Files
wasmtime/crates/environ/src/compilation.rs
Kevin Rizzo 013b35ff32 winch: Refactoring wasmtime compiler integration pieces to share more between Cranelift and Winch (#5944)
* Enable the native target by default in winch

Match cranelift-codegen's build script where if no architecture is
explicitly enabled then the host architecture is implicitly enabled.

* Refactor Cranelift's ISA builder to share more with Winch

This commit refactors the `Builder` type to have a type parameter
representing the finished ISA with Cranelift and Winch having their own
typedefs for `Builder` to represent their own builders. The intention is
to use this shared functionality to produce more shared code between the
two codegen backends.

* Moving compiler shared components to a separate crate

* Restore native flag inference in compiler building

This fixes an oversight from the previous commits to use
`cranelift-native` to infer flags for the native host when using default
settings with Wasmtime.

* Move `Compiler::page_size_align` into wasmtime-environ

The `cranelift-codegen` crate doesn't need this and winch wants the same
implementation, so shuffle it around so everyone has access to it.

* Fill out `Compiler::{flags, isa_flags}` for Winch

These are easy enough to plumb through with some shared code for
Wasmtime.

* Plumb the `is_branch_protection_enabled` flag for Winch

Just forwarding an isa-specific setting accessor.

* Moving executable creation to shared compiler crate

* Adding builder back in and removing from shared crate

* Refactoring the shared pieces for the `CompilerBuilder`

I decided to move a couple things around from Alex's initial changes.
Instead of having the shared builder do everything, I went back to
having each compiler have a distinct builder implementation. I
refactored most of the flag setting logic into a single shared location,
so we can still reduce the amount of code duplication.

With them being separate, we don't need to maintain things like
`LinkOpts` which Winch doesn't currently use. We also have an avenue to
error when certain flags are sent to Winch if we don't support them. I'm
hoping this will make things more maintainable as we build out Winch.

I'm still unsure about keeping everything shared in a single crate
(`cranelift_shared`). It's starting to feel like this crate is doing too
much, which makes it difficult to name. There does seem to be a need for
two distinct abstraction: creating the final executable and the handling
of shared/ISA flags when building the compiler. I could make them into
two separate crates, but there doesn't seem to be enough there yet to
justify it.

* Documentation updates, and renaming the finish method

* Adding back in a default temporarily to pass tests, and removing some unused imports

* Fixing winch tests with wrong method name

* Removing unused imports from codegen shared crate

* Apply documentation formatting updates

Co-authored-by: Saúl Cabrera <saulecabrera@gmail.com>

* Adding back in cranelift_native flag inferring

* Adding new shared crate to publish list

* Adding write feature to pass cargo check

---------

Co-authored-by: Alex Crichton <alex@alexcrichton.com>
Co-authored-by: Saúl Cabrera <saulecabrera@gmail.com>
2023-03-08 15:07:13 +00:00

346 lines
13 KiB
Rust

//! A `Compilation` contains the compiled function bodies for a WebAssembly
//! module.
use crate::obj;
use crate::{
DefinedFuncIndex, FilePos, FuncIndex, FunctionBodyData, ModuleTranslation, ModuleTypes,
PrimaryMap, StackMap, Tunables, WasmError, WasmFuncType,
};
use anyhow::Result;
use object::write::{Object, SymbolId};
use object::{Architecture, BinaryFormat, FileFlags};
use serde::{Deserialize, Serialize};
use std::any::Any;
use std::borrow::Cow;
use std::collections::BTreeMap;
use std::fmt;
use std::sync::Arc;
use thiserror::Error;
/// Information about a function, such as trap information, address map,
/// and stack maps.
#[derive(Serialize, Deserialize, Default)]
#[allow(missing_docs)]
pub struct WasmFunctionInfo {
pub start_srcloc: FilePos,
pub stack_maps: Box<[StackMapInformation]>,
}
/// Description of where a function is located in the text section of a
/// compiled image.
#[derive(Copy, Clone, Serialize, Deserialize)]
pub struct FunctionLoc {
/// The byte offset from the start of the text section where this
/// function starts.
pub start: u32,
/// The byte length of this function's function body.
pub length: u32,
}
/// The offset within a function of a GC safepoint, and its associated stack
/// map.
#[derive(Serialize, Deserialize, Debug)]
pub struct StackMapInformation {
/// The offset of the GC safepoint within the function's native code. It is
/// relative to the beginning of the function.
pub code_offset: u32,
/// The stack map for identifying live GC refs at the GC safepoint.
pub stack_map: StackMap,
}
/// An error while compiling WebAssembly to machine code.
#[derive(Error, Debug)]
pub enum CompileError {
/// A wasm translation error occured.
#[error("WebAssembly translation error")]
Wasm(#[from] WasmError),
/// A compilation error occured.
#[error("Compilation error: {0}")]
Codegen(String),
/// A compilation error occured.
#[error("Debug info is not supported with this configuration")]
DebugInfoNotSupported,
}
/// Implementation of an incremental compilation's key/value cache store.
///
/// In theory, this could just be Cranelift's `CacheKvStore` trait, but it is not as we want to
/// make sure that wasmtime isn't too tied to Cranelift internals (and as a matter of fact, we
/// can't depend on the Cranelift trait here).
pub trait CacheStore: Send + Sync + std::fmt::Debug {
/// Try to retrieve an arbitrary cache key entry, and returns a reference to bytes that were
/// inserted via `Self::insert` before.
fn get(&self, key: &[u8]) -> Option<Cow<[u8]>>;
/// Given an arbitrary key and bytes, stores them in the cache.
///
/// Returns false when insertion in the cache failed.
fn insert(&self, key: &[u8], value: Vec<u8>) -> bool;
}
/// Abstract trait representing the ability to create a `Compiler` below.
///
/// This is used in Wasmtime to separate compiler implementations, currently
/// mostly used to separate Cranelift from Wasmtime itself.
pub trait CompilerBuilder: Send + Sync + fmt::Debug {
/// Sets the target of compilation to the target specified.
fn target(&mut self, target: target_lexicon::Triple) -> Result<()>;
/// Returns the currently configured target triple that compilation will
/// produce artifacts for.
fn triple(&self) -> &target_lexicon::Triple;
/// Compiler-specific method to configure various settings in the compiler
/// itself.
///
/// This is expected to be defined per-compiler. Compilers should return
/// errors for unknown names/values.
fn set(&mut self, name: &str, val: &str) -> Result<()>;
/// Compiler-specific method for configuring settings.
///
/// Same as [`CompilerBuilder::set`] except for enabling boolean flags.
/// Currently cranelift uses this to sometimes enable a family of settings.
fn enable(&mut self, name: &str) -> Result<()>;
/// Returns a list of all possible settings that can be configured with
/// [`CompilerBuilder::set`] and [`CompilerBuilder::enable`].
fn settings(&self) -> Vec<Setting>;
/// Enables Cranelift's incremental compilation cache, using the given `CacheStore`
/// implementation.
///
/// This will return an error if the compiler does not support incremental compilation.
fn enable_incremental_compilation(&mut self, cache_store: Arc<dyn CacheStore>) -> Result<()>;
/// Builds a new [`Compiler`] object from this configuration.
fn build(&self) -> Result<Box<dyn Compiler>>;
}
/// Description of compiler settings returned by [`CompilerBuilder::settings`].
#[derive(Clone, Copy, Debug)]
pub struct Setting {
/// The name of the setting.
pub name: &'static str,
/// The description of the setting.
pub description: &'static str,
/// The kind of the setting.
pub kind: SettingKind,
/// The supported values of the setting (for enum values).
pub values: Option<&'static [&'static str]>,
}
/// Different kinds of [`Setting`] values that can be configured in a
/// [`CompilerBuilder`]
#[derive(Clone, Copy, Debug)]
pub enum SettingKind {
/// The setting is an enumeration, meaning it's one of a set of values.
Enum,
/// The setting is a number.
Num,
/// The setting is a boolean.
Bool,
/// The setting is a preset.
Preset,
}
/// Types of objects that can be created by `Compiler::object`
pub enum ObjectKind {
/// A core wasm compilation artifact
Module,
/// A component compilation artifact
Component,
}
/// An implementation of a compiler which can compile WebAssembly functions to
/// machine code and perform other miscellaneous tasks needed by the JIT runtime.
pub trait Compiler: Send + Sync {
/// Compiles the function `index` within `translation`.
///
/// The body of the function is available in `data` and configuration
/// values are also passed in via `tunables`. Type information in
/// `translation` is all relative to `types`.
fn compile_function(
&self,
translation: &ModuleTranslation<'_>,
index: DefinedFuncIndex,
data: FunctionBodyData<'_>,
tunables: &Tunables,
types: &ModuleTypes,
) -> Result<(WasmFunctionInfo, Box<dyn Any + Send>), CompileError>;
/// Creates a function of type `VMTrampoline` which will then call the
/// function pointer argument which has the `ty` type provided.
fn compile_host_to_wasm_trampoline(
&self,
ty: &WasmFuncType,
) -> Result<Box<dyn Any + Send>, CompileError>;
/// Appends a list of compiled functions to an in-memory object.
///
/// This function will receive the same `Box<dyn Any>` produced as part of
/// compilation from functions like `compile_function`,
/// `compile_host_to_wasm_trampoline`, and other component-related shims.
/// Internally this will take all of these functions and add information to
/// the object such as:
///
/// * Compiled code in a `.text` section
/// * Unwind information in Wasmtime-specific sections
/// * Relocations, if necessary, for the text section
///
/// Each function is accompanied with its desired symbol name and the return
/// value of this function is the symbol for each function as well as where
/// each function was placed within the object.
///
/// The `resolve_reloc` argument is intended to resolving relocations
/// between function, chiefly resolving intra-module calls within one core
/// wasm module. The closure here takes two arguments: first the index
/// within `funcs` that is being resolved and next the `FuncIndex` which is
/// the relocation target to resolve. The return value is an index within
/// `funcs` that the relocation points to.
fn append_code(
&self,
obj: &mut Object<'static>,
funcs: &[(String, Box<dyn Any + Send>)],
tunables: &Tunables,
resolve_reloc: &dyn Fn(usize, FuncIndex) -> usize,
) -> Result<Vec<(SymbolId, FunctionLoc)>>;
/// Inserts two functions for host-to-wasm and wasm-to-host trampolines into
/// the `obj` provided.
///
/// This will configure the same sections as `emit_obj`, but will likely be
/// much smaller. The two returned `Trampoline` structures describe where to
/// find the host-to-wasm and wasm-to-host trampolines in the text section,
/// respectively.
fn emit_trampoline_obj(
&self,
ty: &WasmFuncType,
host_fn: usize,
obj: &mut Object<'static>,
) -> Result<(FunctionLoc, FunctionLoc)>;
/// Creates a new `Object` file which is used to build the results of a
/// compilation into.
///
/// The returned object file will have an appropriate
/// architecture/endianness for `self.triple()`, but at this time it is
/// always an ELF file, regardless of target platform.
fn object(&self, kind: ObjectKind) -> Result<Object<'static>> {
use target_lexicon::Architecture::*;
let triple = self.triple();
let mut obj = Object::new(
BinaryFormat::Elf,
match triple.architecture {
X86_32(_) => Architecture::I386,
X86_64 => Architecture::X86_64,
Arm(_) => Architecture::Arm,
Aarch64(_) => Architecture::Aarch64,
S390x => Architecture::S390x,
Riscv64(_) => Architecture::Riscv64,
architecture => {
anyhow::bail!("target architecture {:?} is unsupported", architecture,);
}
},
match triple.endianness().unwrap() {
target_lexicon::Endianness::Little => object::Endianness::Little,
target_lexicon::Endianness::Big => object::Endianness::Big,
},
);
obj.flags = FileFlags::Elf {
os_abi: obj::ELFOSABI_WASMTIME,
e_flags: match kind {
ObjectKind::Module => obj::EF_WASMTIME_MODULE,
ObjectKind::Component => obj::EF_WASMTIME_COMPONENT,
},
abi_version: 0,
};
Ok(obj)
}
/// Returns the target triple that this compiler is compiling for.
fn triple(&self) -> &target_lexicon::Triple;
/// Returns the alignment necessary to align values to the page size of the
/// compilation target. Note that this may be an upper-bound where the
/// alignment is larger than necessary for some platforms since it may
/// depend on the platform's runtime configuration.
fn page_size_align(&self) -> u64 {
use target_lexicon::*;
match (self.triple().operating_system, self.triple().architecture) {
(
OperatingSystem::MacOSX { .. }
| OperatingSystem::Darwin
| OperatingSystem::Ios
| OperatingSystem::Tvos,
Architecture::Aarch64(..),
) => 0x4000,
// 64 KB is the maximal page size (i.e. memory translation granule size)
// supported by the architecture and is used on some platforms.
(_, Architecture::Aarch64(..)) => 0x10000,
_ => 0x1000,
}
}
/// Returns a list of configured settings for this compiler.
fn flags(&self) -> BTreeMap<String, FlagValue>;
/// Same as [`Compiler::flags`], but ISA-specific (a cranelift-ism)
fn isa_flags(&self) -> BTreeMap<String, FlagValue>;
/// Get a flag indicating whether branch protection is enabled.
fn is_branch_protection_enabled(&self) -> bool;
/// Returns a suitable compiler usable for component-related compliations.
///
/// Note that the `ComponentCompiler` trait can also be implemented for
/// `Self` in which case this function would simply return `self`.
#[cfg(feature = "component-model")]
fn component_compiler(&self) -> &dyn crate::component::ComponentCompiler;
/// Appends generated DWARF sections to the `obj` specified for the compiled
/// functions.
fn append_dwarf(
&self,
obj: &mut Object<'_>,
translation: &ModuleTranslation<'_>,
funcs: &PrimaryMap<DefinedFuncIndex, (SymbolId, &(dyn Any + Send))>,
) -> Result<()>;
/// The function alignment required by this ISA.
fn function_alignment(&self) -> u32;
/// Creates a new System V Common Information Entry for the ISA.
///
/// Returns `None` if the ISA does not support System V unwind information.
fn create_systemv_cie(&self) -> Option<gimli::write::CommonInformationEntry> {
// By default, an ISA cannot create a System V CIE.
None
}
}
/// Value of a configured setting for a [`Compiler`]
#[derive(Serialize, Deserialize, Hash, Eq, PartialEq, Debug)]
pub enum FlagValue {
/// Name of the value that has been configured for this setting.
Enum(Cow<'static, str>),
/// The numerical value of the configured settings.
Num(u8),
/// Whether the setting is on or off.
Bool(bool),
}
impl fmt::Display for FlagValue {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::Enum(v) => v.fmt(f),
Self::Num(v) => v.fmt(f),
Self::Bool(v) => v.fmt(f),
}
}
}