Files
wasmtime/cranelift/codegen/src/ir/libcall.rs

225 lines
6.7 KiB
Rust

//! Naming well-known routines in the runtime library.
use crate::ir::{
types, AbiParam, ArgumentPurpose, ExtFuncData, ExternalName, FuncRef, Function, Inst, Opcode,
Signature, Type,
};
use crate::isa::{CallConv, RegUnit, TargetIsa};
use core::fmt;
use core::str::FromStr;
#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};
/// The name of a runtime library routine.
///
/// Runtime library calls are generated for Cranelift IR instructions that don't have an equivalent
/// ISA instruction or an easy macro expansion. A `LibCall` is used as a well-known name to refer to
/// the runtime library routine. This way, Cranelift doesn't have to know about the naming
/// convention in the embedding VM's runtime library.
///
/// This list is likely to grow over time.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum LibCall {
/// probe for stack overflow. These are emitted for functions which need
/// when the `probestack_enabled` setting is true.
Probestack,
/// ceil.f32
CeilF32,
/// ceil.f64
CeilF64,
/// floor.f32
FloorF32,
/// floor.f64
FloorF64,
/// trunc.f32
TruncF32,
/// frunc.f64
TruncF64,
/// nearest.f32
NearestF32,
/// nearest.f64
NearestF64,
/// libc.memcpy
Memcpy,
/// libc.memset
Memset,
/// libc.memmove
Memmove,
}
impl fmt::Display for LibCall {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(self, f)
}
}
impl FromStr for LibCall {
type Err = ();
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s {
"Probestack" => Ok(LibCall::Probestack),
"CeilF32" => Ok(LibCall::CeilF32),
"CeilF64" => Ok(LibCall::CeilF64),
"FloorF32" => Ok(LibCall::FloorF32),
"FloorF64" => Ok(LibCall::FloorF64),
"TruncF32" => Ok(LibCall::TruncF32),
"TruncF64" => Ok(LibCall::TruncF64),
"NearestF32" => Ok(LibCall::NearestF32),
"NearestF64" => Ok(LibCall::NearestF64),
"Memcpy" => Ok(LibCall::Memcpy),
"Memset" => Ok(LibCall::Memset),
"Memmove" => Ok(LibCall::Memmove),
_ => Err(()),
}
}
}
impl LibCall {
/// Get the well-known library call name to use as a replacement for an instruction with the
/// given opcode and controlling type variable.
///
/// Returns `None` if no well-known library routine name exists for that instruction.
pub fn for_inst(opcode: Opcode, ctrl_type: Type) -> Option<Self> {
Some(match ctrl_type {
types::F32 => match opcode {
Opcode::Ceil => LibCall::CeilF32,
Opcode::Floor => LibCall::FloorF32,
Opcode::Trunc => LibCall::TruncF32,
Opcode::Nearest => LibCall::NearestF32,
_ => return None,
},
types::F64 => match opcode {
Opcode::Ceil => LibCall::CeilF64,
Opcode::Floor => LibCall::FloorF64,
Opcode::Trunc => LibCall::TruncF64,
Opcode::Nearest => LibCall::NearestF64,
_ => return None,
},
_ => return None,
})
}
}
/// Get a function reference for `libcall` in `func`, following the signature
/// for `inst`.
///
/// If there is an existing reference, use it, otherwise make a new one.
pub fn get_libcall_funcref(
libcall: LibCall,
call_conv: CallConv,
func: &mut Function,
inst: Inst,
isa: &dyn TargetIsa,
) -> FuncRef {
find_funcref(libcall, func)
.unwrap_or_else(|| make_funcref_for_inst(libcall, call_conv, func, inst, isa))
}
/// Get a function reference for the probestack function in `func`.
///
/// If there is an existing reference, use it, otherwise make a new one.
pub fn get_probestack_funcref(
func: &mut Function,
reg_type: Type,
arg_reg: RegUnit,
isa: &dyn TargetIsa,
) -> FuncRef {
find_funcref(LibCall::Probestack, func)
.unwrap_or_else(|| make_funcref_for_probestack(func, reg_type, arg_reg, isa))
}
/// Get the existing function reference for `libcall` in `func` if it exists.
fn find_funcref(libcall: LibCall, func: &Function) -> Option<FuncRef> {
// We're assuming that all libcall function decls are at the end.
// If we get this wrong, worst case we'll have duplicate libcall decls which is harmless.
for (fref, func_data) in func.dfg.ext_funcs.iter().rev() {
match func_data.name {
ExternalName::LibCall(lc) => {
if lc == libcall {
return Some(fref);
}
}
_ => break,
}
}
None
}
/// Create a funcref for `LibCall::Probestack`.
fn make_funcref_for_probestack(
func: &mut Function,
reg_type: Type,
arg_reg: RegUnit,
isa: &dyn TargetIsa,
) -> FuncRef {
let mut sig = Signature::new(CallConv::Probestack);
let rax = AbiParam::special_reg(reg_type, ArgumentPurpose::Normal, arg_reg);
sig.params.push(rax);
if !isa.flags().probestack_func_adjusts_sp() {
sig.returns.push(rax);
}
make_funcref(LibCall::Probestack, func, sig, isa)
}
/// Create a funcref for `libcall` with a signature matching `inst`.
fn make_funcref_for_inst(
libcall: LibCall,
call_conv: CallConv,
func: &mut Function,
inst: Inst,
isa: &dyn TargetIsa,
) -> FuncRef {
let mut sig = Signature::new(call_conv);
for &v in func.dfg.inst_args(inst) {
sig.params.push(AbiParam::new(func.dfg.value_type(v)));
}
for &v in func.dfg.inst_results(inst) {
sig.returns.push(AbiParam::new(func.dfg.value_type(v)));
}
if call_conv.extends_baldrdash() {
// Adds the special VMContext parameter to the signature.
sig.params.push(AbiParam::special(
isa.pointer_type(),
ArgumentPurpose::VMContext,
));
}
make_funcref(libcall, func, sig, isa)
}
/// Create a funcref for `libcall`.
fn make_funcref(
libcall: LibCall,
func: &mut Function,
sig: Signature,
isa: &dyn TargetIsa,
) -> FuncRef {
let sigref = func.import_signature(sig);
func.import_function(ExtFuncData {
name: ExternalName::LibCall(libcall),
signature: sigref,
colocated: isa.flags().colocated_libcalls(),
})
}
#[cfg(test)]
mod tests {
use super::*;
use alloc::string::ToString;
#[test]
fn display() {
assert_eq!(LibCall::CeilF32.to_string(), "CeilF32");
assert_eq!(LibCall::NearestF64.to_string(), "NearestF64");
}
#[test]
fn parsing() {
assert_eq!("FloorF32".parse(), Ok(LibCall::FloorF32));
}
}