
pub fn temps_needed(&self, sigs: &SigSet) -> Vec<Type> {
|
|
let mut temp_tys = vec![];
|
|
for arg in sigs.args(self.sig) {
|
|
match arg {
|
|
&ABIArg::ImplicitPtrArg { pointer, .. } => match &pointer {
|
|
&ABIArgSlot::Reg { .. } => {}
|
|
&ABIArgSlot::Stack { ty, .. } => {
|
|
temp_tys.push(ty);
|
|
}
|
|
},
|
|
_ => {}
|
|
}
|
|
}
|
|
if sigs[self.sig].stack_ret_arg.is_some() {
|
|
temp_tys.push(M::word_type());
|
|
}
|
|
temp_tys
|
|
}
|
|
|
|
/// Initialize. This is called after the Callee is constructed because it
|
|
/// may be provided with a vector of temp vregs, which can only be allocated
|
|
/// once the lowering context exists.
|
|
pub fn init(&mut self, sigs: &SigSet, temps: Vec<Writable<Reg>>) {
|
|
let mut temps_iter = temps.into_iter();
|
|
for arg in sigs.args(self.sig) {
|
|
let temp = match arg {
|
|
&ABIArg::ImplicitPtrArg { pointer, .. } => match &pointer {
|
|
&ABIArgSlot::Reg { .. } => None,
|
|
&ABIArgSlot::Stack { .. } => Some(temps_iter.next().unwrap()),
|
|
},
|
|
_ => None,
|
|
};
|
|
self.arg_temp_reg.push(temp);
|
|
}
|
|
if sigs[self.sig].stack_ret_arg.is_some() {
|
|
self.ret_area_ptr = Some(temps_iter.next().unwrap());
|
|
}
|
|
}
|
|
|
|
/// Accumulate outgoing arguments.
|
|
///
|
|
/// This ensures that at least `size` bytes are allocated in the prologue to
|
|
/// be available for use in function calls to hold arguments and/or return
|
|
/// values. If this function is called multiple times, the maximum of all
|
|
/// `size` values will be available.
|
|
pub fn accumulate_outgoing_args_size(&mut self, size: u32) {
|
|
if size > self.outgoing_args_size {
|
|
self.outgoing_args_size = size;
|
|
}
|
|
}
|
|
|
|
pub fn is_forward_edge_cfi_enabled(&self) -> bool {
|
|
self.isa_flags.is_forward_edge_cfi_enabled()
|
|
}
|
|
|
|
/// Get the calling convention implemented by this ABI object.
|
|
pub fn call_conv(&self, sigs: &SigSet) -> isa::CallConv {
|
|
sigs[self.sig].call_conv
|
|
}
|
|
|
|
/// The offsets of all sized stack slots (not spill slots) for debuginfo purposes.
|
|
pub fn sized_stackslot_offsets(&self) -> &PrimaryMap<StackSlot, u32> {
|
|
&self.sized_stackslots
|
|
}
|
|
|
|
/// The offsets of all dynamic stack slots (not spill slots) for debuginfo purposes.
|
|
pub fn dynamic_stackslot_offsets(&self) -> &PrimaryMap<DynamicStackSlot, u32> {
|
|
&self.dynamic_stackslots
|
|
}
|
|
|
|
/// Generate an instruction which copies an argument to a destination
|
|
/// register.
|
|
pub fn gen_copy_arg_to_regs(
|
|
&mut self,
|
|
sigs: &SigSet,
|
|
idx: usize,
|
|
into_regs: ValueRegs<Writable<Reg>>,
|
|
vregs: &mut VRegAllocator<M::I>,
|
|
) -> SmallInstVec<M::I> {
|
|
let mut insts = smallvec![];
|
|
let mut copy_arg_slot_to_reg = |slot: &ABIArgSlot, into_reg: &Writable<Reg>| {
|
|
match slot {
|
|
&ABIArgSlot::Reg { reg, .. } => {
|
|
// Add a preg -> def pair to the eventual `args`
|
|
// instruction. Extension mode doesn't matter
|
|
// (we're copying out, not in; we ignore high bits
|
|
// by convention).
|
|
let arg = ArgPair {
|
|
vreg: *into_reg,
|
|
preg: reg.into(),
|
|
};
|
|
self.reg_args.push(arg);
|
|
}
|
|
&ABIArgSlot::Stack {
|
|
offset,
|
|
ty,
|
|
extension,
|
|
..
|
|
} => {
|
|
// However, we have to respect the extention mode for stack
|
|
// slots, or else we grab the wrong bytes on big-endian.
|
|
let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
|
|
let ty = match (ext, ty_bits(ty) as u32) {
|
|
(ArgumentExtension::Uext, n) | (ArgumentExtension::Sext, n)
|
|
if n < M::word_bits() =>
|
|
{
|
|
M::word_type()
|
|
}
|
|
_ => ty,
|
|
};
|
|
insts.push(M::gen_load_stack(
|
|
StackAMode::FPOffset(
|
|
M::fp_to_arg_offset(self.call_conv, &self.flags) + offset,
|
|
ty,
|
|
),
|
|
*into_reg,
|
|
ty,
|
|
));
|
|
}
|
|
}
|
|
};
|
|
|
|
match &sigs.args(self.sig)[idx] {
|
|
&ABIArg::Slots { ref slots, .. } => {
|
|
assert_eq!(into_regs.len(), slots.len());
|
|
for (slot, into_reg) in slots.iter().zip(into_regs.regs().iter()) {
|
|
copy_arg_slot_to_reg(&slot, &into_reg);
|
|
}
|
|
}
|
|
&ABIArg::StructArg {
|
|
pointer, offset, ..
|
|
} => {
|
|
let into_reg = into_regs.only_reg().unwrap();
|
|
if let Some(slot) = pointer {
|
|
// Buffer address is passed in a register or stack slot.
|
|
copy_arg_slot_to_reg(&slot, &into_reg);
|
|
} else {
|
|
// Buffer address is implicitly defined by the ABI.
|
|
insts.push(M::gen_get_stack_addr(
|
|
StackAMode::FPOffset(
|
|
M::fp_to_arg_offset(self.call_conv, &self.flags) + offset,
|
|
I8,
|
|
),
|
|
into_reg,
|
|
I8,
|
|
));
|
|
}
|
|
}
|
|
&ABIArg::ImplicitPtrArg { pointer, ty, .. } => {
|
|
let into_reg = into_regs.only_reg().unwrap();
|
|
// We need to dereference the pointer.
|
|
let base = match &pointer {
|
|
&ABIArgSlot::Reg { reg, ty, .. } => {
|
|
let tmp = vregs.alloc(ty).unwrap().only_reg().unwrap();
|
|
self.reg_args.push(ArgPair {
|
|
vreg: Writable::from_reg(tmp),
|
|
preg: reg.into(),
|
|
});
|
|
tmp
|
|
}
|
|
&ABIArgSlot::Stack { offset, ty, .. } => {
|
|
// In this case we need a temp register to hold the address.
|
|
// This was allocated in the `init` routine.
|
|
let addr_reg = self.arg_temp_reg[idx].unwrap();
|
|
insts.push(M::gen_load_stack(
|
|
StackAMode::FPOffset(
|
|
M::fp_to_arg_offset(self.call_conv, &self.flags) + offset,
|
|
ty,
|
|
),
|
|
addr_reg,
|
|
ty,
|
|
));
|
|
addr_reg.to_reg()
|
|
}
|
|
};
|
|
insts.push(M::gen_load_base_offset(into_reg, base, 0, ty));
|
|
}
|
|
}
|
|
insts
|
|
}
|
|
|
|
/// Is the given argument needed in the body (as opposed to, e.g., serving
|
|
/// only as a special ABI-specific placeholder)? This controls whether
|
|
/// lowering will copy it to a virtual reg use by CLIF instructions.
|
|
pub fn arg_is_needed_in_body(&self, _idx: usize) -> bool {
|
|
true
|
|
}
|
|
|
|
/// Generate an instruction which copies a source register to a return value slot.
|
|
pub fn gen_copy_regs_to_retval(
|
|
&self,
|
|
sigs: &SigSet,
|
|
idx: usize,
|
|
from_regs: ValueRegs<Reg>,
|
|
vregs: &mut VRegAllocator<M::I>,
|
|
) -> (SmallVec<[RetPair; 2]>, SmallInstVec<M::I>) {
|
|
let mut reg_pairs = smallvec![];
|
|
let mut ret = smallvec![];
|
|
let word_bits = M::word_bits() as u8;
|
|
match &sigs.rets(self.sig)[idx] {
|
|
&ABIArg::Slots { ref slots, .. } => {
|
|
assert_eq!(from_regs.len(), slots.len());
|
|
for (slot, &from_reg) in slots.iter().zip(from_regs.regs().iter()) {
|
|
match slot {
|
|
&ABIArgSlot::Reg {
|
|
reg, ty, extension, ..
|
|
} => {
|
|
let from_bits = ty_bits(ty) as u8;
|
|
let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
|
|
let vreg = match (ext, from_bits) {
|
|
(ir::ArgumentExtension::Uext, n)
|
|
| (ir::ArgumentExtension::Sext, n)
|
|
if n < word_bits =>
|
|
{
|
|
let signed = ext == ir::ArgumentExtension::Sext;
|
|
let dst = writable_value_regs(vregs.alloc(ty).unwrap())
|
|
.only_reg()
|
|
.unwrap();
|
|
ret.push(M::gen_extend(
|
|
dst, from_reg, signed, from_bits,
|
|
/* to_bits = */ word_bits,
|
|
));
|
|
dst.to_reg()
|
|
}
|
|
_ => {
|
|
// No move needed, regalloc2 will emit it using the constraint
|
|
// added by the RetPair.
|
|
from_reg
|
|
}
|
|
};
|
|
reg_pairs.push(RetPair {
|
|
vreg,
|
|
preg: Reg::from(reg),
|
|
});
|
|
}
|
|
&ABIArgSlot::Stack {
|
|
offset,
|
|
ty,
|
|
extension,
|
|
..
|
|
} => {
|
|
let mut ty = ty;
|
|
let from_bits = ty_bits(ty) as u8;
|
|
// A machine ABI implementation should ensure that stack frames
|
|
// have "reasonable" size. All current ABIs for machinst
|
|
// backends (aarch64 and x64) enforce a 128MB limit.
|
|
let off = i32::try_from(offset).expect(
|
|
"Argument stack offset greater than 2GB; should hit impl limit first",
|
|
);
|
|
let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
|
|
// Trash the from_reg; it should be its last use.
|
|
match (ext, from_bits) {
|
|
(ir::ArgumentExtension::Uext, n)
|
|
| (ir::ArgumentExtension::Sext, n)
|
|
if n < word_bits =>
|
|
{
|
|
assert_eq!(M::word_reg_class(), from_reg.class());
|
|
let signed = ext == ir::ArgumentExtension::Sext;
|
|
let dst = writable_value_regs(vregs.alloc(ty).unwrap())
|
|
.only_reg()
|
|
.unwrap();
|
|
ret.push(M::gen_extend(
|
|
dst, from_reg, signed, from_bits,
|
|
/* to_bits = */ word_bits,
|
|
));
|
|
// Store the extended version.
|
|
ty = M::word_type();
|
|
}
|
|
_ => {}
|
|
};
|
|
ret.push(M::gen_store_base_offset(
|
|
self.ret_area_ptr.unwrap().to_reg(),
|
|
off,
|
|
from_reg,
|
|
ty,
|
|
));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ABIArg::StructArg { .. } => {
|
|
panic!("StructArg in return position is unsupported");
|
|
}
|
|
ABIArg::ImplicitPtrArg { .. } => {
|
|
panic!("ImplicitPtrArg in return position is unsupported");
|
|
}
|
|
}
|
|
(reg_pairs, ret)
|
|
}
|
|
|
|
/// Generate any setup instruction needed to save values to the
|
|
/// return-value area. This is usually used when were are multiple return
|
|
/// values or an otherwise large return value that must be passed on the
|
|
/// stack; typically the ABI specifies an extra hidden argument that is a
|
|
/// pointer to that memory.
|
|
pub fn gen_retval_area_setup(
|
|
&mut self,
|
|
sigs: &SigSet,
|
|
vregs: &mut VRegAllocator<M::I>,
|
|
) -> Option<M::I> {
|
|
if let Some(i) = sigs[self.sig].stack_ret_arg {
|
|
let insts = self.gen_copy_arg_to_regs(
|
|
sigs,
|
|
i.into(),
|
|
ValueRegs::one(self.ret_area_ptr.unwrap()),
|
|
vregs,
|
|
);
|
|
insts.into_iter().next().map(|inst| {
|
|
trace!(
|
|
"gen_retval_area_setup: inst {:?}; ptr reg is {:?}",
|
|
inst,
|
|
self.ret_area_ptr.unwrap().to_reg()
|
|
);
|
|
inst
|
|
})
|
|
} else {
|
|
trace!("gen_retval_area_setup: not needed");
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Generate a return instruction.
|
|
pub fn gen_ret(&self, rets: Vec<RetPair>) -> M::I {
|
|
M::gen_ret(self.setup_frame, &self.isa_flags, rets)
|
|
}
|
|
|
|
/// Produce an instruction that computes a sized stackslot address.
|
|
pub fn sized_stackslot_addr(
|
|
&self,
|
|
slot: StackSlot,
|
|
offset: u32,
|
|
into_reg: Writable<Reg>,
|
|
) -> M::I {
|
|
// Offset from beginning of stackslot area, which is at nominal SP (see
|
|
// [MemArg::NominalSPOffset] for more details on nominal SP tracking).
|
|
let stack_off = self.sized_stackslots[slot] as i64;
|
|
let sp_off: i64 = stack_off + (offset as i64);
|
|
M::gen_get_stack_addr(StackAMode::NominalSPOffset(sp_off, I8), into_reg, I8)
|
|
}
|
|
|
|
/// Produce an instruction that computes a dynamic stackslot address.
|
|
pub fn dynamic_stackslot_addr(&self, slot: DynamicStackSlot, into_reg: Writable<Reg>) -> M::I {
|
|
let stack_off = self.dynamic_stackslots[slot] as i64;
|
|
M::gen_get_stack_addr(
|
|
StackAMode::NominalSPOffset(stack_off, I64X2XN),
|
|
into_reg,
|
|
I64X2XN,
|
|
)
|
|
}
|
|
|
|
/// Load from a spillslot.
|
|
pub fn load_spillslot(
|
|
&self,
|
|
slot: SpillSlot,
|
|
ty: Type,
|
|
into_regs: ValueRegs<Writable<Reg>>,
|
|
) -> SmallInstVec<M::I> {
|
|
// Offset from beginning of spillslot area, which is at nominal SP + stackslots_size.
|
|
let islot = slot.index() as i64;
|
|
let spill_off = islot * M::word_bytes() as i64;
|
|
let sp_off = self.stackslots_size as i64 + spill_off;
|
|
trace!("load_spillslot: slot {:?} -> sp_off {}", slot, sp_off);
|
|
|
|
gen_load_stack_multi::<M>(StackAMode::NominalSPOffset(sp_off, ty), into_regs, ty)
|
|
}
|
|
|
|
/// Store to a spillslot.
|
|
pub fn store_spillslot(
|
|
&self,
|
|
slot: SpillSlot,
|
|
ty: Type,
|
|
from_regs: ValueRegs<Reg>,
|
|
) -> SmallInstVec<M::I> {
|
|
// Offset from beginning of spillslot area, which is at nominal SP + stackslots_size.
|
|
let islot = slot.index() as i64;
|
|
let spill_off = islot * M::word_bytes() as i64;
|
|
let sp_off = self.stackslots_size as i64 + spill_off;
|
|
trace!("store_spillslot: slot {:?} -> sp_off {}", slot, sp_off);
|
|
|
|
gen_store_stack_multi::<M>(StackAMode::NominalSPOffset(sp_off, ty), from_regs, ty)
|
|
}
|
|
|
|
/// Get an `args` pseudo-inst, if any, that should appear at the
|
|
/// very top of the function body prior to regalloc.
|
|
pub fn take_args(&mut self) -> Option<M::I> {
|
|
if self.reg_args.len() > 0 {
|
|
// Very first instruction is an `args` pseudo-inst that
|
|
// establishes live-ranges for in-register arguments and
|
|
// constrains them at the start of the function to the
|
|
// locations defined by the ABI.
|
|
Some(M::gen_args(
|
|
&self.isa_flags,
|
|
std::mem::take(&mut self.reg_args),
|
|
))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ### Post-Regalloc Functions
|
|
///
|
|
/// These methods of `Callee` may only be called after
|
|
/// regalloc.
|
|
impl<M: ABIMachineSpec> Callee<M> {
|
|
/// Update with the number of spillslots, post-regalloc.
|
|
pub fn set_num_spillslots(&mut self, slots: usize) {
|
|
self.spillslots = Some(slots);
|
|
}
|
|
|
|
/// Update with the clobbered registers, post-regalloc.
|
|
pub fn set_clobbered(&mut self, clobbered: Vec<Writable<RealReg>>) {
|
|
self.clobbered = clobbered;
|
|
}
|
|
|
|
/// Generate a stack map, given a list of spillslots and the emission state
|
|
/// at a given program point (prior to emission of the safepointing
|
|
/// instruction).
|
|
pub fn spillslots_to_stack_map(
|
|
&self,
|
|
slots: &[SpillSlot],
|
|
state: &<M::I as MachInstEmit>::State,
|
|
) -> StackMap {
|
|
let virtual_sp_offset = M::get_virtual_sp_offset_from_state(state);
|
|
let nominal_sp_to_fp = M::get_nominal_sp_to_fp(state);
|
|
assert!(virtual_sp_offset >= 0);
|
|
trace!(
|
|
"spillslots_to_stackmap: slots = {:?}, state = {:?}",
|
|
slots,
|
|
state
|
|
);
|
|
let map_size = (virtual_sp_offset + nominal_sp_to_fp) as u32;
|
|
let bytes = M::word_bytes();
|
|
let map_words = (map_size + bytes - 1) / bytes;
|
|
let mut bits = std::iter::repeat(false)
|
|
.take(map_words as usize)
|
|
.collect::<Vec<bool>>();
|
|
|
|
let first_spillslot_word =
|
|
((self.stackslots_size + virtual_sp_offset as u32) / bytes) as usize;
|
|
for &slot in slots {
|
|
let slot = slot.index();
|
|
bits[first_spillslot_word + slot] = true;
|
|
}
|
|
|
|
StackMap::from_slice(&bits[..])
|
|
}
|
|
|
|
/// Generate a prologue, post-regalloc.
|
|
///
|
|
/// This should include any stack frame or other setup necessary to use the
|
|
/// other methods (`load_arg`, `store_retval`, and spillslot accesses.)
|
|
/// `self` is mutable so that we can store information in it which will be
|
|
/// useful when creating the epilogue.
|
|
pub fn gen_prologue(&mut self, sigs: &SigSet) -> SmallInstVec<M::I> {
|
|
let bytes = M::word_bytes();
|
|
let total_stacksize = self.stackslots_size + bytes * self.spillslots.unwrap() as u32;
|
|
let mask = M::stack_align(self.call_conv) - 1;
|
|
let total_stacksize = (total_stacksize + mask) & !mask; // 16-align the stack.
|
|
let clobbered_callee_saves = M::get_clobbered_callee_saves(
|
|
self.call_conv,
|
|
&self.flags,
|
|
self.signature(),
|
|
&self.clobbered,
|
|
);
|
|
let mut insts = smallvec![];
|
|
|
|
self.fixed_frame_storage_size += total_stacksize;
|
|
self.setup_frame = self.flags.preserve_frame_pointers()
|
|
|| M::is_frame_setup_needed(
|
|
self.is_leaf,
|
|
self.stack_args_size(sigs),
|
|
clobbered_callee_saves.len(),
|
|
self.fixed_frame_storage_size,
|
|
);
|
|
|
|
insts.extend(
|
|
M::gen_prologue_start(
|
|
self.setup_frame,
|
|
self.call_conv,
|
|
&self.flags,
|
|
&self.isa_flags,
|
|
)
|
|
.into_iter(),
|
|
);
|
|
|
|
if self.setup_frame {
|
|
// set up frame
|
|
insts.extend(M::gen_prologue_frame_setup(&self.flags).into_iter());
|
|
}
|
|
|
|
// Leaf functions with zero stack don't need a stack check if one's
|
|
// specified, otherwise always insert the stack check.
|
|
if total_stacksize > 0 || !self.is_leaf {
|
|
if let Some((reg, stack_limit_load)) = &self.stack_limit {
|
|
insts.extend(stack_limit_load.clone());
|
|
self.insert_stack_check(*reg, total_stacksize, &mut insts);
|
|
}
|
|
|
|
let needs_probestack = self
|
|
.probestack_min_frame
|
|
.map_or(false, |min_frame| total_stacksize >= min_frame);
|
|
|
|
if needs_probestack {
|
|
match self.flags.probestack_strategy() {
|
|
ProbestackStrategy::Inline => {
|
|
let guard_size = 1 << self.flags.probestack_size_log2();
|
|
M::gen_inline_probestack(&mut insts, total_stacksize, guard_size)
|
|
}
|
|
ProbestackStrategy::Outline => M::gen_probestack(&mut insts, total_stacksize),
|
|
}
|
|
}
|
|
}
|
|
|
|
// Save clobbered registers.
|
|
let (clobber_size, clobber_insts) = M::gen_clobber_save(
|
|
self.call_conv,
|
|
self.setup_frame,
|
|
&self.flags,
|
|
&clobbered_callee_saves,
|
|
self.fixed_frame_storage_size,
|
|
self.outgoing_args_size,
|
|
);
|
|
insts.extend(clobber_insts);
|
|
|
|
// N.B.: "nominal SP", which we use to refer to stackslots and
|
|
// spillslots, is defined to be equal to the stack pointer at this point
|
|
// in the prologue.
|
|
//
|
|
// If we push any further data onto the stack in the function
|
|
// body, we emit a virtual-SP adjustment meta-instruction so
|
|
// that the nominal SP references behave as if SP were still
|
|
// at this point. See documentation for
|
|
// [crate::machinst::abi](this module) for more details
|
|
// on stackframe layout and nominal SP maintenance.
|
|
|
|
self.total_frame_size = Some(total_stacksize + clobber_size as u32);
|
|
insts
|
|
}
|
|
|
|
/// Generate an epilogue, post-regalloc.
|
|
///
|
|
/// Note that this must generate the actual return instruction (rather than
|
|
/// emitting this in the lowering logic), because the epilogue code comes
|
|
/// before the return and the two are likely closely related.
|
|
pub fn gen_epilogue(&self) -> SmallInstVec<M::I> {
|
|
let mut insts = smallvec![];
|
|
|
|
// Restore clobbered registers.
|
|
insts.extend(M::gen_clobber_restore(
|
|
self.call_conv,
|
|
self.signature(),
|
|
&self.flags,
|
|
&self.clobbered,
|
|
self.fixed_frame_storage_size,
|
|
self.outgoing_args_size,
|
|
));
|
|
|
|
// N.B.: we do *not* emit a nominal SP adjustment here, because (i) there will be no
|
|
// references to nominal SP offsets before the return below, and (ii) the instruction
|
|
// emission tracks running SP offset linearly (in straight-line order), not according to
|
|
// the CFG, so early returns in the middle of function bodies would cause an incorrect
|
|
// offset for the rest of the body.
|
|
|
|
if self.setup_frame {
|
|
insts.extend(M::gen_epilogue_frame_restore(&self.flags));
|
|
}
|
|
|
|
// This `ret` doesn't need any return registers attached
|
|
// because we are post-regalloc and don't need to
|
|
// represent the implicit uses anymore.
|
|
insts.push(M::gen_ret(self.setup_frame, &self.isa_flags, vec![]));
|
|
|
|
trace!("Epilogue: {:?}", insts);
|
|
insts
|
|
}
|
|
|
|
/// Returns the full frame size for the given function, after prologue
|
|
/// emission has run. This comprises the spill slots and stack-storage slots
|
|
/// (but not storage for clobbered callee-save registers, arguments pushed
|
|
/// at callsites within this function, or other ephemeral pushes).
|
|
pub fn frame_size(&self) -> u32 {
|
|
self.total_frame_size
|
|
.expect("frame size not computed before prologue generation")
|
|
}
|
|
|
|
/// Returns the size of arguments expected on the stack.
|
|
pub fn stack_args_size(&self, sigs: &SigSet) -> u32 {
|
|
sigs[self.sig].sized_stack_arg_space
|
|
}
|
|
|
|
/// Get the spill-slot size.
|
|
pub fn get_spillslot_size(&self, rc: RegClass) -> u32 {
|
|
let max = if self.dynamic_type_sizes.len() == 0 {
|
|
16
|
|
} else {
|
|
*self
|
|
.dynamic_type_sizes
|
|
.iter()
|
|
.max_by(|x, y| x.1.cmp(&y.1))
|
|
.map(|(_k, v)| v)
|
|
.unwrap()
|
|
};
|
|
M::get_number_of_spillslots_for_value(rc, max)
|
|
}
|
|
|
|
/// Generate a spill.
|
|
pub fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg) -> M::I {
|
|
let ty = M::I::canonical_type_for_rc(Reg::from(from_reg).class());
|
|
self.store_spillslot(to_slot, ty, ValueRegs::one(Reg::from(from_reg)))
|
|
.into_iter()
|
|
.next()
|
|
.unwrap()
|
|
}
|
|
|
|
/// Generate a reload (fill).
|
|
pub fn gen_reload(&self, to_reg: Writable<RealReg>, from_slot: SpillSlot) -> M::I {
|
|
let ty = M::I::canonical_type_for_rc(to_reg.to_reg().class());
|
|
self.load_spillslot(
|
|
from_slot,
|
|
ty,
|
|
writable_value_regs(ValueRegs::one(Reg::from(to_reg.to_reg()))),
|
|
)
|
|
.into_iter()
|
|
.next()
|
|
.unwrap()
|
|
}
|
|
}
|
|
|
|
/// An input argument to a call instruction: the vreg that is used,
|
|
/// and the preg it is constrained to (per the ABI).
|
|
#[derive(Clone, Debug)]
|
|
pub struct CallArgPair {
|
|
/// The virtual register to use for the argument.
|
|
pub vreg: Reg,
|
|
/// The real register into which the arg goes.
|
|
pub preg: Reg,
|
|
}
|
|
|
|
/// An output return value from a call instruction: the vreg that is
|
|
/// defined, and the preg it is constrained to (per the ABI).
|
|
#[derive(Clone, Debug)]
|
|
pub struct CallRetPair {
|
|
/// The virtual register to define from this return value.
|
|
pub vreg: Writable<Reg>,
|
|
/// The real register from which the return value is read.
|
|
pub preg: Reg,
|
|
}
|
|
|
|
pub type CallArgList = SmallVec<[CallArgPair; 8]>;
|
|
pub type CallRetList = SmallVec<[CallRetPair; 8]>;
|
|
|
|
/// ABI object for a callsite.
|
|
pub struct Caller<M: ABIMachineSpec> {
|
|
/// The called function's signature.
|
|
sig: Sig,
|
|
/// All register uses for the callsite, i.e., function args, with
|
|
/// VReg and the physical register it is constrained to.
|
|
uses: CallArgList,
|
|
/// All defs for the callsite, i.e., return values.
|
|
defs: CallRetList,
|
|
/// Caller-save clobbers.
|
|
clobbers: PRegSet,
|
|
/// Call destination.
|
|
dest: CallDest,
|
|
/// Actual call opcode; used to distinguish various types of calls.
|
|
opcode: ir::Opcode,
|
|
/// Caller's calling convention.
|
|
caller_conv: isa::CallConv,
|
|
/// The settings controlling this compilation.
|
|
flags: settings::Flags,
|
|
|
|
_mach: PhantomData<M>,
|
|
}
|
|
|
|
/// Destination for a call.
|
|
#[derive(Debug, Clone)]
|
|
pub enum CallDest {
|
|
/// Call to an ExtName (named function symbol).
|
|
ExtName(ir::ExternalName, RelocDistance),
|
|
/// Indirect call to a function pointer in a register.
|
|
Reg(Reg),
|
|
}
|
|
|
|
impl<M: ABIMachineSpec> Caller<M> {
|
|
/// Create a callsite ABI object for a call directly to the specified function.
|
|
pub fn from_func(
|
|
sigs: &SigSet,
|
|
sig_ref: ir::SigRef,
|
|
extname: &ir::ExternalName,
|
|
dist: RelocDistance,
|
|
caller_conv: isa::CallConv,
|
|
flags: settings::Flags,
|
|
) -> CodegenResult<Caller<M>> {
|
|
let sig = sigs.abi_sig_for_sig_ref(sig_ref);
|
|
let clobbers = sigs.call_clobbers::<M>(sig);
|
|
Ok(Caller {
|
|
sig,
|
|
uses: smallvec![],
|
|
defs: smallvec![],
|
|
clobbers,
|
|
dest: CallDest::ExtName(extname.clone(), dist),
|
|
opcode: ir::Opcode::Call,
|
|
caller_conv,
|
|
flags,
|
|
_mach: PhantomData,
|
|
})
|
|
}
|
|
|
|
/// Create a callsite ABI object for a call directly to the specified
|
|
/// libcall.
|
|
pub fn from_libcall(
|
|
sigs: &SigSet,
|
|
sig: &ir::Signature,
|
|
extname: &ir::ExternalName,
|
|
dist: RelocDistance,
|
|
caller_conv: isa::CallConv,
|
|
flags: settings::Flags,
|
|
) -> CodegenResult<Caller<M>> {
|
|
let sig = sigs.abi_sig_for_signature(sig);
|
|
let clobbers = sigs.call_clobbers::<M>(sig);
|
|
Ok(Caller {
|
|
sig,
|
|
uses: smallvec![],
|
|
defs: smallvec![],
|
|
clobbers,
|
|
dest: CallDest::ExtName(extname.clone(), dist),
|
|
opcode: ir::Opcode::Call,
|
|
caller_conv,
|
|
flags,
|
|
_mach: PhantomData,
|
|
})
|
|
}
|
|
|
|
/// Create a callsite ABI object for a call to a function pointer with the
|
|
/// given signature.
|
|
pub fn from_ptr(
|
|
sigs: &SigSet,
|
|
sig_ref: ir::SigRef,
|
|
ptr: Reg,
|
|
opcode: ir::Opcode,
|
|
caller_conv: isa::CallConv,
|
|
flags: settings::Flags,
|
|
) -> CodegenResult<Caller<M>> {
|
|
let sig = sigs.abi_sig_for_sig_ref(sig_ref);
|
|
let clobbers = sigs.call_clobbers::<M>(sig);
|
|
Ok(Caller {
|
|
sig,
|
|
uses: smallvec![],
|
|
defs: smallvec![],
|
|
clobbers,
|
|
dest: CallDest::Reg(ptr),
|
|
opcode,
|
|
caller_conv,
|
|
flags,
|
|
_mach: PhantomData,
|
|
})
|
|
}
|
|
}
|
|
|
|
fn adjust_stack_and_nominal_sp<M: ABIMachineSpec>(ctx: &mut Lower<M::I>, off: i32, is_sub: bool) {
|
|
if off == 0 {
|
|
return;
|
|
}
|
|
let amt = if is_sub { -off } else { off };
|
|
for inst in M::gen_sp_reg_adjust(amt) {
|
|
ctx.emit(inst);
|
|
}
|
|
ctx.emit(M::gen_nominal_sp_adj(-amt));
|
|
}
|
|
|
|
impl<M: ABIMachineSpec> Caller<M> {
|
|
/// Get the number of arguments expected.
|
|
pub fn num_args(&self, sigs: &SigSet) -> usize {
|
|
sigs.num_args(self.sig)
|
|
}
|
|
|
|
/// Emit code to pre-adjust the stack, prior to argument copies and call.
|
|
pub fn emit_stack_pre_adjust(&self, ctx: &mut Lower<M::I>) {
|
|
let off =
|
|
ctx.sigs()[self.sig].sized_stack_arg_space + ctx.sigs()[self.sig].sized_stack_ret_space;
|
|
adjust_stack_and_nominal_sp::<M>(ctx, off as i32, /* is_sub = */ true)
|
|
}
|
|
|
|
/// Emit code to post-adjust the satck, after call return and return-value copies.
|
|
pub fn emit_stack_post_adjust(&self, ctx: &mut Lower<M::I>) {
|
|
let off =
|
|
ctx.sigs()[self.sig].sized_stack_arg_space + ctx.sigs()[self.sig].sized_stack_ret_space;
|
|
adjust_stack_and_nominal_sp::<M>(ctx, off as i32, /* is_sub = */ false)
|
|
}
|
|
|
|
/// Emit a copy of a large argument into its associated stack buffer, if any.
|
|
/// We must be careful to perform all these copies (as necessary) before setting
|
|
/// up the argument registers, since we may have to invoke memcpy(), which could
|
|
/// clobber any registers already set up. The back-end should call this routine
|
|
/// for all arguments before calling emit_copy_regs_to_arg for all arguments.
|
|
pub fn emit_copy_regs_to_buffer(
|
|
&self,
|
|
ctx: &mut Lower<M::I>,
|
|
idx: usize,
|
|
from_regs: ValueRegs<Reg>,
|
|
) {
|
|
match &ctx.sigs().args(self.sig)[idx] {
|
|
&ABIArg::Slots { .. } => {}
|
|
&ABIArg::StructArg { offset, size, .. } => {
|
|
let src_ptr = from_regs.only_reg().unwrap();
|
|
let dst_ptr = ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
|
|
ctx.emit(M::gen_get_stack_addr(
|
|
StackAMode::SPOffset(offset, I8),
|
|
dst_ptr,
|
|
I8,
|
|
));
|
|
// Emit a memcpy from `src_ptr` to `dst_ptr` of `size` bytes.
|
|
// N.B.: because we process StructArg params *first*, this is
|
|
// safe w.r.t. clobbers: we have not yet filled in any other
|
|
// arg regs.
|
|
let memcpy_call_conv =
|
|
isa::CallConv::for_libcall(&self.flags, ctx.sigs()[self.sig].call_conv);
|
|
for insn in M::gen_memcpy(
|
|
memcpy_call_conv,
|
|
dst_ptr.to_reg(),
|
|
src_ptr,
|
|
size as usize,
|
|
|ty| ctx.alloc_tmp(ty).only_reg().unwrap(),
|
|
)
|
|
.into_iter()
|
|
{
|
|
ctx.emit(insn);
|
|
}
|
|
}
|
|
&ABIArg::ImplicitPtrArg { .. } => unimplemented!(), // Only supported via ISLE.
|
|
}
|
|
}
|
|
|
|
/// Add a constraint for an argument value from a source register.
|
|
/// For large arguments with associated stack buffer, this may
|
|
/// load the address of the buffer into the argument register, if
|
|
/// required by the ABI.
|
|
pub fn gen_arg(
|
|
&mut self,
|
|
ctx: &mut Lower<M::I>,
|
|
idx: usize,
|
|
from_regs: ValueRegs<Reg>,
|
|
) -> SmallInstVec<M::I> {
|
|
let mut insts = smallvec![];
|
|
let word_rc = M::word_reg_class();
|
|
let word_bits = M::word_bits() as usize;
|
|
|
|
// How many temps do we need for extends? Allocate them ahead
|
|
// of time, since we can't do it while we're iterating over
|
|
// the sig and immutably borrowing `ctx`.
|
|
let needed_tmps = match &ctx.sigs().args(self.sig)[idx] {
|
|
&ABIArg::Slots { ref slots, .. } => slots
|
|
.iter()
|
|
.map(|slot| match slot {
|
|
&ABIArgSlot::Reg { extension, .. }
|
|
if extension != ir::ArgumentExtension::None =>
|
|
{
|
|
1
|
|
}
|
|
&ABIArgSlot::Reg { ty, .. } if ty.is_ref() => 1,
|
|
&ABIArgSlot::Reg { .. } => 0,
|
|
&ABIArgSlot::Stack { extension, .. }
|
|
if extension != ir::ArgumentExtension::None =>
|
|
{
|
|
1
|
|
}
|
|
&ABIArgSlot::Stack { .. } => 0,
|
|
})
|
|
.sum(),
|
|
_ => 0,
|
|
};
|
|
let mut temps: SmallVec<[Writable<Reg>; 16]> = (0..needed_tmps)
|
|
.map(|_| ctx.alloc_tmp(M::word_type()).only_reg().unwrap())
|
|
.collect();
|
|
|
|
match &ctx.sigs().args(self.sig)[idx] {
|
|
&ABIArg::Slots { ref slots, .. } => {
|
|
assert_eq!(from_regs.len(), slots.len());
|
|
for (slot, from_reg) in slots.iter().zip(from_regs.regs().iter()) {
|
|
match slot {
|
|
&ABIArgSlot::Reg {
|
|
reg, ty, extension, ..
|
|
} => {
|
|
let ext = M::get_ext_mode(ctx.sigs()[self.sig].call_conv, extension);
|
|
if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
|
|
assert_eq!(word_rc, reg.class());
|
|
let signed = match ext {
|
|
ir::ArgumentExtension::Uext => false,
|
|
ir::ArgumentExtension::Sext => true,
|
|
_ => unreachable!(),
|
|
};
|
|
let extend_result =
|
|
temps.pop().expect("Must have allocated enough temps");
|
|
insts.push(M::gen_extend(
|
|
extend_result,
|
|
*from_reg,
|
|
signed,
|
|
ty_bits(ty) as u8,
|
|
word_bits as u8,
|
|
));
|
|
self.uses.push(CallArgPair {
|
|
vreg: extend_result.to_reg(),
|
|
preg: reg.into(),
|
|
});
|
|
} else if ty.is_ref() {
|
|
// Reference-typed args need to be
|
|
// passed as a copy; the original vreg
|
|
// is constrained to the stack and
|
|
// this copy is in a reg.
|
|
let ref_copy =
|
|
temps.pop().expect("Must have allocated enough temps");
|
|
insts.push(M::gen_move(ref_copy, *from_reg, M::word_type()));
|
|
self.uses.push(CallArgPair {
|
|
vreg: ref_copy.to_reg(),
|
|
preg: reg.into(),
|
|
});
|
|
} else {
|
|
self.uses.push(CallArgPair {
|
|
vreg: *from_reg,
|
|
preg: reg.into(),
|
|
});
|
|
}
|
|
}
|
|
&ABIArgSlot::Stack {
|
|
offset,
|
|
ty,
|
|
extension,
|
|
..
|
|
} => {
|
|
let ext = M::get_ext_mode(ctx.sigs()[self.sig].call_conv, extension);
|
|
let (data, ty) =
|
|
if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
|
|
assert_eq!(word_rc, from_reg.class());
|
|
let signed = match ext {
|
|
ir::ArgumentExtension::Uext => false,
|
|
ir::ArgumentExtension::Sext => true,
|
|
_ => unreachable!(),
|
|
};
|
|
let extend_result =
|
|
temps.pop().expect("Must have allocated enough temps");
|
|
insts.push(M::gen_extend(
|
|
extend_result,
|
|
*from_reg,
|
|
signed,
|
|
ty_bits(ty) as u8,
|
|
word_bits as u8,
|
|
));
|
|
// Store the extended version.
|
|
(extend_result.to_reg(), M::word_type())
|
|
} else {
|
|
(*from_reg, ty)
|
|
};
|
|
insts.push(M::gen_store_stack(
|
|
StackAMode::SPOffset(offset, ty),
|
|
data,
|
|
ty,
|
|
));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
&ABIArg::StructArg { pointer, .. } => {
|
|
assert!(pointer.is_none()); // Only supported via ISLE.
|
|
}
|
|
&ABIArg::ImplicitPtrArg { .. } => unimplemented!(), // Only supported via ISLE.
|
|
}
|
|
insts
|
|
}
|
|
|
|
/// Define a return value after the call returns.
|
|
pub fn gen_retval(
|
|
&mut self,
|
|
ctx: &Lower<M::I>,
|
|
idx: usize,
|
|
into_regs: ValueRegs<Writable<Reg>>,
|
|
) -> SmallInstVec<M::I> {
|
|
let mut insts = smallvec![];
|
|
match &ctx.sigs().rets(self.sig)[idx] {
|
|
&ABIArg::Slots { ref slots, .. } => {
|
|
assert_eq!(into_regs.len(), slots.len());
|
|
for (slot, into_reg) in slots.iter().zip(into_regs.regs().iter()) {
|
|
match slot {
|
|
// Extension mode doesn't matter because we're copying out, not in,
|
|
// and we ignore high bits in our own registers by convention.
|
|
&ABIArgSlot::Reg { reg, .. } => {
|
|
self.defs.push(CallRetPair {
|
|
vreg: *into_reg,
|
|
preg: reg.into(),
|
|
});
|
|
}
|
|
&ABIArgSlot::Stack { offset, ty, .. } => {
|
|
let ret_area_base = ctx.sigs()[self.sig].sized_stack_arg_space();
|
|
insts.push(M::gen_load_stack(
|
|
StackAMode::SPOffset(offset + ret_area_base, ty),
|
|
*into_reg,
|
|
ty,
|
|
));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
&ABIArg::StructArg { .. } => {
|
|
panic!("StructArg not supported in return position");
|
|
}
|
|
&ABIArg::ImplicitPtrArg { .. } => {
|
|
panic!("ImplicitPtrArg not supported in return position");
|
|
}
|
|
}
|
|
insts
|
|
}
|
|
|
|
/// Emit the call itself.
|
|
///
|
|
/// The returned instruction should have proper use- and def-sets according
|
|
/// to the argument registers, return-value registers, and clobbered
|
|
/// registers for this function signature in this ABI.
|
|
///
|
|
/// (Arg registers are uses, and retval registers are defs. Clobbered
|
|
/// registers are also logically defs, but should never be read; their
|
|
/// values are "defined" (to the regalloc) but "undefined" in every other
|
|
/// sense.)
|
|
///
|
|
/// This function should only be called once, as it is allowed to re-use
|
|
/// parts of the `Caller` object in emitting instructions.
|
|
pub fn emit_call(&mut self, ctx: &mut Lower<M::I>) {
|
|
let word_type = M::word_type();
|
|
if let Some(i) = ctx.sigs()[self.sig].stack_ret_arg {
|
|
let rd = ctx.alloc_tmp(word_type).only_reg().unwrap();
|
|
let ret_area_base = ctx.sigs()[self.sig].sized_stack_arg_space();
|
|
ctx.emit(M::gen_get_stack_addr(
|
|
StackAMode::SPOffset(ret_area_base, I8),
|
|
rd,
|
|
I8,
|
|
));
|
|
for inst in self.gen_arg(ctx, i.into(), ValueRegs::one(rd.to_reg())) {
|
|
ctx.emit(inst);
|
|
}
|
|
}
|
|
|
|
let (uses, defs) = (
|
|
mem::replace(&mut self.uses, Default::default()),
|
|
mem::replace(&mut self.defs, Default::default()),
|
|
);
|
|
|
|
let tmp = ctx.alloc_tmp(word_type).only_reg().unwrap();
|
|
for inst in M::gen_call(
|
|
&self.dest,
|
|
uses,
|
|
defs,
|
|
self.clobbers,
|
|
self.opcode,
|
|
tmp,
|
|
ctx.sigs()[self.sig].call_conv,
|
|
self.caller_conv,
|
|
)
|
|
.into_iter()
|
|
{
|
|
ctx.emit(inst);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::SigData;
|
|
|
|
#[test]
|
|
fn sig_data_size() {
|
|
// The size of `SigData` is performance sensitive, so make sure
|
|
// we don't regress it unintentionally.
|
|
assert_eq!(std::mem::size_of::<SigData>(), 24);
|
|
}
|
|
}
|