This fixes some issues that are cropping up where some syntax will get phased out in 2021
756 lines
22 KiB
Rust
756 lines
22 KiB
Rust
use crate::cdsl::instructions::{InstSpec, Instruction, InstructionPredicate};
|
|
use crate::cdsl::operands::{OperandKind, OperandKindFields};
|
|
use crate::cdsl::types::ValueType;
|
|
use crate::cdsl::typevar::{TypeSetBuilder, TypeVar};
|
|
|
|
use cranelift_entity::{entity_impl, PrimaryMap, SparseMap, SparseMapValue};
|
|
|
|
use std::fmt;
|
|
use std::iter::IntoIterator;
|
|
|
|
pub(crate) enum Expr {
|
|
Var(VarIndex),
|
|
Literal(Literal),
|
|
}
|
|
|
|
impl Expr {
|
|
pub fn maybe_literal(&self) -> Option<&Literal> {
|
|
match &self {
|
|
Expr::Literal(lit) => Some(lit),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
pub fn maybe_var(&self) -> Option<VarIndex> {
|
|
if let Expr::Var(var) = &self {
|
|
Some(*var)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
pub fn unwrap_var(&self) -> VarIndex {
|
|
self.maybe_var()
|
|
.expect("tried to unwrap a non-Var content in Expr::unwrap_var")
|
|
}
|
|
|
|
pub fn to_rust_code(&self, var_pool: &VarPool) -> String {
|
|
match self {
|
|
Expr::Var(var_index) => var_pool.get(*var_index).to_rust_code(),
|
|
Expr::Literal(literal) => literal.to_rust_code(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An AST definition associates a set of variables with the values produced by an expression.
|
|
pub(crate) struct Def {
|
|
pub apply: Apply,
|
|
pub defined_vars: Vec<VarIndex>,
|
|
}
|
|
|
|
impl Def {
|
|
pub fn to_comment_string(&self, var_pool: &VarPool) -> String {
|
|
let results = self
|
|
.defined_vars
|
|
.iter()
|
|
.map(|&x| var_pool.get(x).name.as_str())
|
|
.collect::<Vec<_>>();
|
|
|
|
let results = if results.len() == 1 {
|
|
results[0].to_string()
|
|
} else {
|
|
format!("({})", results.join(", "))
|
|
};
|
|
|
|
format!("{} := {}", results, self.apply.to_comment_string(var_pool))
|
|
}
|
|
}
|
|
|
|
pub(crate) struct DefPool {
|
|
pool: PrimaryMap<DefIndex, Def>,
|
|
}
|
|
|
|
impl DefPool {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
pool: PrimaryMap::new(),
|
|
}
|
|
}
|
|
pub fn get(&self, index: DefIndex) -> &Def {
|
|
self.pool.get(index).unwrap()
|
|
}
|
|
pub fn next_index(&self) -> DefIndex {
|
|
self.pool.next_key()
|
|
}
|
|
pub fn create_inst(&mut self, apply: Apply, defined_vars: Vec<VarIndex>) -> DefIndex {
|
|
self.pool.push(Def {
|
|
apply,
|
|
defined_vars,
|
|
})
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
|
|
pub(crate) struct DefIndex(u32);
|
|
entity_impl!(DefIndex);
|
|
|
|
/// A definition which would lead to generate a block creation.
|
|
#[derive(Clone)]
|
|
pub(crate) struct Block {
|
|
/// Instruction index after which the block entry is set.
|
|
pub location: DefIndex,
|
|
/// Variable holding the new created block.
|
|
pub name: VarIndex,
|
|
}
|
|
|
|
pub(crate) struct BlockPool {
|
|
pool: SparseMap<DefIndex, Block>,
|
|
}
|
|
|
|
impl SparseMapValue<DefIndex> for Block {
|
|
fn key(&self) -> DefIndex {
|
|
self.location
|
|
}
|
|
}
|
|
|
|
impl BlockPool {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
pool: SparseMap::new(),
|
|
}
|
|
}
|
|
pub fn get(&self, index: DefIndex) -> Option<&Block> {
|
|
self.pool.get(index)
|
|
}
|
|
pub fn create_block(&mut self, name: VarIndex, location: DefIndex) {
|
|
if self.pool.contains_key(location) {
|
|
panic!("Attempt to insert 2 blocks after the same instruction")
|
|
}
|
|
self.pool.insert(Block { location, name });
|
|
}
|
|
pub fn is_empty(&self) -> bool {
|
|
self.pool.is_empty()
|
|
}
|
|
}
|
|
|
|
// Implement IntoIterator such that we can iterate over blocks which are in the block pool.
|
|
impl<'a> IntoIterator for &'a BlockPool {
|
|
type Item = <&'a SparseMap<DefIndex, Block> as IntoIterator>::Item;
|
|
type IntoIter = <&'a SparseMap<DefIndex, Block> as IntoIterator>::IntoIter;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
self.pool.into_iter()
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) enum Literal {
|
|
/// A value of an enumerated immediate operand.
|
|
///
|
|
/// Some immediate operand kinds like `intcc` and `floatcc` have an enumerated range of values
|
|
/// corresponding to a Rust enum type. An `Enumerator` object is an AST leaf node representing one
|
|
/// of the values.
|
|
Enumerator {
|
|
rust_type: &'static str,
|
|
value: &'static str,
|
|
},
|
|
|
|
/// A bitwise value of an immediate operand, used for bitwise exact floating point constants.
|
|
Bits { rust_type: &'static str, value: u64 },
|
|
|
|
/// A value of an integer immediate operand.
|
|
Int(i64),
|
|
|
|
/// A empty list of variable set of arguments.
|
|
EmptyVarArgs,
|
|
}
|
|
|
|
impl Literal {
|
|
pub fn enumerator_for(kind: &OperandKind, value: &'static str) -> Self {
|
|
let value = match &kind.fields {
|
|
OperandKindFields::ImmEnum(values) => values.get(value).unwrap_or_else(|| {
|
|
panic!(
|
|
"nonexistent value '{}' in enumeration '{}'",
|
|
value, kind.rust_type
|
|
)
|
|
}),
|
|
_ => panic!("enumerator is for enum values"),
|
|
};
|
|
Literal::Enumerator {
|
|
rust_type: kind.rust_type,
|
|
value,
|
|
}
|
|
}
|
|
|
|
pub fn bits(kind: &OperandKind, bits: u64) -> Self {
|
|
match kind.fields {
|
|
OperandKindFields::ImmValue => {}
|
|
_ => panic!("bits_of is for immediate scalar types"),
|
|
}
|
|
Literal::Bits {
|
|
rust_type: kind.rust_type,
|
|
value: bits,
|
|
}
|
|
}
|
|
|
|
pub fn constant(kind: &OperandKind, value: i64) -> Self {
|
|
match kind.fields {
|
|
OperandKindFields::ImmValue => {}
|
|
_ => panic!("constant is for immediate scalar types"),
|
|
}
|
|
Literal::Int(value)
|
|
}
|
|
|
|
pub fn empty_vararg() -> Self {
|
|
Literal::EmptyVarArgs
|
|
}
|
|
|
|
pub fn to_rust_code(&self) -> String {
|
|
match self {
|
|
Literal::Enumerator { rust_type, value } => format!("{}::{}", rust_type, value),
|
|
Literal::Bits { rust_type, value } => format!("{}::with_bits({:#x})", rust_type, value),
|
|
Literal::Int(val) => val.to_string(),
|
|
Literal::EmptyVarArgs => "&[]".into(),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub(crate) enum PatternPosition {
|
|
Source,
|
|
Destination,
|
|
}
|
|
|
|
/// A free variable.
|
|
///
|
|
/// When variables are used in `XForms` with source and destination patterns, they are classified
|
|
/// as follows:
|
|
///
|
|
/// Input values: Uses in the source pattern with no preceding def. These may appear as inputs in
|
|
/// the destination pattern too, but no new inputs can be introduced.
|
|
///
|
|
/// Output values: Variables that are defined in both the source and destination pattern. These
|
|
/// values may have uses outside the source pattern, and the destination pattern must compute the
|
|
/// same value.
|
|
///
|
|
/// Intermediate values: Values that are defined in the source pattern, but not in the destination
|
|
/// pattern. These may have uses outside the source pattern, so the defining instruction can't be
|
|
/// deleted immediately.
|
|
///
|
|
/// Temporary values are defined only in the destination pattern.
|
|
pub(crate) struct Var {
|
|
pub name: String,
|
|
|
|
/// The `Def` defining this variable in a source pattern.
|
|
pub src_def: Option<DefIndex>,
|
|
|
|
/// The `Def` defining this variable in a destination pattern.
|
|
pub dst_def: Option<DefIndex>,
|
|
|
|
/// TypeVar representing the type of this variable.
|
|
type_var: Option<TypeVar>,
|
|
|
|
/// Is this the original type variable, or has it be redefined with set_typevar?
|
|
is_original_type_var: bool,
|
|
}
|
|
|
|
impl Var {
|
|
fn new(name: String) -> Self {
|
|
Self {
|
|
name,
|
|
src_def: None,
|
|
dst_def: None,
|
|
type_var: None,
|
|
is_original_type_var: false,
|
|
}
|
|
}
|
|
|
|
/// Is this an input value to the src pattern?
|
|
pub fn is_input(&self) -> bool {
|
|
self.src_def.is_none() && self.dst_def.is_none()
|
|
}
|
|
|
|
/// Is this an output value, defined in both src and dst patterns?
|
|
pub fn is_output(&self) -> bool {
|
|
self.src_def.is_some() && self.dst_def.is_some()
|
|
}
|
|
|
|
/// Is this an intermediate value, defined only in the src pattern?
|
|
pub fn is_intermediate(&self) -> bool {
|
|
self.src_def.is_some() && self.dst_def.is_none()
|
|
}
|
|
|
|
/// Is this a temp value, defined only in the dst pattern?
|
|
pub fn is_temp(&self) -> bool {
|
|
self.src_def.is_none() && self.dst_def.is_some()
|
|
}
|
|
|
|
/// Get the def of this variable according to the position.
|
|
pub fn get_def(&self, position: PatternPosition) -> Option<DefIndex> {
|
|
match position {
|
|
PatternPosition::Source => self.src_def,
|
|
PatternPosition::Destination => self.dst_def,
|
|
}
|
|
}
|
|
|
|
pub fn set_def(&mut self, position: PatternPosition, def: DefIndex) {
|
|
assert!(
|
|
self.get_def(position).is_none(),
|
|
"redefinition of variable {}",
|
|
self.name
|
|
);
|
|
match position {
|
|
PatternPosition::Source => {
|
|
self.src_def = Some(def);
|
|
}
|
|
PatternPosition::Destination => {
|
|
self.dst_def = Some(def);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Get the type variable representing the type of this variable.
|
|
pub fn get_or_create_typevar(&mut self) -> TypeVar {
|
|
match &self.type_var {
|
|
Some(tv) => tv.clone(),
|
|
None => {
|
|
// Create a new type var in which we allow all types.
|
|
let tv = TypeVar::new(
|
|
format!("typeof_{}", self.name),
|
|
format!("Type of the pattern variable {:?}", self),
|
|
TypeSetBuilder::all(),
|
|
);
|
|
self.type_var = Some(tv.clone());
|
|
self.is_original_type_var = true;
|
|
tv
|
|
}
|
|
}
|
|
}
|
|
pub fn get_typevar(&self) -> Option<TypeVar> {
|
|
self.type_var.clone()
|
|
}
|
|
pub fn set_typevar(&mut self, tv: TypeVar) {
|
|
self.is_original_type_var = if let Some(previous_tv) = &self.type_var {
|
|
*previous_tv == tv
|
|
} else {
|
|
false
|
|
};
|
|
self.type_var = Some(tv);
|
|
}
|
|
|
|
/// Check if this variable has a free type variable. If not, the type of this variable is
|
|
/// computed from the type of another variable.
|
|
pub fn has_free_typevar(&self) -> bool {
|
|
match &self.type_var {
|
|
Some(tv) => tv.base.is_none() && self.is_original_type_var,
|
|
None => false,
|
|
}
|
|
}
|
|
|
|
pub fn to_rust_code(&self) -> String {
|
|
self.name.clone()
|
|
}
|
|
fn rust_type(&self) -> String {
|
|
self.type_var.as_ref().unwrap().to_rust_code()
|
|
}
|
|
}
|
|
|
|
impl fmt::Debug for Var {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
|
fmt.write_fmt(format_args!(
|
|
"Var({}{}{})",
|
|
self.name,
|
|
if self.src_def.is_some() { ", src" } else { "" },
|
|
if self.dst_def.is_some() { ", dst" } else { "" }
|
|
))
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
|
|
pub(crate) struct VarIndex(u32);
|
|
entity_impl!(VarIndex);
|
|
|
|
pub(crate) struct VarPool {
|
|
pool: PrimaryMap<VarIndex, Var>,
|
|
}
|
|
|
|
impl VarPool {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
pool: PrimaryMap::new(),
|
|
}
|
|
}
|
|
pub fn get(&self, index: VarIndex) -> &Var {
|
|
self.pool.get(index).unwrap()
|
|
}
|
|
pub fn get_mut(&mut self, index: VarIndex) -> &mut Var {
|
|
self.pool.get_mut(index).unwrap()
|
|
}
|
|
pub fn create(&mut self, name: impl Into<String>) -> VarIndex {
|
|
self.pool.push(Var::new(name.into()))
|
|
}
|
|
}
|
|
|
|
/// Contains constants created in the AST that must be inserted into the true [ConstantPool] when
|
|
/// the legalizer code is generated. The constant data is named in the order it is inserted;
|
|
/// inserting data using [insert] will avoid duplicates.
|
|
///
|
|
/// [ConstantPool]: ../../../cranelift_codegen/ir/constant/struct.ConstantPool.html
|
|
/// [insert]: ConstPool::insert
|
|
pub(crate) struct ConstPool {
|
|
pool: Vec<Vec<u8>>,
|
|
}
|
|
|
|
impl ConstPool {
|
|
/// Create an empty constant pool.
|
|
pub fn new() -> Self {
|
|
Self { pool: vec![] }
|
|
}
|
|
|
|
/// Create a name for a constant from its position in the pool.
|
|
fn create_name(position: usize) -> String {
|
|
format!("const{}", position)
|
|
}
|
|
|
|
/// Insert constant data into the pool, returning the name of the variable used to reference it.
|
|
/// This method will search for data that matches the new data and return the existing constant
|
|
/// name to avoid duplicates.
|
|
pub fn insert(&mut self, data: Vec<u8>) -> String {
|
|
let possible_position = self.pool.iter().position(|d| d == &data);
|
|
let position = if let Some(found_position) = possible_position {
|
|
found_position
|
|
} else {
|
|
let new_position = self.pool.len();
|
|
self.pool.push(data);
|
|
new_position
|
|
};
|
|
ConstPool::create_name(position)
|
|
}
|
|
|
|
/// Iterate over the name/value pairs in the pool.
|
|
pub fn iter(&self) -> impl Iterator<Item = (String, &Vec<u8>)> {
|
|
self.pool
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, v)| (ConstPool::create_name(i), v))
|
|
}
|
|
}
|
|
|
|
/// Apply an instruction to arguments.
|
|
///
|
|
/// An `Apply` AST expression is created by using function call syntax on instructions. This
|
|
/// applies to both bound and unbound polymorphic instructions.
|
|
pub(crate) struct Apply {
|
|
pub inst: Instruction,
|
|
pub args: Vec<Expr>,
|
|
pub value_types: Vec<ValueType>,
|
|
}
|
|
|
|
impl Apply {
|
|
pub fn new(target: InstSpec, args: Vec<Expr>) -> Self {
|
|
let (inst, value_types) = match target {
|
|
InstSpec::Inst(inst) => (inst, Vec::new()),
|
|
InstSpec::Bound(bound_inst) => (bound_inst.inst, bound_inst.value_types),
|
|
};
|
|
|
|
// Apply should only operate on concrete value types, not "any".
|
|
let value_types = value_types
|
|
.into_iter()
|
|
.map(|vt| vt.expect("shouldn't be Any"))
|
|
.collect();
|
|
|
|
// Basic check on number of arguments.
|
|
assert!(
|
|
inst.operands_in.len() == args.len(),
|
|
"incorrect number of arguments in instruction {}",
|
|
inst.name
|
|
);
|
|
|
|
// Check that the kinds of Literals arguments match the expected operand.
|
|
for &imm_index in &inst.imm_opnums {
|
|
let arg = &args[imm_index];
|
|
if let Some(literal) = arg.maybe_literal() {
|
|
let op = &inst.operands_in[imm_index];
|
|
match &op.kind.fields {
|
|
OperandKindFields::ImmEnum(values) => {
|
|
if let Literal::Enumerator { value, .. } = literal {
|
|
assert!(
|
|
values.iter().any(|(_key, v)| v == value),
|
|
"Nonexistent enum value '{}' passed to field of kind '{}' -- \
|
|
did you use the right enum?",
|
|
value,
|
|
op.kind.rust_type
|
|
);
|
|
} else {
|
|
panic!(
|
|
"Passed non-enum field value {:?} to field of kind {}",
|
|
literal, op.kind.rust_type
|
|
);
|
|
}
|
|
}
|
|
OperandKindFields::ImmValue => match &literal {
|
|
Literal::Enumerator { value, .. } => panic!(
|
|
"Expected immediate value in immediate field of kind '{}', \
|
|
obtained enum value '{}'",
|
|
op.kind.rust_type, value
|
|
),
|
|
Literal::Bits { .. } | Literal::Int(_) | Literal::EmptyVarArgs => {}
|
|
},
|
|
_ => {
|
|
panic!(
|
|
"Literal passed to non-literal field of kind {}",
|
|
op.kind.rust_type
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Self {
|
|
inst,
|
|
args,
|
|
value_types,
|
|
}
|
|
}
|
|
|
|
fn to_comment_string(&self, var_pool: &VarPool) -> String {
|
|
let args = self
|
|
.args
|
|
.iter()
|
|
.map(|arg| arg.to_rust_code(var_pool))
|
|
.collect::<Vec<_>>()
|
|
.join(", ");
|
|
|
|
let mut inst_and_bound_types = vec![self.inst.name.to_string()];
|
|
inst_and_bound_types.extend(self.value_types.iter().map(|vt| vt.to_string()));
|
|
let inst_name = inst_and_bound_types.join(".");
|
|
|
|
format!("{}({})", inst_name, args)
|
|
}
|
|
|
|
pub fn inst_predicate(&self, var_pool: &VarPool) -> InstructionPredicate {
|
|
let mut pred = InstructionPredicate::new();
|
|
for (format_field, &op_num) in self
|
|
.inst
|
|
.format
|
|
.imm_fields
|
|
.iter()
|
|
.zip(self.inst.imm_opnums.iter())
|
|
{
|
|
let arg = &self.args[op_num];
|
|
if arg.maybe_var().is_some() {
|
|
// Ignore free variables for now.
|
|
continue;
|
|
}
|
|
pred = pred.and(InstructionPredicate::new_is_field_equal_ast(
|
|
&*self.inst.format,
|
|
format_field,
|
|
arg.to_rust_code(var_pool),
|
|
));
|
|
}
|
|
|
|
// Add checks for any bound secondary type variables. We can't check the controlling type
|
|
// variable this way since it may not appear as the type of an operand.
|
|
if self.value_types.len() > 1 {
|
|
let poly = self
|
|
.inst
|
|
.polymorphic_info
|
|
.as_ref()
|
|
.expect("must have polymorphic info if it has bounded types");
|
|
for (bound_type, type_var) in
|
|
self.value_types[1..].iter().zip(poly.other_typevars.iter())
|
|
{
|
|
pred = pred.and(InstructionPredicate::new_typevar_check(
|
|
&self.inst, type_var, bound_type,
|
|
));
|
|
}
|
|
}
|
|
|
|
pred
|
|
}
|
|
|
|
/// Same as `inst_predicate()`, but also check the controlling type variable.
|
|
pub fn inst_predicate_with_ctrl_typevar(&self, var_pool: &VarPool) -> InstructionPredicate {
|
|
let mut pred = self.inst_predicate(var_pool);
|
|
|
|
if !self.value_types.is_empty() {
|
|
let bound_type = &self.value_types[0];
|
|
let poly = self.inst.polymorphic_info.as_ref().unwrap();
|
|
let type_check = if poly.use_typevar_operand {
|
|
InstructionPredicate::new_typevar_check(&self.inst, &poly.ctrl_typevar, bound_type)
|
|
} else {
|
|
InstructionPredicate::new_ctrl_typevar_check(&bound_type)
|
|
};
|
|
pred = pred.and(type_check);
|
|
}
|
|
|
|
pred
|
|
}
|
|
|
|
pub fn rust_builder(&self, defined_vars: &[VarIndex], var_pool: &VarPool) -> String {
|
|
let mut args = self
|
|
.args
|
|
.iter()
|
|
.map(|expr| expr.to_rust_code(var_pool))
|
|
.collect::<Vec<_>>()
|
|
.join(", ");
|
|
|
|
// Do we need to pass an explicit type argument?
|
|
if let Some(poly) = &self.inst.polymorphic_info {
|
|
if !poly.use_typevar_operand {
|
|
args = format!("{}, {}", var_pool.get(defined_vars[0]).rust_type(), args);
|
|
}
|
|
}
|
|
|
|
format!("{}({})", self.inst.snake_name(), args)
|
|
}
|
|
}
|
|
|
|
// Simple helpers for legalize actions construction.
|
|
|
|
pub(crate) enum DummyExpr {
|
|
Var(DummyVar),
|
|
Literal(Literal),
|
|
Constant(DummyConstant),
|
|
Apply(InstSpec, Vec<DummyExpr>),
|
|
Block(DummyVar),
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub(crate) struct DummyVar {
|
|
pub name: String,
|
|
}
|
|
|
|
impl Into<DummyExpr> for DummyVar {
|
|
fn into(self) -> DummyExpr {
|
|
DummyExpr::Var(self)
|
|
}
|
|
}
|
|
impl Into<DummyExpr> for Literal {
|
|
fn into(self) -> DummyExpr {
|
|
DummyExpr::Literal(self)
|
|
}
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub(crate) struct DummyConstant(pub(crate) Vec<u8>);
|
|
|
|
pub(crate) fn constant(data: Vec<u8>) -> DummyConstant {
|
|
DummyConstant(data)
|
|
}
|
|
|
|
impl Into<DummyExpr> for DummyConstant {
|
|
fn into(self) -> DummyExpr {
|
|
DummyExpr::Constant(self)
|
|
}
|
|
}
|
|
|
|
pub(crate) fn var(name: &str) -> DummyVar {
|
|
DummyVar {
|
|
name: name.to_owned(),
|
|
}
|
|
}
|
|
|
|
pub(crate) struct DummyDef {
|
|
pub expr: DummyExpr,
|
|
pub defined_vars: Vec<DummyVar>,
|
|
}
|
|
|
|
pub(crate) struct ExprBuilder {
|
|
expr: DummyExpr,
|
|
}
|
|
|
|
impl ExprBuilder {
|
|
pub fn apply(inst: InstSpec, args: Vec<DummyExpr>) -> Self {
|
|
let expr = DummyExpr::Apply(inst, args);
|
|
Self { expr }
|
|
}
|
|
|
|
pub fn assign_to(self, defined_vars: Vec<DummyVar>) -> DummyDef {
|
|
DummyDef {
|
|
expr: self.expr,
|
|
defined_vars,
|
|
}
|
|
}
|
|
|
|
pub fn block(name: DummyVar) -> Self {
|
|
let expr = DummyExpr::Block(name);
|
|
Self { expr }
|
|
}
|
|
}
|
|
|
|
macro_rules! def_rhs {
|
|
// inst(a, b, c)
|
|
($inst:ident($($src:expr),*)) => {
|
|
ExprBuilder::apply($inst.into(), vec![$($src.clone().into()),*])
|
|
};
|
|
|
|
// inst.type(a, b, c)
|
|
($inst:ident.$type:ident($($src:expr),*)) => {
|
|
ExprBuilder::apply($inst.bind($type).into(), vec![$($src.clone().into()),*])
|
|
};
|
|
}
|
|
|
|
// Helper macro to define legalization recipes.
|
|
macro_rules! def {
|
|
// x = ...
|
|
($dest:ident = $($tt:tt)*) => {
|
|
def_rhs!($($tt)*).assign_to(vec![$dest.clone()])
|
|
};
|
|
|
|
// (x, y, ...) = ...
|
|
(($($dest:ident),*) = $($tt:tt)*) => {
|
|
def_rhs!($($tt)*).assign_to(vec![$($dest.clone()),*])
|
|
};
|
|
|
|
// An instruction with no results.
|
|
($($tt:tt)*) => {
|
|
def_rhs!($($tt)*).assign_to(Vec::new())
|
|
}
|
|
}
|
|
|
|
// Helper macro to define legalization recipes.
|
|
macro_rules! block {
|
|
// a basic block definition, splitting the current block in 2.
|
|
($block: ident) => {
|
|
ExprBuilder::block($block).assign_to(Vec::new())
|
|
};
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use crate::cdsl::ast::ConstPool;
|
|
|
|
#[test]
|
|
fn const_pool_returns_var_names() {
|
|
let mut c = ConstPool::new();
|
|
assert_eq!(c.insert([0, 1, 2].to_vec()), "const0");
|
|
assert_eq!(c.insert([1, 2, 3].to_vec()), "const1");
|
|
}
|
|
|
|
#[test]
|
|
fn const_pool_avoids_duplicates() {
|
|
let data = [0, 1, 2].to_vec();
|
|
let mut c = ConstPool::new();
|
|
assert_eq!(c.pool.len(), 0);
|
|
|
|
assert_eq!(c.insert(data.clone()), "const0");
|
|
assert_eq!(c.pool.len(), 1);
|
|
|
|
assert_eq!(c.insert(data), "const0");
|
|
assert_eq!(c.pool.len(), 1);
|
|
}
|
|
|
|
#[test]
|
|
fn const_pool_iterates() {
|
|
let mut c = ConstPool::new();
|
|
c.insert([0, 1, 2].to_vec());
|
|
c.insert([3, 4, 5].to_vec());
|
|
|
|
let mut iter = c.iter();
|
|
assert_eq!(iter.next(), Some(("const0".to_owned(), &vec![0, 1, 2])));
|
|
assert_eq!(iter.next(), Some(("const1".to_owned(), &vec![3, 4, 5])));
|
|
assert_eq!(iter.next(), None);
|
|
}
|
|
}
|