* move trap site definitions into cranelift-module `cranelift-faerie` and `cranelift-object` already have identical definitions of structures to represent trap sites. We might as well merge them ahead of work to define functions via a raw slice of bytes with associated traps, which will need some kind of common structure for representing traps anyway. * cranelift-module: add `define_function_bytes` interface This interface is useful when the client needs to precisely specify the ordering of bytes in a particular function. * add comment about saving files for `perf`
683 lines
21 KiB
Rust
683 lines
21 KiB
Rust
//! Defines `SimpleJITBackend`.
|
|
|
|
use crate::memory::Memory;
|
|
use cranelift_codegen::binemit::{
|
|
Addend, CodeOffset, NullTrapSink, Reloc, RelocSink, Stackmap, StackmapSink,
|
|
};
|
|
use cranelift_codegen::isa::TargetIsa;
|
|
use cranelift_codegen::{self, ir, settings};
|
|
use cranelift_module::{
|
|
Backend, DataContext, DataDescription, DataId, FuncId, Init, Linkage, ModuleNamespace,
|
|
ModuleResult, TrapSite,
|
|
};
|
|
use cranelift_native;
|
|
#[cfg(not(windows))]
|
|
use libc;
|
|
use std::collections::HashMap;
|
|
use std::ffi::CString;
|
|
use std::io::Write;
|
|
use std::ptr;
|
|
use target_lexicon::PointerWidth;
|
|
#[cfg(windows)]
|
|
use winapi;
|
|
|
|
const EXECUTABLE_DATA_ALIGNMENT: u8 = 0x10;
|
|
const WRITABLE_DATA_ALIGNMENT: u8 = 0x8;
|
|
const READONLY_DATA_ALIGNMENT: u8 = 0x1;
|
|
|
|
/// A builder for `SimpleJITBackend`.
|
|
pub struct SimpleJITBuilder {
|
|
isa: Box<dyn TargetIsa>,
|
|
symbols: HashMap<String, *const u8>,
|
|
libcall_names: Box<dyn Fn(ir::LibCall) -> String>,
|
|
}
|
|
|
|
impl SimpleJITBuilder {
|
|
/// Create a new `SimpleJITBuilder`.
|
|
///
|
|
/// The `libcall_names` function provides a way to translate `cranelift_codegen`'s `ir::LibCall`
|
|
/// enum to symbols. LibCalls are inserted in the IR as part of the legalization for certain
|
|
/// floating point instructions, and for stack probes. If you don't know what to use for this
|
|
/// argument, use `cranelift_module::default_libcall_names()`.
|
|
pub fn new(libcall_names: Box<dyn Fn(ir::LibCall) -> String>) -> Self {
|
|
let flag_builder = settings::builder();
|
|
let isa_builder = cranelift_native::builder().unwrap_or_else(|msg| {
|
|
panic!("host machine is not supported: {}", msg);
|
|
});
|
|
let isa = isa_builder.finish(settings::Flags::new(flag_builder));
|
|
Self::with_isa(isa, libcall_names)
|
|
}
|
|
|
|
/// Create a new `SimpleJITBuilder` with an arbitrary target. This is mainly
|
|
/// useful for testing.
|
|
///
|
|
/// SimpleJIT requires a `TargetIsa` configured for non-PIC.
|
|
///
|
|
/// To create a `SimpleJITBuilder` for native use, use the `new` constructor
|
|
/// instead.
|
|
///
|
|
/// The `libcall_names` function provides a way to translate `cranelift_codegen`'s `ir::LibCall`
|
|
/// enum to symbols. LibCalls are inserted in the IR as part of the legalization for certain
|
|
/// floating point instructions, and for stack probes. If you don't know what to use for this
|
|
/// argument, use `cranelift_module::default_libcall_names()`.
|
|
pub fn with_isa(
|
|
isa: Box<dyn TargetIsa>,
|
|
libcall_names: Box<dyn Fn(ir::LibCall) -> String>,
|
|
) -> Self {
|
|
debug_assert!(!isa.flags().is_pic(), "SimpleJIT requires non-PIC code");
|
|
let symbols = HashMap::new();
|
|
Self {
|
|
isa,
|
|
symbols,
|
|
libcall_names,
|
|
}
|
|
}
|
|
|
|
/// Define a symbol in the internal symbol table.
|
|
///
|
|
/// The JIT will use the symbol table to resolve names that are declared,
|
|
/// but not defined, in the module being compiled. A common example is
|
|
/// external functions. With this method, functions and data can be exposed
|
|
/// to the code being compiled which are defined by the host.
|
|
///
|
|
/// If a symbol is defined more than once, the most recent definition will
|
|
/// be retained.
|
|
///
|
|
/// If the JIT fails to find a symbol in its internal table, it will fall
|
|
/// back to a platform-specific search (this typically involves searching
|
|
/// the current process for public symbols, followed by searching the
|
|
/// platform's C runtime).
|
|
pub fn symbol<K>(&mut self, name: K, ptr: *const u8) -> &Self
|
|
where
|
|
K: Into<String>,
|
|
{
|
|
self.symbols.insert(name.into(), ptr);
|
|
self
|
|
}
|
|
|
|
/// Define multiple symbols in the internal symbol table.
|
|
///
|
|
/// Using this is equivalent to calling `symbol` on each element.
|
|
pub fn symbols<It, K>(&mut self, symbols: It) -> &Self
|
|
where
|
|
It: IntoIterator<Item = (K, *const u8)>,
|
|
K: Into<String>,
|
|
{
|
|
for (name, ptr) in symbols {
|
|
self.symbols.insert(name.into(), ptr);
|
|
}
|
|
self
|
|
}
|
|
}
|
|
|
|
/// A `SimpleJITBackend` implements `Backend` and emits code and data into memory where it can be
|
|
/// directly called and accessed.
|
|
///
|
|
/// See the `SimpleJITBuilder` for a convenient way to construct `SimpleJITBackend` instances.
|
|
pub struct SimpleJITBackend {
|
|
isa: Box<dyn TargetIsa>,
|
|
symbols: HashMap<String, *const u8>,
|
|
libcall_names: Box<dyn Fn(ir::LibCall) -> String>,
|
|
memory: SimpleJITMemoryHandle,
|
|
}
|
|
|
|
/// A record of a relocation to perform.
|
|
struct RelocRecord {
|
|
offset: CodeOffset,
|
|
reloc: Reloc,
|
|
name: ir::ExternalName,
|
|
addend: Addend,
|
|
}
|
|
|
|
struct StackmapRecord {
|
|
#[allow(dead_code)]
|
|
offset: CodeOffset,
|
|
#[allow(dead_code)]
|
|
stackmap: Stackmap,
|
|
}
|
|
|
|
pub struct SimpleJITCompiledFunction {
|
|
code: *mut u8,
|
|
size: usize,
|
|
relocs: Vec<RelocRecord>,
|
|
}
|
|
|
|
pub struct SimpleJITCompiledData {
|
|
storage: *mut u8,
|
|
size: usize,
|
|
relocs: Vec<RelocRecord>,
|
|
}
|
|
|
|
/// A handle to allow freeing memory allocated by the `Backend`.
|
|
pub struct SimpleJITMemoryHandle {
|
|
code: Memory,
|
|
readonly: Memory,
|
|
writable: Memory,
|
|
}
|
|
|
|
impl SimpleJITBackend {
|
|
fn lookup_symbol(&self, name: &str) -> *const u8 {
|
|
match self.symbols.get(name) {
|
|
Some(&ptr) => ptr,
|
|
None => lookup_with_dlsym(name),
|
|
}
|
|
}
|
|
|
|
fn get_definition(
|
|
&self,
|
|
namespace: &ModuleNamespace<Self>,
|
|
name: &ir::ExternalName,
|
|
) -> *const u8 {
|
|
match *name {
|
|
ir::ExternalName::User { .. } => {
|
|
if namespace.is_function(name) {
|
|
let (def, name_str, _signature) = namespace.get_function_definition(&name);
|
|
match def {
|
|
Some(compiled) => compiled.code,
|
|
None => self.lookup_symbol(name_str),
|
|
}
|
|
} else {
|
|
let (def, name_str, _writable) = namespace.get_data_definition(&name);
|
|
match def {
|
|
Some(compiled) => compiled.storage,
|
|
None => self.lookup_symbol(name_str),
|
|
}
|
|
}
|
|
}
|
|
ir::ExternalName::LibCall(ref libcall) => {
|
|
let sym = (self.libcall_names)(*libcall);
|
|
self.lookup_symbol(&sym)
|
|
}
|
|
_ => panic!("invalid ExternalName {}", name),
|
|
}
|
|
}
|
|
|
|
fn record_function_for_perf(&self, ptr: *mut u8, size: usize, name: &str) {
|
|
// The Linux perf tool supports JIT code via a /tmp/perf-$PID.map file,
|
|
// which contains memory regions and their associated names. If we
|
|
// are profiling with perf and saving binaries to PERF_BUILDID_DIR
|
|
// for post-profile analysis, write information about each function
|
|
// we define.
|
|
if cfg!(target_os = "linux") && ::std::env::var_os("PERF_BUILDID_DIR").is_some() {
|
|
let mut map_file = ::std::fs::OpenOptions::new()
|
|
.create(true)
|
|
.append(true)
|
|
.open(format!("/tmp/perf-{}.map", ::std::process::id()))
|
|
.unwrap();
|
|
|
|
let _ = writeln!(map_file, "{:x} {:x} {}", ptr as usize, size, name);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'simple_jit_backend> Backend for SimpleJITBackend {
|
|
type Builder = SimpleJITBuilder;
|
|
|
|
/// SimpleJIT compiled function and data objects may have outstanding
|
|
/// relocations that need to be performed before the memory can be used.
|
|
/// These relocations are performed within `finalize_function` and
|
|
/// `finalize_data`.
|
|
type CompiledFunction = SimpleJITCompiledFunction;
|
|
type CompiledData = SimpleJITCompiledData;
|
|
|
|
/// SimpleJIT emits code and data into memory, and provides raw pointers
|
|
/// to them. They are valid for the remainder of the program's life, unless
|
|
/// [`free_memory`] is used.
|
|
///
|
|
/// [`free_memory`]: #method.free_memory
|
|
type FinalizedFunction = *const u8;
|
|
type FinalizedData = (*mut u8, usize);
|
|
|
|
/// SimpleJIT emits code and data into memory as it processes them, so it
|
|
/// doesn't need to provide anything after the `Module` is complete.
|
|
/// The handle object that is returned can optionally be used to free
|
|
/// allocated memory if required.
|
|
type Product = SimpleJITMemoryHandle;
|
|
|
|
/// Create a new `SimpleJITBackend`.
|
|
fn new(builder: SimpleJITBuilder) -> Self {
|
|
let memory = SimpleJITMemoryHandle {
|
|
code: Memory::new(),
|
|
readonly: Memory::new(),
|
|
writable: Memory::new(),
|
|
};
|
|
|
|
Self {
|
|
isa: builder.isa,
|
|
symbols: builder.symbols,
|
|
libcall_names: builder.libcall_names,
|
|
memory,
|
|
}
|
|
}
|
|
|
|
fn isa(&self) -> &dyn TargetIsa {
|
|
&*self.isa
|
|
}
|
|
|
|
fn declare_function(&mut self, _id: FuncId, _name: &str, _linkage: Linkage) {
|
|
// Nothing to do.
|
|
}
|
|
|
|
fn declare_data(
|
|
&mut self,
|
|
_id: DataId,
|
|
_name: &str,
|
|
_linkage: Linkage,
|
|
_writable: bool,
|
|
_align: Option<u8>,
|
|
) {
|
|
// Nothing to do.
|
|
}
|
|
|
|
fn define_function(
|
|
&mut self,
|
|
_id: FuncId,
|
|
name: &str,
|
|
ctx: &cranelift_codegen::Context,
|
|
_namespace: &ModuleNamespace<Self>,
|
|
code_size: u32,
|
|
) -> ModuleResult<Self::CompiledFunction> {
|
|
let size = code_size as usize;
|
|
let ptr = self
|
|
.memory
|
|
.code
|
|
.allocate(size, EXECUTABLE_DATA_ALIGNMENT)
|
|
.expect("TODO: handle OOM etc.");
|
|
|
|
self.record_function_for_perf(ptr, size, name);
|
|
|
|
let mut reloc_sink = SimpleJITRelocSink::new();
|
|
// Ignore traps for now. For now, frontends should just avoid generating code
|
|
// that traps.
|
|
let mut trap_sink = NullTrapSink {};
|
|
let mut stackmap_sink = SimpleJITStackmapSink::new();
|
|
unsafe {
|
|
ctx.emit_to_memory(
|
|
&*self.isa,
|
|
ptr,
|
|
&mut reloc_sink,
|
|
&mut trap_sink,
|
|
&mut stackmap_sink,
|
|
)
|
|
};
|
|
|
|
Ok(Self::CompiledFunction {
|
|
code: ptr,
|
|
size,
|
|
relocs: reloc_sink.relocs,
|
|
})
|
|
}
|
|
|
|
fn define_function_bytes(
|
|
&mut self,
|
|
_id: FuncId,
|
|
name: &str,
|
|
bytes: &[u8],
|
|
_namespace: &ModuleNamespace<Self>,
|
|
_traps: Vec<TrapSite>,
|
|
) -> ModuleResult<Self::CompiledFunction> {
|
|
let size = bytes.len();
|
|
let ptr = self
|
|
.memory
|
|
.code
|
|
.allocate(size, EXECUTABLE_DATA_ALIGNMENT)
|
|
.expect("TODO: handle OOM etc.");
|
|
|
|
self.record_function_for_perf(ptr, size, name);
|
|
|
|
unsafe {
|
|
ptr::copy_nonoverlapping(bytes.as_ptr(), ptr, size);
|
|
}
|
|
|
|
Ok(Self::CompiledFunction {
|
|
code: ptr,
|
|
size,
|
|
relocs: vec![],
|
|
})
|
|
}
|
|
|
|
fn define_data(
|
|
&mut self,
|
|
_id: DataId,
|
|
_name: &str,
|
|
writable: bool,
|
|
align: Option<u8>,
|
|
data: &DataContext,
|
|
_namespace: &ModuleNamespace<Self>,
|
|
) -> ModuleResult<Self::CompiledData> {
|
|
let &DataDescription {
|
|
ref init,
|
|
ref function_decls,
|
|
ref data_decls,
|
|
ref function_relocs,
|
|
ref data_relocs,
|
|
} = data.description();
|
|
|
|
let size = init.size();
|
|
let storage = if writable {
|
|
self.memory
|
|
.writable
|
|
.allocate(size, align.unwrap_or(WRITABLE_DATA_ALIGNMENT))
|
|
.expect("TODO: handle OOM etc.")
|
|
} else {
|
|
self.memory
|
|
.readonly
|
|
.allocate(size, align.unwrap_or(READONLY_DATA_ALIGNMENT))
|
|
.expect("TODO: handle OOM etc.")
|
|
};
|
|
|
|
match *init {
|
|
Init::Uninitialized => {
|
|
panic!("data is not initialized yet");
|
|
}
|
|
Init::Zeros { .. } => {
|
|
unsafe { ptr::write_bytes(storage, 0, size) };
|
|
}
|
|
Init::Bytes { ref contents } => {
|
|
let src = contents.as_ptr();
|
|
unsafe { ptr::copy_nonoverlapping(src, storage, size) };
|
|
}
|
|
}
|
|
|
|
let reloc = match self.isa.triple().pointer_width().unwrap() {
|
|
PointerWidth::U16 => panic!(),
|
|
PointerWidth::U32 => Reloc::Abs4,
|
|
PointerWidth::U64 => Reloc::Abs8,
|
|
};
|
|
let mut relocs = Vec::new();
|
|
for &(offset, id) in function_relocs {
|
|
relocs.push(RelocRecord {
|
|
reloc,
|
|
offset,
|
|
name: function_decls[id].clone(),
|
|
addend: 0,
|
|
});
|
|
}
|
|
for &(offset, id, addend) in data_relocs {
|
|
relocs.push(RelocRecord {
|
|
reloc,
|
|
offset,
|
|
name: data_decls[id].clone(),
|
|
addend,
|
|
});
|
|
}
|
|
|
|
Ok(Self::CompiledData {
|
|
storage,
|
|
size,
|
|
relocs,
|
|
})
|
|
}
|
|
|
|
fn write_data_funcaddr(
|
|
&mut self,
|
|
_data: &mut Self::CompiledData,
|
|
_offset: usize,
|
|
_what: ir::FuncRef,
|
|
) {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn write_data_dataaddr(
|
|
&mut self,
|
|
_data: &mut Self::CompiledData,
|
|
_offset: usize,
|
|
_what: ir::GlobalValue,
|
|
_usize: Addend,
|
|
) {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn finalize_function(
|
|
&mut self,
|
|
_id: FuncId,
|
|
func: &Self::CompiledFunction,
|
|
namespace: &ModuleNamespace<Self>,
|
|
) -> Self::FinalizedFunction {
|
|
use std::ptr::write_unaligned;
|
|
|
|
for &RelocRecord {
|
|
reloc,
|
|
offset,
|
|
ref name,
|
|
addend,
|
|
} in &func.relocs
|
|
{
|
|
let ptr = func.code;
|
|
debug_assert!((offset as usize) < func.size);
|
|
let at = unsafe { ptr.offset(offset as isize) };
|
|
let base = self.get_definition(namespace, name);
|
|
// TODO: Handle overflow.
|
|
let what = unsafe { base.offset(addend as isize) };
|
|
match reloc {
|
|
Reloc::Abs4 => {
|
|
// TODO: Handle overflow.
|
|
#[cfg_attr(feature = "cargo-clippy", allow(clippy::cast_ptr_alignment))]
|
|
unsafe {
|
|
write_unaligned(at as *mut u32, what as u32)
|
|
};
|
|
}
|
|
Reloc::Abs8 => {
|
|
#[cfg_attr(feature = "cargo-clippy", allow(clippy::cast_ptr_alignment))]
|
|
unsafe {
|
|
write_unaligned(at as *mut u64, what as u64)
|
|
};
|
|
}
|
|
Reloc::X86PCRel4 | Reloc::X86CallPCRel4 => {
|
|
// TODO: Handle overflow.
|
|
let pcrel = ((what as isize) - (at as isize)) as i32;
|
|
#[cfg_attr(feature = "cargo-clippy", allow(clippy::cast_ptr_alignment))]
|
|
unsafe {
|
|
write_unaligned(at as *mut i32, pcrel)
|
|
};
|
|
}
|
|
Reloc::X86GOTPCRel4 | Reloc::X86CallPLTRel4 => panic!("unexpected PIC relocation"),
|
|
_ => unimplemented!(),
|
|
}
|
|
}
|
|
func.code
|
|
}
|
|
|
|
fn get_finalized_function(&self, func: &Self::CompiledFunction) -> Self::FinalizedFunction {
|
|
func.code
|
|
}
|
|
|
|
fn finalize_data(
|
|
&mut self,
|
|
_id: DataId,
|
|
data: &Self::CompiledData,
|
|
namespace: &ModuleNamespace<Self>,
|
|
) -> Self::FinalizedData {
|
|
use std::ptr::write_unaligned;
|
|
|
|
for &RelocRecord {
|
|
reloc,
|
|
offset,
|
|
ref name,
|
|
addend,
|
|
} in &data.relocs
|
|
{
|
|
let ptr = data.storage;
|
|
debug_assert!((offset as usize) < data.size);
|
|
let at = unsafe { ptr.offset(offset as isize) };
|
|
let base = self.get_definition(namespace, name);
|
|
// TODO: Handle overflow.
|
|
let what = unsafe { base.offset(addend as isize) };
|
|
match reloc {
|
|
Reloc::Abs4 => {
|
|
// TODO: Handle overflow.
|
|
#[cfg_attr(feature = "cargo-clippy", allow(clippy::cast_ptr_alignment))]
|
|
unsafe {
|
|
write_unaligned(at as *mut u32, what as u32)
|
|
};
|
|
}
|
|
Reloc::Abs8 => {
|
|
#[cfg_attr(feature = "cargo-clippy", allow(clippy::cast_ptr_alignment))]
|
|
unsafe {
|
|
write_unaligned(at as *mut u64, what as u64)
|
|
};
|
|
}
|
|
Reloc::X86PCRel4
|
|
| Reloc::X86CallPCRel4
|
|
| Reloc::X86GOTPCRel4
|
|
| Reloc::X86CallPLTRel4 => panic!("unexpected text relocation in data"),
|
|
_ => unimplemented!(),
|
|
}
|
|
}
|
|
(data.storage, data.size)
|
|
}
|
|
|
|
fn get_finalized_data(&self, data: &Self::CompiledData) -> Self::FinalizedData {
|
|
(data.storage, data.size)
|
|
}
|
|
|
|
fn publish(&mut self) {
|
|
// Now that we're done patching, prepare the memory for execution!
|
|
self.memory.readonly.set_readonly();
|
|
self.memory.code.set_readable_and_executable();
|
|
}
|
|
|
|
/// SimpleJIT emits code and data into memory as it processes them. This
|
|
/// method performs no additional processing, but returns a handle which
|
|
/// allows freeing the allocated memory. Otherwise said memory is leaked
|
|
/// to enable safe handling of the resulting pointers.
|
|
///
|
|
/// This method does not need to be called when access to the memory
|
|
/// handle is not required.
|
|
fn finish(self, _namespace: &ModuleNamespace<Self>) -> Self::Product {
|
|
self.memory
|
|
}
|
|
}
|
|
|
|
#[cfg(not(windows))]
|
|
fn lookup_with_dlsym(name: &str) -> *const u8 {
|
|
let c_str = CString::new(name).unwrap();
|
|
let c_str_ptr = c_str.as_ptr();
|
|
let sym = unsafe { libc::dlsym(libc::RTLD_DEFAULT, c_str_ptr) };
|
|
if sym.is_null() {
|
|
panic!("can't resolve symbol {}", name);
|
|
}
|
|
sym as *const u8
|
|
}
|
|
|
|
#[cfg(windows)]
|
|
fn lookup_with_dlsym(name: &str) -> *const u8 {
|
|
const MSVCRT_DLL: &[u8] = b"msvcrt.dll\0";
|
|
|
|
let c_str = CString::new(name).unwrap();
|
|
let c_str_ptr = c_str.as_ptr();
|
|
|
|
unsafe {
|
|
let handles = [
|
|
// try to find the searched symbol in the currently running executable
|
|
ptr::null_mut(),
|
|
// try to find the searched symbol in local c runtime
|
|
winapi::um::libloaderapi::GetModuleHandleA(MSVCRT_DLL.as_ptr() as *const i8),
|
|
];
|
|
|
|
for handle in &handles {
|
|
let addr = winapi::um::libloaderapi::GetProcAddress(*handle, c_str_ptr);
|
|
if addr.is_null() {
|
|
continue;
|
|
}
|
|
return addr as *const u8;
|
|
}
|
|
|
|
let msg = if handles[1].is_null() {
|
|
"(msvcrt not loaded)"
|
|
} else {
|
|
""
|
|
};
|
|
panic!("cannot resolve address of symbol {} {}", name, msg);
|
|
}
|
|
}
|
|
|
|
impl SimpleJITMemoryHandle {
|
|
/// Free memory allocated for code and data segments of compiled functions.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// Because this function invalidates any pointers retrived from the
|
|
/// corresponding module, it should only be used when none of the functions
|
|
/// from that module are currently executing and none of the`fn` pointers
|
|
/// are called afterwards.
|
|
pub unsafe fn free_memory(&mut self) {
|
|
self.code.free_memory();
|
|
self.readonly.free_memory();
|
|
self.writable.free_memory();
|
|
}
|
|
}
|
|
|
|
struct SimpleJITRelocSink {
|
|
pub relocs: Vec<RelocRecord>,
|
|
}
|
|
|
|
impl SimpleJITRelocSink {
|
|
pub fn new() -> Self {
|
|
Self { relocs: Vec::new() }
|
|
}
|
|
}
|
|
|
|
impl RelocSink for SimpleJITRelocSink {
|
|
fn reloc_block(&mut self, _offset: CodeOffset, _reloc: Reloc, _block_offset: CodeOffset) {
|
|
unimplemented!();
|
|
}
|
|
|
|
fn reloc_external(
|
|
&mut self,
|
|
offset: CodeOffset,
|
|
reloc: Reloc,
|
|
name: &ir::ExternalName,
|
|
addend: Addend,
|
|
) {
|
|
self.relocs.push(RelocRecord {
|
|
offset,
|
|
reloc,
|
|
name: name.clone(),
|
|
addend,
|
|
});
|
|
}
|
|
|
|
fn reloc_jt(&mut self, _offset: CodeOffset, reloc: Reloc, _jt: ir::JumpTable) {
|
|
match reloc {
|
|
Reloc::X86PCRelRodata4 => {
|
|
// Not necessary to record this unless we are going to split apart code and its
|
|
// jumptbl/rodata.
|
|
}
|
|
_ => {
|
|
panic!("Unhandled reloc");
|
|
}
|
|
}
|
|
}
|
|
|
|
fn reloc_constant(&mut self, _offset: CodeOffset, reloc: Reloc, _constant: ir::ConstantOffset) {
|
|
match reloc {
|
|
Reloc::X86PCRelRodata4 => {
|
|
// Not necessary to record this unless we are going to split apart code and its
|
|
// jumptbl/rodata.
|
|
}
|
|
_ => {
|
|
panic!("Unhandled reloc");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
struct SimpleJITStackmapSink {
|
|
pub stackmaps: Vec<StackmapRecord>,
|
|
}
|
|
|
|
impl SimpleJITStackmapSink {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
stackmaps: Vec::new(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl StackmapSink for SimpleJITStackmapSink {
|
|
fn add_stackmap(&mut self, offset: CodeOffset, stackmap: Stackmap) {
|
|
self.stackmaps.push(StackmapRecord { offset, stackmap });
|
|
}
|
|
}
|