* Replace a single-character string literal with a character literal. * Use is_some() instead of comparing with Some(_). * Add code-quotes around type names in comments. * Use !...is_empty() instead of len() != 0. * Tidy up redundant returns. * Remove redundant .clone() calls. * Remove unnecessary explicit lifetime parameters. * Tidy up unnecessary '&'s. * Add parens to make operator precedence explicit. * Use debug_assert_eq instead of debug_assert with ==. * Replace a &Vec argument with a &[...]. * Replace `a = a op b` with `a op= b`. * Avoid unnecessary closures. * Avoid .iter() and .iter_mut() for iterating over containers. * Remove unneeded qualification.
364 lines
13 KiB
Rust
364 lines
13 KiB
Rust
//! Reload pass
|
|
//!
|
|
//! The reload pass runs between the spilling and coloring passes. Its primary responsibility is to
|
|
//! insert `spill` and `fill` instructions such that instruction operands expecting a register will
|
|
//! get a value with register affinity, and operands expecting a stack slot will get a value with
|
|
//! stack affinity.
|
|
//!
|
|
//! The secondary responsibility of the reload pass is to reuse values in registers as much as
|
|
//! possible to minimize the number of `fill` instructions needed. This must not cause the register
|
|
//! pressure limits to be exceeded.
|
|
|
|
use dominator_tree::DominatorTree;
|
|
use ir::{Ebb, Inst, Value, Function, Signature, DataFlowGraph, InstEncodings};
|
|
use ir::layout::{Cursor, CursorPosition};
|
|
use ir::{InstBuilder, Opcode, ArgumentType, ArgumentLoc};
|
|
use isa::RegClass;
|
|
use isa::{TargetIsa, Encoding, EncInfo, RecipeConstraints, ConstraintKind};
|
|
use regalloc::affinity::Affinity;
|
|
use regalloc::live_value_tracker::{LiveValue, LiveValueTracker};
|
|
use regalloc::liveness::Liveness;
|
|
use sparse_map::{SparseMap, SparseMapValue};
|
|
use topo_order::TopoOrder;
|
|
|
|
/// Reusable data structures for the reload pass.
|
|
pub struct Reload {
|
|
candidates: Vec<ReloadCandidate>,
|
|
reloads: SparseMap<Value, ReloadedValue>,
|
|
}
|
|
|
|
/// Context data structure that gets instantiated once per pass.
|
|
struct Context<'a> {
|
|
isa: &'a TargetIsa,
|
|
// Cached ISA information.
|
|
// We save it here to avoid frequent virtual function calls on the `TargetIsa` trait object.
|
|
encinfo: EncInfo,
|
|
|
|
// References to contextual data structures we need.
|
|
domtree: &'a DominatorTree,
|
|
liveness: &'a mut Liveness,
|
|
topo: &'a mut TopoOrder,
|
|
|
|
candidates: &'a mut Vec<ReloadCandidate>,
|
|
reloads: &'a mut SparseMap<Value, ReloadedValue>,
|
|
}
|
|
|
|
impl Reload {
|
|
/// Create a new blank reload pass.
|
|
pub fn new() -> Reload {
|
|
Reload {
|
|
candidates: Vec::new(),
|
|
reloads: SparseMap::new(),
|
|
}
|
|
}
|
|
|
|
/// Run the reload algorithm over `func`.
|
|
pub fn run(&mut self,
|
|
isa: &TargetIsa,
|
|
func: &mut Function,
|
|
domtree: &DominatorTree,
|
|
liveness: &mut Liveness,
|
|
topo: &mut TopoOrder,
|
|
tracker: &mut LiveValueTracker) {
|
|
dbg!("Reload for:\n{}", func.display(isa));
|
|
let mut ctx = Context {
|
|
isa,
|
|
encinfo: isa.encoding_info(),
|
|
domtree,
|
|
liveness,
|
|
topo,
|
|
candidates: &mut self.candidates,
|
|
reloads: &mut self.reloads,
|
|
};
|
|
ctx.run(func, tracker)
|
|
}
|
|
}
|
|
|
|
/// A reload candidate.
|
|
///
|
|
/// This represents a stack value that is used by the current instruction where a register is
|
|
/// needed.
|
|
struct ReloadCandidate {
|
|
value: Value,
|
|
regclass: RegClass,
|
|
}
|
|
|
|
/// A Reloaded value.
|
|
///
|
|
/// This represents a value that has been reloaded into a register value from the stack.
|
|
struct ReloadedValue {
|
|
stack: Value,
|
|
reg: Value,
|
|
}
|
|
|
|
impl SparseMapValue<Value> for ReloadedValue {
|
|
fn key(&self) -> Value {
|
|
self.stack
|
|
}
|
|
}
|
|
|
|
impl<'a> Context<'a> {
|
|
fn run(&mut self, func: &mut Function, tracker: &mut LiveValueTracker) {
|
|
self.topo.reset(func.layout.ebbs());
|
|
while let Some(ebb) = self.topo.next(&func.layout, self.domtree) {
|
|
self.visit_ebb(ebb, func, tracker);
|
|
}
|
|
}
|
|
|
|
fn visit_ebb(&mut self, ebb: Ebb, func: &mut Function, tracker: &mut LiveValueTracker) {
|
|
dbg!("Reloading {}:", ebb);
|
|
let start_from = self.visit_ebb_header(ebb, func, tracker);
|
|
tracker.drop_dead_args();
|
|
|
|
let mut pos = Cursor::new(&mut func.layout);
|
|
pos.set_position(start_from);
|
|
while let Some(inst) = pos.current_inst() {
|
|
let encoding = func.encodings[inst];
|
|
if encoding.is_legal() {
|
|
self.visit_inst(ebb,
|
|
inst,
|
|
encoding,
|
|
&mut pos,
|
|
&mut func.dfg,
|
|
&mut func.encodings,
|
|
&func.signature,
|
|
tracker);
|
|
tracker.drop_dead(inst);
|
|
} else {
|
|
pos.next_inst();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Process the EBB parameters. Return the next instruction in the EBB to be processed
|
|
fn visit_ebb_header(&mut self,
|
|
ebb: Ebb,
|
|
func: &mut Function,
|
|
tracker: &mut LiveValueTracker)
|
|
-> CursorPosition {
|
|
let (liveins, args) =
|
|
tracker.ebb_top(ebb, &func.dfg, self.liveness, &func.layout, self.domtree);
|
|
|
|
if func.layout.entry_block() == Some(ebb) {
|
|
assert_eq!(liveins.len(), 0);
|
|
self.visit_entry_args(ebb, func, args)
|
|
} else {
|
|
self.visit_ebb_args(ebb, func, args)
|
|
}
|
|
}
|
|
|
|
/// Visit the arguments to the entry block.
|
|
/// These values have ABI constraints from the function signature.
|
|
fn visit_entry_args(&mut self,
|
|
ebb: Ebb,
|
|
func: &mut Function,
|
|
args: &[LiveValue])
|
|
-> CursorPosition {
|
|
assert_eq!(func.signature.argument_types.len(), args.len());
|
|
let mut pos = Cursor::new(&mut func.layout);
|
|
pos.goto_top(ebb);
|
|
pos.next_inst();
|
|
|
|
for (abi, arg) in func.signature.argument_types.iter().zip(args) {
|
|
match abi.location {
|
|
ArgumentLoc::Reg(_) => {
|
|
if arg.affinity.is_stack() {
|
|
// An incoming register parameter was spilled. Replace the parameter value
|
|
// with a temporary register value that is immediately spilled.
|
|
let reg = func.dfg.replace_ebb_arg(arg.value, abi.value_type);
|
|
let affinity = Affinity::abi(abi, self.isa);
|
|
self.liveness.create_dead(reg, ebb, affinity);
|
|
self.insert_spill(ebb,
|
|
arg.value,
|
|
reg,
|
|
&mut pos,
|
|
&mut func.encodings,
|
|
&mut func.dfg);
|
|
}
|
|
}
|
|
ArgumentLoc::Stack(_) => {
|
|
assert!(arg.affinity.is_stack());
|
|
}
|
|
ArgumentLoc::Unassigned => panic!("Unexpected ABI location"),
|
|
}
|
|
}
|
|
pos.position()
|
|
}
|
|
|
|
fn visit_ebb_args(&self, ebb: Ebb, func: &mut Function, _args: &[LiveValue]) -> CursorPosition {
|
|
let mut pos = Cursor::new(&mut func.layout);
|
|
pos.goto_top(ebb);
|
|
pos.next_inst();
|
|
pos.position()
|
|
}
|
|
|
|
/// Process the instruction pointed to by `pos`, and advance the cursor to the next instruction
|
|
/// that needs processing.
|
|
fn visit_inst(&mut self,
|
|
ebb: Ebb,
|
|
inst: Inst,
|
|
encoding: Encoding,
|
|
pos: &mut Cursor,
|
|
dfg: &mut DataFlowGraph,
|
|
encodings: &mut InstEncodings,
|
|
func_signature: &Signature,
|
|
tracker: &mut LiveValueTracker) {
|
|
// Get the operand constraints for `inst` that we are trying to satisfy.
|
|
let constraints = self.encinfo
|
|
.operand_constraints(encoding)
|
|
.expect("Missing instruction encoding");
|
|
|
|
// Identify reload candidates.
|
|
assert!(self.candidates.is_empty());
|
|
self.find_candidates(inst, constraints, func_signature, dfg);
|
|
|
|
// Insert fill instructions before `inst`.
|
|
while let Some(cand) = self.candidates.pop() {
|
|
if let Some(_reload) = self.reloads.get_mut(cand.value) {
|
|
continue;
|
|
}
|
|
|
|
let reg = dfg.ins(pos).fill(cand.value);
|
|
let fill = dfg.value_def(reg).unwrap_inst();
|
|
*encodings.ensure(fill) = self.isa
|
|
.encode(dfg, &dfg[fill], dfg.value_type(reg))
|
|
.expect("Can't encode fill");
|
|
|
|
self.reloads
|
|
.insert(ReloadedValue {
|
|
stack: cand.value,
|
|
reg: reg,
|
|
});
|
|
|
|
// Create a live range for the new reload.
|
|
let affinity = Affinity::Reg(cand.regclass.into());
|
|
self.liveness.create_dead(reg, dfg.value_def(reg), affinity);
|
|
self.liveness.extend_locally(reg, ebb, inst, pos.layout);
|
|
}
|
|
|
|
// Rewrite arguments.
|
|
for arg in dfg.inst_args_mut(inst) {
|
|
if let Some(reload) = self.reloads.get(*arg) {
|
|
*arg = reload.reg;
|
|
}
|
|
}
|
|
|
|
// TODO: Reuse reloads for future instructions.
|
|
self.reloads.clear();
|
|
|
|
let (_throughs, _kills, defs) = tracker.process_inst(inst, dfg, self.liveness);
|
|
|
|
// Advance to the next instruction so we can insert any spills after the instruction.
|
|
pos.next_inst();
|
|
|
|
// Rewrite register defs that need to be spilled.
|
|
//
|
|
// Change:
|
|
//
|
|
// v2 = inst ...
|
|
//
|
|
// Into:
|
|
//
|
|
// v7 = inst ...
|
|
// v2 = spill v7
|
|
//
|
|
// That way, we don't need to rewrite all future uses of v2.
|
|
for (lv, op) in defs.iter().zip(constraints.outs) {
|
|
if lv.affinity.is_stack() && op.kind != ConstraintKind::Stack {
|
|
let value_type = dfg.value_type(lv.value);
|
|
let reg = dfg.replace_result(lv.value, value_type);
|
|
self.liveness.create_dead(reg, inst, Affinity::new(op));
|
|
self.insert_spill(ebb, lv.value, reg, pos, encodings, dfg);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find reload candidates for `inst` and add them to `self.condidates`.
|
|
//
|
|
// These are uses of spilled values where the operand constraint requires a register.
|
|
fn find_candidates(&mut self,
|
|
inst: Inst,
|
|
constraints: &RecipeConstraints,
|
|
func_signature: &Signature,
|
|
dfg: &DataFlowGraph) {
|
|
let args = dfg.inst_args(inst);
|
|
|
|
for (op, &arg) in constraints.ins.iter().zip(args) {
|
|
if op.kind != ConstraintKind::Stack {
|
|
let lv = self.liveness.get(arg).expect("Missing live range for arg");
|
|
if lv.affinity.is_stack() {
|
|
self.candidates
|
|
.push(ReloadCandidate {
|
|
value: arg,
|
|
regclass: op.regclass,
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we only have the fixed arguments, we're done now.
|
|
if args.len() == constraints.ins.len() {
|
|
return;
|
|
}
|
|
let var_args = &args[constraints.ins.len()..];
|
|
|
|
// Handle ABI arguments.
|
|
if let Some(sig) = dfg.call_signature(inst) {
|
|
self.handle_abi_args(&dfg.signatures[sig].argument_types, var_args);
|
|
} else if dfg[inst].opcode().is_return() {
|
|
self.handle_abi_args(&func_signature.return_types, var_args);
|
|
}
|
|
}
|
|
|
|
/// Find reload candidates in the instruction's ABI variable arguments. This handles both
|
|
/// return values and call arguments.
|
|
fn handle_abi_args(&mut self, abi_types: &[ArgumentType], var_args: &[Value]) {
|
|
assert_eq!(abi_types.len(), var_args.len());
|
|
for (abi, &arg) in abi_types.iter().zip(var_args) {
|
|
if abi.location.is_reg() {
|
|
let lv = self.liveness
|
|
.get(arg)
|
|
.expect("Missing live range for ABI arg");
|
|
if lv.affinity.is_stack() {
|
|
self.candidates
|
|
.push(ReloadCandidate {
|
|
value: arg,
|
|
regclass: self.isa.regclass_for_abi_type(abi.value_type),
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Insert a spill at `pos` and update data structures.
|
|
///
|
|
/// - Insert `stack = spill reg` at `pos`, and assign an encoding.
|
|
/// - Move the `stack` live range starting point to the new instruction.
|
|
/// - Extend the `reg` live range to reach the new instruction.
|
|
fn insert_spill(&mut self,
|
|
ebb: Ebb,
|
|
stack: Value,
|
|
reg: Value,
|
|
pos: &mut Cursor,
|
|
encodings: &mut InstEncodings,
|
|
dfg: &mut DataFlowGraph) {
|
|
let ty = dfg.value_type(reg);
|
|
|
|
// Insert spill instruction. Use the low-level `Unary` constructor because it returns an
|
|
// instruction reference directly rather than a result value (which we know is equal to
|
|
// `stack`).
|
|
let (inst, _) = dfg.ins(pos)
|
|
.with_result(stack)
|
|
.Unary(Opcode::Spill, ty, reg);
|
|
|
|
// Give it an encoding.
|
|
*encodings.ensure(inst) = self.isa
|
|
.encode(dfg, &dfg[inst], ty)
|
|
.expect("Can't encode spill");
|
|
|
|
// Update live ranges.
|
|
self.liveness.move_def_locally(stack, inst);
|
|
self.liveness.extend_locally(reg, ebb, inst, pos.layout);
|
|
}
|
|
}
|