This PR adds a flag to each block that can be set via the frontend/builder interface that indicates that the block will not be frequently executed. As such, the compiler backend should place the block "out of line" in the final machine code, so that the ordinary, more frequent execution path that excludes the block does not have to jump around it. This is useful for adding handlers for exceptional conditions (slow-paths, guard violations) in a way that minimizes performance cost. Fixes #2747.
1325 lines
44 KiB
Rust
1325 lines
44 KiB
Rust
//! Function layout.
|
|
//!
|
|
//! The order of basic blocks in a function and the order of instructions in a block is
|
|
//! determined by the `Layout` data structure defined in this module.
|
|
|
|
use crate::entity::SecondaryMap;
|
|
use crate::ir::dfg::DataFlowGraph;
|
|
use crate::ir::progpoint::{ExpandedProgramPoint, ProgramOrder};
|
|
use crate::ir::{Block, Inst};
|
|
use crate::packed_option::PackedOption;
|
|
use crate::timing;
|
|
use core::cmp;
|
|
use core::iter::{IntoIterator, Iterator};
|
|
|
|
/// The `Layout` struct determines the layout of blocks and instructions in a function. It does not
|
|
/// contain definitions of instructions or blocks, but depends on `Inst` and `Block` entity references
|
|
/// being defined elsewhere.
|
|
///
|
|
/// This data structure determines:
|
|
///
|
|
/// - The order of blocks in the function.
|
|
/// - Which block contains a given instruction.
|
|
/// - The order of instructions with a block.
|
|
///
|
|
/// While data dependencies are not recorded, instruction ordering does affect control
|
|
/// dependencies, so part of the semantics of the program are determined by the layout.
|
|
///
|
|
#[derive(Clone)]
|
|
pub struct Layout {
|
|
/// Linked list nodes for the layout order of blocks Forms a doubly linked list, terminated in
|
|
/// both ends by `None`.
|
|
blocks: SecondaryMap<Block, BlockNode>,
|
|
|
|
/// Linked list nodes for the layout order of instructions. Forms a double linked list per block,
|
|
/// terminated in both ends by `None`.
|
|
insts: SecondaryMap<Inst, InstNode>,
|
|
|
|
/// First block in the layout order, or `None` when no blocks have been laid out.
|
|
first_block: Option<Block>,
|
|
|
|
/// Last block in the layout order, or `None` when no blocks have been laid out.
|
|
last_block: Option<Block>,
|
|
}
|
|
|
|
impl Layout {
|
|
/// Create a new empty `Layout`.
|
|
pub fn new() -> Self {
|
|
Self {
|
|
blocks: SecondaryMap::new(),
|
|
insts: SecondaryMap::new(),
|
|
first_block: None,
|
|
last_block: None,
|
|
}
|
|
}
|
|
|
|
/// Clear the layout.
|
|
pub fn clear(&mut self) {
|
|
self.blocks.clear();
|
|
self.insts.clear();
|
|
self.first_block = None;
|
|
self.last_block = None;
|
|
}
|
|
|
|
/// Returns the capacity of the `BlockData` map.
|
|
pub fn block_capacity(&self) -> usize {
|
|
self.blocks.capacity()
|
|
}
|
|
}
|
|
|
|
/// Sequence numbers.
|
|
///
|
|
/// All instructions and blocks are given a sequence number that can be used to quickly determine
|
|
/// their relative position in the layout. The sequence numbers are not contiguous, but are assigned
|
|
/// like line numbers in BASIC: 10, 20, 30, ...
|
|
///
|
|
/// The block sequence numbers are strictly increasing, and so are the instruction sequence numbers
|
|
/// within a block. The instruction sequence numbers are all between the sequence number of their
|
|
/// containing block and the following block.
|
|
///
|
|
/// The result is that sequence numbers work like BASIC line numbers for the textual form of the IR.
|
|
type SequenceNumber = u32;
|
|
|
|
/// Initial stride assigned to new sequence numbers.
|
|
const MAJOR_STRIDE: SequenceNumber = 10;
|
|
|
|
/// Secondary stride used when renumbering locally.
|
|
const MINOR_STRIDE: SequenceNumber = 2;
|
|
|
|
/// Limit on the sequence number range we'll renumber locally. If this limit is exceeded, we'll
|
|
/// switch to a full function renumbering.
|
|
const LOCAL_LIMIT: SequenceNumber = 100 * MINOR_STRIDE;
|
|
|
|
/// Compute the midpoint between `a` and `b`.
|
|
/// Return `None` if the midpoint would be equal to either.
|
|
fn midpoint(a: SequenceNumber, b: SequenceNumber) -> Option<SequenceNumber> {
|
|
debug_assert!(a < b);
|
|
// Avoid integer overflow.
|
|
let m = a + (b - a) / 2;
|
|
if m > a {
|
|
Some(m)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_midpoint() {
|
|
assert_eq!(midpoint(0, 1), None);
|
|
assert_eq!(midpoint(0, 2), Some(1));
|
|
assert_eq!(midpoint(0, 3), Some(1));
|
|
assert_eq!(midpoint(0, 4), Some(2));
|
|
assert_eq!(midpoint(1, 4), Some(2));
|
|
assert_eq!(midpoint(2, 4), Some(3));
|
|
assert_eq!(midpoint(3, 4), None);
|
|
assert_eq!(midpoint(3, 4), None);
|
|
}
|
|
|
|
impl ProgramOrder for Layout {
|
|
fn cmp<A, B>(&self, a: A, b: B) -> cmp::Ordering
|
|
where
|
|
A: Into<ExpandedProgramPoint>,
|
|
B: Into<ExpandedProgramPoint>,
|
|
{
|
|
let a_seq = self.seq(a);
|
|
let b_seq = self.seq(b);
|
|
a_seq.cmp(&b_seq)
|
|
}
|
|
|
|
fn is_block_gap(&self, inst: Inst, block: Block) -> bool {
|
|
let i = &self.insts[inst];
|
|
let e = &self.blocks[block];
|
|
|
|
i.next.is_none() && i.block == e.prev
|
|
}
|
|
}
|
|
|
|
// Private methods for dealing with sequence numbers.
|
|
impl Layout {
|
|
/// Get the sequence number of a program point that must correspond to an entity in the layout.
|
|
fn seq<PP: Into<ExpandedProgramPoint>>(&self, pp: PP) -> SequenceNumber {
|
|
// When `PP = Inst` or `PP = Block`, we expect this dynamic type check to be optimized out.
|
|
match pp.into() {
|
|
ExpandedProgramPoint::Block(block) => self.blocks[block].seq,
|
|
ExpandedProgramPoint::Inst(inst) => self.insts[inst].seq,
|
|
}
|
|
}
|
|
|
|
/// Get the last sequence number in `block`.
|
|
fn last_block_seq(&self, block: Block) -> SequenceNumber {
|
|
// Get the seq of the last instruction if it exists, otherwise use the block header seq.
|
|
self.blocks[block]
|
|
.last_inst
|
|
.map(|inst| self.insts[inst].seq)
|
|
.unwrap_or(self.blocks[block].seq)
|
|
}
|
|
|
|
/// Assign a valid sequence number to `block` such that the numbers are still monotonic. This may
|
|
/// require renumbering.
|
|
fn assign_block_seq(&mut self, block: Block) {
|
|
debug_assert!(self.is_block_inserted(block));
|
|
|
|
// Get the sequence number immediately before `block`, or 0.
|
|
let prev_seq = self.blocks[block]
|
|
.prev
|
|
.map(|prev_block| self.last_block_seq(prev_block))
|
|
.unwrap_or(0);
|
|
|
|
// Get the sequence number immediately following `block`.
|
|
let next_seq = if let Some(inst) = self.blocks[block].first_inst.expand() {
|
|
self.insts[inst].seq
|
|
} else if let Some(next_block) = self.blocks[block].next.expand() {
|
|
self.blocks[next_block].seq
|
|
} else {
|
|
// There is nothing after `block`. We can just use a major stride.
|
|
self.blocks[block].seq = prev_seq + MAJOR_STRIDE;
|
|
return;
|
|
};
|
|
|
|
// Check if there is room between these sequence numbers.
|
|
if let Some(seq) = midpoint(prev_seq, next_seq) {
|
|
self.blocks[block].seq = seq;
|
|
} else {
|
|
// No available integers between `prev_seq` and `next_seq`. We have to renumber.
|
|
self.renumber_from_block(block, prev_seq + MINOR_STRIDE, prev_seq + LOCAL_LIMIT);
|
|
}
|
|
}
|
|
|
|
/// Assign a valid sequence number to `inst` such that the numbers are still monotonic. This may
|
|
/// require renumbering.
|
|
fn assign_inst_seq(&mut self, inst: Inst) {
|
|
let block = self
|
|
.inst_block(inst)
|
|
.expect("inst must be inserted before assigning an seq");
|
|
|
|
// Get the sequence number immediately before `inst`.
|
|
let prev_seq = match self.insts[inst].prev.expand() {
|
|
Some(prev_inst) => self.insts[prev_inst].seq,
|
|
None => self.blocks[block].seq,
|
|
};
|
|
|
|
// Get the sequence number immediately following `inst`.
|
|
let next_seq = if let Some(next_inst) = self.insts[inst].next.expand() {
|
|
self.insts[next_inst].seq
|
|
} else if let Some(next_block) = self.blocks[block].next.expand() {
|
|
self.blocks[next_block].seq
|
|
} else {
|
|
// There is nothing after `inst`. We can just use a major stride.
|
|
self.insts[inst].seq = prev_seq + MAJOR_STRIDE;
|
|
return;
|
|
};
|
|
|
|
// Check if there is room between these sequence numbers.
|
|
if let Some(seq) = midpoint(prev_seq, next_seq) {
|
|
self.insts[inst].seq = seq;
|
|
} else {
|
|
// No available integers between `prev_seq` and `next_seq`. We have to renumber.
|
|
self.renumber_from_inst(inst, prev_seq + MINOR_STRIDE, prev_seq + LOCAL_LIMIT);
|
|
}
|
|
}
|
|
|
|
/// Renumber instructions starting from `inst` until the end of the block or until numbers catch
|
|
/// up.
|
|
///
|
|
/// Return `None` if renumbering has caught up and the sequence is monotonic again. Otherwise
|
|
/// return the last used sequence number.
|
|
///
|
|
/// If sequence numbers exceed `limit`, switch to a full function renumbering and return `None`.
|
|
fn renumber_insts(
|
|
&mut self,
|
|
inst: Inst,
|
|
seq: SequenceNumber,
|
|
limit: SequenceNumber,
|
|
) -> Option<SequenceNumber> {
|
|
let mut inst = inst;
|
|
let mut seq = seq;
|
|
|
|
loop {
|
|
self.insts[inst].seq = seq;
|
|
|
|
// Next instruction.
|
|
inst = match self.insts[inst].next.expand() {
|
|
None => return Some(seq),
|
|
Some(next) => next,
|
|
};
|
|
|
|
if seq < self.insts[inst].seq {
|
|
// Sequence caught up.
|
|
return None;
|
|
}
|
|
|
|
if seq > limit {
|
|
// We're pushing too many instructions in front of us.
|
|
// Switch to a full function renumbering to make some space.
|
|
self.full_renumber();
|
|
return None;
|
|
}
|
|
|
|
seq += MINOR_STRIDE;
|
|
}
|
|
}
|
|
|
|
/// Renumber starting from `block` to `seq` and continuing until the sequence numbers are
|
|
/// monotonic again.
|
|
fn renumber_from_block(
|
|
&mut self,
|
|
block: Block,
|
|
first_seq: SequenceNumber,
|
|
limit: SequenceNumber,
|
|
) {
|
|
let mut block = block;
|
|
let mut seq = first_seq;
|
|
|
|
loop {
|
|
self.blocks[block].seq = seq;
|
|
|
|
// Renumber instructions in `block`. Stop when the numbers catch up.
|
|
if let Some(inst) = self.blocks[block].first_inst.expand() {
|
|
seq = match self.renumber_insts(inst, seq + MINOR_STRIDE, limit) {
|
|
Some(s) => s,
|
|
None => return,
|
|
}
|
|
}
|
|
|
|
// Advance to the next block.
|
|
block = match self.blocks[block].next.expand() {
|
|
Some(next) => next,
|
|
None => return,
|
|
};
|
|
|
|
// Stop renumbering once the numbers catch up.
|
|
if seq < self.blocks[block].seq {
|
|
return;
|
|
}
|
|
|
|
seq += MINOR_STRIDE;
|
|
}
|
|
}
|
|
|
|
/// Renumber starting from `inst` to `seq` and continuing until the sequence numbers are
|
|
/// monotonic again.
|
|
fn renumber_from_inst(&mut self, inst: Inst, first_seq: SequenceNumber, limit: SequenceNumber) {
|
|
if let Some(seq) = self.renumber_insts(inst, first_seq, limit) {
|
|
// Renumbering spills over into next block.
|
|
if let Some(next_block) = self.blocks[self.inst_block(inst).unwrap()].next.expand() {
|
|
self.renumber_from_block(next_block, seq + MINOR_STRIDE, limit);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Renumber all blocks and instructions in the layout.
|
|
///
|
|
/// This doesn't affect the position of anything, but it gives more room in the internal
|
|
/// sequence numbers for inserting instructions later.
|
|
fn full_renumber(&mut self) {
|
|
let _tt = timing::layout_renumber();
|
|
let mut seq = 0;
|
|
let mut next_block = self.first_block;
|
|
while let Some(block) = next_block {
|
|
self.blocks[block].seq = seq;
|
|
seq += MAJOR_STRIDE;
|
|
next_block = self.blocks[block].next.expand();
|
|
|
|
let mut next_inst = self.blocks[block].first_inst.expand();
|
|
while let Some(inst) = next_inst {
|
|
self.insts[inst].seq = seq;
|
|
seq += MAJOR_STRIDE;
|
|
next_inst = self.insts[inst].next.expand();
|
|
}
|
|
}
|
|
log::trace!("Renumbered {} program points", seq / MAJOR_STRIDE);
|
|
}
|
|
}
|
|
|
|
/// Methods for laying out blocks.
|
|
///
|
|
/// An unknown block starts out as *not inserted* in the block layout. The layout is a linear order of
|
|
/// inserted blocks. Once a block has been inserted in the layout, instructions can be added. A block
|
|
/// can only be removed from the layout when it is empty.
|
|
///
|
|
/// Since every block must end with a terminator instruction which cannot fall through, the layout of
|
|
/// blocks do not affect the semantics of the program.
|
|
///
|
|
impl Layout {
|
|
/// Is `block` currently part of the layout?
|
|
pub fn is_block_inserted(&self, block: Block) -> bool {
|
|
Some(block) == self.first_block || self.blocks[block].prev.is_some()
|
|
}
|
|
|
|
/// Insert `block` as the last block in the layout.
|
|
pub fn append_block(&mut self, block: Block) {
|
|
debug_assert!(
|
|
!self.is_block_inserted(block),
|
|
"Cannot append block that is already in the layout"
|
|
);
|
|
{
|
|
let node = &mut self.blocks[block];
|
|
debug_assert!(node.first_inst.is_none() && node.last_inst.is_none());
|
|
node.prev = self.last_block.into();
|
|
node.next = None.into();
|
|
}
|
|
if let Some(last) = self.last_block {
|
|
self.blocks[last].next = block.into();
|
|
} else {
|
|
self.first_block = Some(block);
|
|
}
|
|
self.last_block = Some(block);
|
|
self.assign_block_seq(block);
|
|
}
|
|
|
|
/// Insert `block` in the layout before the existing block `before`.
|
|
pub fn insert_block(&mut self, block: Block, before: Block) {
|
|
debug_assert!(
|
|
!self.is_block_inserted(block),
|
|
"Cannot insert block that is already in the layout"
|
|
);
|
|
debug_assert!(
|
|
self.is_block_inserted(before),
|
|
"block Insertion point not in the layout"
|
|
);
|
|
let after = self.blocks[before].prev;
|
|
{
|
|
let node = &mut self.blocks[block];
|
|
node.next = before.into();
|
|
node.prev = after;
|
|
}
|
|
self.blocks[before].prev = block.into();
|
|
match after.expand() {
|
|
None => self.first_block = Some(block),
|
|
Some(a) => self.blocks[a].next = block.into(),
|
|
}
|
|
self.assign_block_seq(block);
|
|
}
|
|
|
|
/// Insert `block` in the layout *after* the existing block `after`.
|
|
pub fn insert_block_after(&mut self, block: Block, after: Block) {
|
|
debug_assert!(
|
|
!self.is_block_inserted(block),
|
|
"Cannot insert block that is already in the layout"
|
|
);
|
|
debug_assert!(
|
|
self.is_block_inserted(after),
|
|
"block Insertion point not in the layout"
|
|
);
|
|
let before = self.blocks[after].next;
|
|
{
|
|
let node = &mut self.blocks[block];
|
|
node.next = before;
|
|
node.prev = after.into();
|
|
}
|
|
self.blocks[after].next = block.into();
|
|
match before.expand() {
|
|
None => self.last_block = Some(block),
|
|
Some(b) => self.blocks[b].prev = block.into(),
|
|
}
|
|
self.assign_block_seq(block);
|
|
}
|
|
|
|
/// Remove `block` from the layout.
|
|
pub fn remove_block(&mut self, block: Block) {
|
|
debug_assert!(self.is_block_inserted(block), "block not in the layout");
|
|
debug_assert!(self.first_inst(block).is_none(), "block must be empty.");
|
|
|
|
// Clear the `block` node and extract links.
|
|
let prev;
|
|
let next;
|
|
{
|
|
let n = &mut self.blocks[block];
|
|
prev = n.prev;
|
|
next = n.next;
|
|
n.prev = None.into();
|
|
n.next = None.into();
|
|
}
|
|
// Fix up links to `block`.
|
|
match prev.expand() {
|
|
None => self.first_block = next.expand(),
|
|
Some(p) => self.blocks[p].next = next,
|
|
}
|
|
match next.expand() {
|
|
None => self.last_block = prev.expand(),
|
|
Some(n) => self.blocks[n].prev = prev,
|
|
}
|
|
}
|
|
|
|
/// Return an iterator over all blocks in layout order.
|
|
pub fn blocks(&self) -> Blocks {
|
|
Blocks {
|
|
layout: self,
|
|
next: self.first_block,
|
|
}
|
|
}
|
|
|
|
/// Get the function's entry block.
|
|
/// This is simply the first block in the layout order.
|
|
pub fn entry_block(&self) -> Option<Block> {
|
|
self.first_block
|
|
}
|
|
|
|
/// Get the last block in the layout.
|
|
pub fn last_block(&self) -> Option<Block> {
|
|
self.last_block
|
|
}
|
|
|
|
/// Get the block preceding `block` in the layout order.
|
|
pub fn prev_block(&self, block: Block) -> Option<Block> {
|
|
self.blocks[block].prev.expand()
|
|
}
|
|
|
|
/// Get the block following `block` in the layout order.
|
|
pub fn next_block(&self, block: Block) -> Option<Block> {
|
|
self.blocks[block].next.expand()
|
|
}
|
|
|
|
/// Mark a block as "cold".
|
|
///
|
|
/// This will try to move it out of the ordinary path of execution
|
|
/// when lowered to machine code.
|
|
pub fn set_cold(&mut self, block: Block) {
|
|
self.blocks[block].cold = true;
|
|
}
|
|
|
|
/// Is the given block cold?
|
|
pub fn is_cold(&self, block: Block) -> bool {
|
|
self.blocks[block].cold
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, Default)]
|
|
struct BlockNode {
|
|
prev: PackedOption<Block>,
|
|
next: PackedOption<Block>,
|
|
first_inst: PackedOption<Inst>,
|
|
last_inst: PackedOption<Inst>,
|
|
seq: SequenceNumber,
|
|
cold: bool,
|
|
}
|
|
|
|
/// Iterate over blocks in layout order. See [crate::ir::layout::Layout::blocks].
|
|
pub struct Blocks<'f> {
|
|
layout: &'f Layout,
|
|
next: Option<Block>,
|
|
}
|
|
|
|
impl<'f> Iterator for Blocks<'f> {
|
|
type Item = Block;
|
|
|
|
fn next(&mut self) -> Option<Block> {
|
|
match self.next {
|
|
Some(block) => {
|
|
self.next = self.layout.next_block(block);
|
|
Some(block)
|
|
}
|
|
None => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Use a layout reference in a for loop.
|
|
impl<'f> IntoIterator for &'f Layout {
|
|
type Item = Block;
|
|
type IntoIter = Blocks<'f>;
|
|
|
|
fn into_iter(self) -> Blocks<'f> {
|
|
self.blocks()
|
|
}
|
|
}
|
|
|
|
/// Methods for arranging instructions.
|
|
///
|
|
/// An instruction starts out as *not inserted* in the layout. An instruction can be inserted into
|
|
/// a block at a given position.
|
|
impl Layout {
|
|
/// Get the block containing `inst`, or `None` if `inst` is not inserted in the layout.
|
|
pub fn inst_block(&self, inst: Inst) -> Option<Block> {
|
|
self.insts[inst].block.into()
|
|
}
|
|
|
|
/// Get the block containing the program point `pp`. Panic if `pp` is not in the layout.
|
|
pub fn pp_block<PP>(&self, pp: PP) -> Block
|
|
where
|
|
PP: Into<ExpandedProgramPoint>,
|
|
{
|
|
match pp.into() {
|
|
ExpandedProgramPoint::Block(block) => block,
|
|
ExpandedProgramPoint::Inst(inst) => {
|
|
self.inst_block(inst).expect("Program point not in layout")
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Append `inst` to the end of `block`.
|
|
pub fn append_inst(&mut self, inst: Inst, block: Block) {
|
|
debug_assert_eq!(self.inst_block(inst), None);
|
|
debug_assert!(
|
|
self.is_block_inserted(block),
|
|
"Cannot append instructions to block not in layout"
|
|
);
|
|
{
|
|
let block_node = &mut self.blocks[block];
|
|
{
|
|
let inst_node = &mut self.insts[inst];
|
|
inst_node.block = block.into();
|
|
inst_node.prev = block_node.last_inst;
|
|
debug_assert!(inst_node.next.is_none());
|
|
}
|
|
if block_node.first_inst.is_none() {
|
|
block_node.first_inst = inst.into();
|
|
} else {
|
|
self.insts[block_node.last_inst.unwrap()].next = inst.into();
|
|
}
|
|
block_node.last_inst = inst.into();
|
|
}
|
|
self.assign_inst_seq(inst);
|
|
}
|
|
|
|
/// Fetch a block's first instruction.
|
|
pub fn first_inst(&self, block: Block) -> Option<Inst> {
|
|
self.blocks[block].first_inst.into()
|
|
}
|
|
|
|
/// Fetch a block's last instruction.
|
|
pub fn last_inst(&self, block: Block) -> Option<Inst> {
|
|
self.blocks[block].last_inst.into()
|
|
}
|
|
|
|
/// Fetch the instruction following `inst`.
|
|
pub fn next_inst(&self, inst: Inst) -> Option<Inst> {
|
|
self.insts[inst].next.expand()
|
|
}
|
|
|
|
/// Fetch the instruction preceding `inst`.
|
|
pub fn prev_inst(&self, inst: Inst) -> Option<Inst> {
|
|
self.insts[inst].prev.expand()
|
|
}
|
|
|
|
/// Fetch the first instruction in a block's terminal branch group.
|
|
pub fn canonical_branch_inst(&self, dfg: &DataFlowGraph, block: Block) -> Option<Inst> {
|
|
// Basic blocks permit at most two terminal branch instructions.
|
|
// If two, the former is conditional and the latter is unconditional.
|
|
let last = self.last_inst(block)?;
|
|
if let Some(prev) = self.prev_inst(last) {
|
|
if dfg[prev].opcode().is_branch() {
|
|
return Some(prev);
|
|
}
|
|
}
|
|
Some(last)
|
|
}
|
|
|
|
/// Insert `inst` before the instruction `before` in the same block.
|
|
pub fn insert_inst(&mut self, inst: Inst, before: Inst) {
|
|
debug_assert_eq!(self.inst_block(inst), None);
|
|
let block = self
|
|
.inst_block(before)
|
|
.expect("Instruction before insertion point not in the layout");
|
|
let after = self.insts[before].prev;
|
|
{
|
|
let inst_node = &mut self.insts[inst];
|
|
inst_node.block = block.into();
|
|
inst_node.next = before.into();
|
|
inst_node.prev = after;
|
|
}
|
|
self.insts[before].prev = inst.into();
|
|
match after.expand() {
|
|
None => self.blocks[block].first_inst = inst.into(),
|
|
Some(a) => self.insts[a].next = inst.into(),
|
|
}
|
|
self.assign_inst_seq(inst);
|
|
}
|
|
|
|
/// Remove `inst` from the layout.
|
|
pub fn remove_inst(&mut self, inst: Inst) {
|
|
let block = self.inst_block(inst).expect("Instruction already removed.");
|
|
// Clear the `inst` node and extract links.
|
|
let prev;
|
|
let next;
|
|
{
|
|
let n = &mut self.insts[inst];
|
|
prev = n.prev;
|
|
next = n.next;
|
|
n.block = None.into();
|
|
n.prev = None.into();
|
|
n.next = None.into();
|
|
}
|
|
// Fix up links to `inst`.
|
|
match prev.expand() {
|
|
None => self.blocks[block].first_inst = next,
|
|
Some(p) => self.insts[p].next = next,
|
|
}
|
|
match next.expand() {
|
|
None => self.blocks[block].last_inst = prev,
|
|
Some(n) => self.insts[n].prev = prev,
|
|
}
|
|
}
|
|
|
|
/// Iterate over the instructions in `block` in layout order.
|
|
pub fn block_insts(&self, block: Block) -> Insts {
|
|
Insts {
|
|
layout: self,
|
|
head: self.blocks[block].first_inst.into(),
|
|
tail: self.blocks[block].last_inst.into(),
|
|
}
|
|
}
|
|
|
|
/// Iterate over a limited set of instruction which are likely the branches of `block` in layout
|
|
/// order. Any instruction not visited by this iterator is not a branch, but an instruction visited by this may not be a branch.
|
|
pub fn block_likely_branches(&self, block: Block) -> Insts {
|
|
// Note: Checking whether an instruction is a branch or not while walking backward might add
|
|
// extra overhead. However, we know that the number of branches is limited to 2 at the end of
|
|
// each block, and therefore we can just iterate over the last 2 instructions.
|
|
let mut iter = self.block_insts(block);
|
|
let head = iter.head;
|
|
let tail = iter.tail;
|
|
iter.next_back();
|
|
let head = iter.next_back().or(head);
|
|
Insts {
|
|
layout: self,
|
|
head,
|
|
tail,
|
|
}
|
|
}
|
|
|
|
/// Split the block containing `before` in two.
|
|
///
|
|
/// Insert `new_block` after the old block and move `before` and the following instructions to
|
|
/// `new_block`:
|
|
///
|
|
/// ```text
|
|
/// old_block:
|
|
/// i1
|
|
/// i2
|
|
/// i3 << before
|
|
/// i4
|
|
/// ```
|
|
/// becomes:
|
|
///
|
|
/// ```text
|
|
/// old_block:
|
|
/// i1
|
|
/// i2
|
|
/// new_block:
|
|
/// i3 << before
|
|
/// i4
|
|
/// ```
|
|
pub fn split_block(&mut self, new_block: Block, before: Inst) {
|
|
let old_block = self
|
|
.inst_block(before)
|
|
.expect("The `before` instruction must be in the layout");
|
|
debug_assert!(!self.is_block_inserted(new_block));
|
|
|
|
// Insert new_block after old_block.
|
|
let next_block = self.blocks[old_block].next;
|
|
let last_inst = self.blocks[old_block].last_inst;
|
|
{
|
|
let node = &mut self.blocks[new_block];
|
|
node.prev = old_block.into();
|
|
node.next = next_block;
|
|
node.first_inst = before.into();
|
|
node.last_inst = last_inst;
|
|
}
|
|
self.blocks[old_block].next = new_block.into();
|
|
|
|
// Fix backwards link.
|
|
if Some(old_block) == self.last_block {
|
|
self.last_block = Some(new_block);
|
|
} else {
|
|
self.blocks[next_block.unwrap()].prev = new_block.into();
|
|
}
|
|
|
|
// Disconnect the instruction links.
|
|
let prev_inst = self.insts[before].prev;
|
|
self.insts[before].prev = None.into();
|
|
self.blocks[old_block].last_inst = prev_inst;
|
|
match prev_inst.expand() {
|
|
None => self.blocks[old_block].first_inst = None.into(),
|
|
Some(pi) => self.insts[pi].next = None.into(),
|
|
}
|
|
|
|
// Fix the instruction -> block pointers.
|
|
let mut opt_i = Some(before);
|
|
while let Some(i) = opt_i {
|
|
debug_assert_eq!(self.insts[i].block.expand(), Some(old_block));
|
|
self.insts[i].block = new_block.into();
|
|
opt_i = self.insts[i].next.into();
|
|
}
|
|
|
|
self.assign_block_seq(new_block);
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, Default)]
|
|
struct InstNode {
|
|
/// The Block containing this instruction, or `None` if the instruction is not yet inserted.
|
|
block: PackedOption<Block>,
|
|
prev: PackedOption<Inst>,
|
|
next: PackedOption<Inst>,
|
|
seq: SequenceNumber,
|
|
}
|
|
|
|
/// Iterate over instructions in a block in layout order. See `Layout::block_insts()`.
|
|
pub struct Insts<'f> {
|
|
layout: &'f Layout,
|
|
head: Option<Inst>,
|
|
tail: Option<Inst>,
|
|
}
|
|
|
|
impl<'f> Iterator for Insts<'f> {
|
|
type Item = Inst;
|
|
|
|
fn next(&mut self) -> Option<Inst> {
|
|
let rval = self.head;
|
|
if let Some(inst) = rval {
|
|
if self.head == self.tail {
|
|
self.head = None;
|
|
self.tail = None;
|
|
} else {
|
|
self.head = self.layout.insts[inst].next.into();
|
|
}
|
|
}
|
|
rval
|
|
}
|
|
}
|
|
|
|
impl<'f> DoubleEndedIterator for Insts<'f> {
|
|
fn next_back(&mut self) -> Option<Inst> {
|
|
let rval = self.tail;
|
|
if let Some(inst) = rval {
|
|
if self.head == self.tail {
|
|
self.head = None;
|
|
self.tail = None;
|
|
} else {
|
|
self.tail = self.layout.insts[inst].prev.into();
|
|
}
|
|
}
|
|
rval
|
|
}
|
|
}
|
|
|
|
/// A custom serialize and deserialize implementation for [`Layout`].
|
|
///
|
|
/// This doesn't use a derived implementation as [`Layout`] is a manual implementation of a linked
|
|
/// list. Storing it directly as a regular list saves a lot of space.
|
|
///
|
|
/// The following format is used. (notated in EBNF form)
|
|
///
|
|
/// ```plain
|
|
/// data = block_data * ;
|
|
/// block_data = "block_id" , "inst_count" , ( "inst_id" * ) ;
|
|
/// ```
|
|
#[cfg(feature = "enable-serde")]
|
|
mod serde {
|
|
use ::serde::de::{Deserializer, Error, SeqAccess, Visitor};
|
|
use ::serde::ser::{SerializeSeq, Serializer};
|
|
use ::serde::{Deserialize, Serialize};
|
|
use core::convert::TryFrom;
|
|
use core::fmt;
|
|
use core::marker::PhantomData;
|
|
|
|
use super::*;
|
|
|
|
impl Serialize for Layout {
|
|
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
|
where
|
|
S: Serializer,
|
|
{
|
|
let size = self.blocks().count() * 2
|
|
+ self
|
|
.blocks()
|
|
.map(|block| self.block_insts(block).count())
|
|
.sum::<usize>();
|
|
let mut seq = serializer.serialize_seq(Some(size))?;
|
|
for block in self.blocks() {
|
|
seq.serialize_element(&block)?;
|
|
seq.serialize_element(&u32::try_from(self.block_insts(block).count()).unwrap())?;
|
|
for inst in self.block_insts(block) {
|
|
seq.serialize_element(&inst)?;
|
|
}
|
|
}
|
|
seq.end()
|
|
}
|
|
}
|
|
|
|
impl<'de> Deserialize<'de> for Layout {
|
|
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
|
where
|
|
D: Deserializer<'de>,
|
|
{
|
|
deserializer.deserialize_seq(LayoutVisitor {
|
|
marker: PhantomData,
|
|
})
|
|
}
|
|
}
|
|
|
|
struct LayoutVisitor {
|
|
marker: PhantomData<fn() -> Layout>,
|
|
}
|
|
|
|
impl<'de> Visitor<'de> for LayoutVisitor {
|
|
type Value = Layout;
|
|
|
|
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(formatter, "a `cranelift_codegen::ir::Layout`")
|
|
}
|
|
|
|
fn visit_seq<M>(self, mut access: M) -> Result<Self::Value, M::Error>
|
|
where
|
|
M: SeqAccess<'de>,
|
|
{
|
|
let mut layout = Layout::new();
|
|
|
|
while let Some(block) = access.next_element::<Block>()? {
|
|
layout.append_block(block);
|
|
|
|
let count = access
|
|
.next_element::<u32>()?
|
|
.ok_or_else(|| Error::missing_field("count"))?;
|
|
for _ in 0..count {
|
|
let inst = access
|
|
.next_element::<Inst>()?
|
|
.ok_or_else(|| Error::missing_field("inst"))?;
|
|
layout.append_inst(inst, block);
|
|
}
|
|
}
|
|
|
|
Ok(layout)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::Layout;
|
|
use crate::cursor::{Cursor, CursorPosition};
|
|
use crate::entity::EntityRef;
|
|
use crate::ir::{Block, Inst, ProgramOrder, SourceLoc};
|
|
use alloc::vec::Vec;
|
|
use core::cmp::Ordering;
|
|
|
|
struct LayoutCursor<'f> {
|
|
/// Borrowed function layout. Public so it can be re-borrowed from this cursor.
|
|
pub layout: &'f mut Layout,
|
|
pos: CursorPosition,
|
|
}
|
|
|
|
impl<'f> Cursor for LayoutCursor<'f> {
|
|
fn position(&self) -> CursorPosition {
|
|
self.pos
|
|
}
|
|
|
|
fn set_position(&mut self, pos: CursorPosition) {
|
|
self.pos = pos;
|
|
}
|
|
|
|
fn srcloc(&self) -> SourceLoc {
|
|
unimplemented!()
|
|
}
|
|
|
|
fn set_srcloc(&mut self, _srcloc: SourceLoc) {
|
|
unimplemented!()
|
|
}
|
|
|
|
fn layout(&self) -> &Layout {
|
|
self.layout
|
|
}
|
|
|
|
fn layout_mut(&mut self) -> &mut Layout {
|
|
self.layout
|
|
}
|
|
}
|
|
|
|
impl<'f> LayoutCursor<'f> {
|
|
/// Create a new `LayoutCursor` for `layout`.
|
|
/// The cursor holds a mutable reference to `layout` for its entire lifetime.
|
|
pub fn new(layout: &'f mut Layout) -> Self {
|
|
Self {
|
|
layout,
|
|
pos: CursorPosition::Nowhere,
|
|
}
|
|
}
|
|
}
|
|
|
|
fn verify(layout: &mut Layout, blocks: &[(Block, &[Inst])]) {
|
|
// Check that blocks are inserted and instructions belong the right places.
|
|
// Check forward linkage with iterators.
|
|
// Check that layout sequence numbers are strictly monotonic.
|
|
{
|
|
let mut seq = 0;
|
|
let mut block_iter = layout.blocks();
|
|
for &(block, insts) in blocks {
|
|
assert!(layout.is_block_inserted(block));
|
|
assert_eq!(block_iter.next(), Some(block));
|
|
assert!(layout.blocks[block].seq > seq);
|
|
seq = layout.blocks[block].seq;
|
|
|
|
let mut inst_iter = layout.block_insts(block);
|
|
for &inst in insts {
|
|
assert_eq!(layout.inst_block(inst), Some(block));
|
|
assert_eq!(inst_iter.next(), Some(inst));
|
|
assert!(layout.insts[inst].seq > seq);
|
|
seq = layout.insts[inst].seq;
|
|
}
|
|
assert_eq!(inst_iter.next(), None);
|
|
}
|
|
assert_eq!(block_iter.next(), None);
|
|
}
|
|
|
|
// Check backwards linkage with a cursor.
|
|
let mut cur = LayoutCursor::new(layout);
|
|
for &(block, insts) in blocks.into_iter().rev() {
|
|
assert_eq!(cur.prev_block(), Some(block));
|
|
for &inst in insts.into_iter().rev() {
|
|
assert_eq!(cur.prev_inst(), Some(inst));
|
|
}
|
|
assert_eq!(cur.prev_inst(), None);
|
|
}
|
|
assert_eq!(cur.prev_block(), None);
|
|
}
|
|
|
|
#[test]
|
|
fn append_block() {
|
|
let mut layout = Layout::new();
|
|
let e0 = Block::new(0);
|
|
let e1 = Block::new(1);
|
|
let e2 = Block::new(2);
|
|
|
|
{
|
|
let imm = &layout;
|
|
assert!(!imm.is_block_inserted(e0));
|
|
assert!(!imm.is_block_inserted(e1));
|
|
}
|
|
verify(&mut layout, &[]);
|
|
|
|
layout.append_block(e1);
|
|
assert!(!layout.is_block_inserted(e0));
|
|
assert!(layout.is_block_inserted(e1));
|
|
assert!(!layout.is_block_inserted(e2));
|
|
let v: Vec<Block> = layout.blocks().collect();
|
|
assert_eq!(v, [e1]);
|
|
|
|
layout.append_block(e2);
|
|
assert!(!layout.is_block_inserted(e0));
|
|
assert!(layout.is_block_inserted(e1));
|
|
assert!(layout.is_block_inserted(e2));
|
|
let v: Vec<Block> = layout.blocks().collect();
|
|
assert_eq!(v, [e1, e2]);
|
|
|
|
layout.append_block(e0);
|
|
assert!(layout.is_block_inserted(e0));
|
|
assert!(layout.is_block_inserted(e1));
|
|
assert!(layout.is_block_inserted(e2));
|
|
let v: Vec<Block> = layout.blocks().collect();
|
|
assert_eq!(v, [e1, e2, e0]);
|
|
|
|
{
|
|
let imm = &layout;
|
|
let mut v = Vec::new();
|
|
for e in imm {
|
|
v.push(e);
|
|
}
|
|
assert_eq!(v, [e1, e2, e0]);
|
|
}
|
|
|
|
// Test cursor positioning.
|
|
let mut cur = LayoutCursor::new(&mut layout);
|
|
assert_eq!(cur.position(), CursorPosition::Nowhere);
|
|
assert_eq!(cur.next_inst(), None);
|
|
assert_eq!(cur.position(), CursorPosition::Nowhere);
|
|
assert_eq!(cur.prev_inst(), None);
|
|
assert_eq!(cur.position(), CursorPosition::Nowhere);
|
|
|
|
assert_eq!(cur.next_block(), Some(e1));
|
|
assert_eq!(cur.position(), CursorPosition::Before(e1));
|
|
assert_eq!(cur.next_inst(), None);
|
|
assert_eq!(cur.position(), CursorPosition::After(e1));
|
|
assert_eq!(cur.next_inst(), None);
|
|
assert_eq!(cur.position(), CursorPosition::After(e1));
|
|
assert_eq!(cur.next_block(), Some(e2));
|
|
assert_eq!(cur.prev_inst(), None);
|
|
assert_eq!(cur.position(), CursorPosition::Before(e2));
|
|
assert_eq!(cur.next_block(), Some(e0));
|
|
assert_eq!(cur.next_block(), None);
|
|
assert_eq!(cur.position(), CursorPosition::Nowhere);
|
|
|
|
// Backwards through the blocks.
|
|
assert_eq!(cur.prev_block(), Some(e0));
|
|
assert_eq!(cur.position(), CursorPosition::After(e0));
|
|
assert_eq!(cur.prev_block(), Some(e2));
|
|
assert_eq!(cur.prev_block(), Some(e1));
|
|
assert_eq!(cur.prev_block(), None);
|
|
assert_eq!(cur.position(), CursorPosition::Nowhere);
|
|
}
|
|
|
|
#[test]
|
|
fn insert_block() {
|
|
let mut layout = Layout::new();
|
|
let e0 = Block::new(0);
|
|
let e1 = Block::new(1);
|
|
let e2 = Block::new(2);
|
|
|
|
{
|
|
let imm = &layout;
|
|
assert!(!imm.is_block_inserted(e0));
|
|
assert!(!imm.is_block_inserted(e1));
|
|
|
|
let v: Vec<Block> = layout.blocks().collect();
|
|
assert_eq!(v, []);
|
|
}
|
|
|
|
layout.append_block(e1);
|
|
assert!(!layout.is_block_inserted(e0));
|
|
assert!(layout.is_block_inserted(e1));
|
|
assert!(!layout.is_block_inserted(e2));
|
|
verify(&mut layout, &[(e1, &[])]);
|
|
|
|
layout.insert_block(e2, e1);
|
|
assert!(!layout.is_block_inserted(e0));
|
|
assert!(layout.is_block_inserted(e1));
|
|
assert!(layout.is_block_inserted(e2));
|
|
verify(&mut layout, &[(e2, &[]), (e1, &[])]);
|
|
|
|
layout.insert_block(e0, e1);
|
|
assert!(layout.is_block_inserted(e0));
|
|
assert!(layout.is_block_inserted(e1));
|
|
assert!(layout.is_block_inserted(e2));
|
|
verify(&mut layout, &[(e2, &[]), (e0, &[]), (e1, &[])]);
|
|
}
|
|
|
|
#[test]
|
|
fn insert_block_after() {
|
|
let mut layout = Layout::new();
|
|
let e0 = Block::new(0);
|
|
let e1 = Block::new(1);
|
|
let e2 = Block::new(2);
|
|
|
|
layout.append_block(e1);
|
|
layout.insert_block_after(e2, e1);
|
|
verify(&mut layout, &[(e1, &[]), (e2, &[])]);
|
|
|
|
layout.insert_block_after(e0, e1);
|
|
verify(&mut layout, &[(e1, &[]), (e0, &[]), (e2, &[])]);
|
|
}
|
|
|
|
#[test]
|
|
fn append_inst() {
|
|
let mut layout = Layout::new();
|
|
let e1 = Block::new(1);
|
|
|
|
layout.append_block(e1);
|
|
let v: Vec<Inst> = layout.block_insts(e1).collect();
|
|
assert_eq!(v, []);
|
|
|
|
let i0 = Inst::new(0);
|
|
let i1 = Inst::new(1);
|
|
let i2 = Inst::new(2);
|
|
|
|
assert_eq!(layout.inst_block(i0), None);
|
|
assert_eq!(layout.inst_block(i1), None);
|
|
assert_eq!(layout.inst_block(i2), None);
|
|
|
|
layout.append_inst(i1, e1);
|
|
assert_eq!(layout.inst_block(i0), None);
|
|
assert_eq!(layout.inst_block(i1), Some(e1));
|
|
assert_eq!(layout.inst_block(i2), None);
|
|
let v: Vec<Inst> = layout.block_insts(e1).collect();
|
|
assert_eq!(v, [i1]);
|
|
|
|
layout.append_inst(i2, e1);
|
|
assert_eq!(layout.inst_block(i0), None);
|
|
assert_eq!(layout.inst_block(i1), Some(e1));
|
|
assert_eq!(layout.inst_block(i2), Some(e1));
|
|
let v: Vec<Inst> = layout.block_insts(e1).collect();
|
|
assert_eq!(v, [i1, i2]);
|
|
|
|
// Test double-ended instruction iterator.
|
|
let v: Vec<Inst> = layout.block_insts(e1).rev().collect();
|
|
assert_eq!(v, [i2, i1]);
|
|
|
|
layout.append_inst(i0, e1);
|
|
verify(&mut layout, &[(e1, &[i1, i2, i0])]);
|
|
|
|
// Test cursor positioning.
|
|
let mut cur = LayoutCursor::new(&mut layout).at_top(e1);
|
|
assert_eq!(cur.position(), CursorPosition::Before(e1));
|
|
assert_eq!(cur.prev_inst(), None);
|
|
assert_eq!(cur.position(), CursorPosition::Before(e1));
|
|
assert_eq!(cur.next_inst(), Some(i1));
|
|
assert_eq!(cur.position(), CursorPosition::At(i1));
|
|
assert_eq!(cur.next_inst(), Some(i2));
|
|
assert_eq!(cur.next_inst(), Some(i0));
|
|
assert_eq!(cur.prev_inst(), Some(i2));
|
|
assert_eq!(cur.position(), CursorPosition::At(i2));
|
|
assert_eq!(cur.next_inst(), Some(i0));
|
|
assert_eq!(cur.position(), CursorPosition::At(i0));
|
|
assert_eq!(cur.next_inst(), None);
|
|
assert_eq!(cur.position(), CursorPosition::After(e1));
|
|
assert_eq!(cur.next_inst(), None);
|
|
assert_eq!(cur.position(), CursorPosition::After(e1));
|
|
assert_eq!(cur.prev_inst(), Some(i0));
|
|
assert_eq!(cur.prev_inst(), Some(i2));
|
|
assert_eq!(cur.prev_inst(), Some(i1));
|
|
assert_eq!(cur.prev_inst(), None);
|
|
assert_eq!(cur.position(), CursorPosition::Before(e1));
|
|
|
|
// Test remove_inst.
|
|
cur.goto_inst(i2);
|
|
assert_eq!(cur.remove_inst(), i2);
|
|
verify(cur.layout, &[(e1, &[i1, i0])]);
|
|
assert_eq!(cur.layout.inst_block(i2), None);
|
|
assert_eq!(cur.remove_inst(), i0);
|
|
verify(cur.layout, &[(e1, &[i1])]);
|
|
assert_eq!(cur.layout.inst_block(i0), None);
|
|
assert_eq!(cur.position(), CursorPosition::After(e1));
|
|
cur.layout.remove_inst(i1);
|
|
verify(cur.layout, &[(e1, &[])]);
|
|
assert_eq!(cur.layout.inst_block(i1), None);
|
|
}
|
|
|
|
#[test]
|
|
fn insert_inst() {
|
|
let mut layout = Layout::new();
|
|
let e1 = Block::new(1);
|
|
|
|
layout.append_block(e1);
|
|
let v: Vec<Inst> = layout.block_insts(e1).collect();
|
|
assert_eq!(v, []);
|
|
|
|
let i0 = Inst::new(0);
|
|
let i1 = Inst::new(1);
|
|
let i2 = Inst::new(2);
|
|
|
|
assert_eq!(layout.inst_block(i0), None);
|
|
assert_eq!(layout.inst_block(i1), None);
|
|
assert_eq!(layout.inst_block(i2), None);
|
|
|
|
layout.append_inst(i1, e1);
|
|
assert_eq!(layout.inst_block(i0), None);
|
|
assert_eq!(layout.inst_block(i1), Some(e1));
|
|
assert_eq!(layout.inst_block(i2), None);
|
|
let v: Vec<Inst> = layout.block_insts(e1).collect();
|
|
assert_eq!(v, [i1]);
|
|
|
|
layout.insert_inst(i2, i1);
|
|
assert_eq!(layout.inst_block(i0), None);
|
|
assert_eq!(layout.inst_block(i1), Some(e1));
|
|
assert_eq!(layout.inst_block(i2), Some(e1));
|
|
let v: Vec<Inst> = layout.block_insts(e1).collect();
|
|
assert_eq!(v, [i2, i1]);
|
|
|
|
layout.insert_inst(i0, i1);
|
|
verify(&mut layout, &[(e1, &[i2, i0, i1])]);
|
|
}
|
|
|
|
#[test]
|
|
fn multiple_blocks() {
|
|
let mut layout = Layout::new();
|
|
|
|
let e0 = Block::new(0);
|
|
let e1 = Block::new(1);
|
|
|
|
assert_eq!(layout.entry_block(), None);
|
|
layout.append_block(e0);
|
|
assert_eq!(layout.entry_block(), Some(e0));
|
|
layout.append_block(e1);
|
|
assert_eq!(layout.entry_block(), Some(e0));
|
|
|
|
let i0 = Inst::new(0);
|
|
let i1 = Inst::new(1);
|
|
let i2 = Inst::new(2);
|
|
let i3 = Inst::new(3);
|
|
|
|
layout.append_inst(i0, e0);
|
|
layout.append_inst(i1, e0);
|
|
layout.append_inst(i2, e1);
|
|
layout.append_inst(i3, e1);
|
|
|
|
let v0: Vec<Inst> = layout.block_insts(e0).collect();
|
|
let v1: Vec<Inst> = layout.block_insts(e1).collect();
|
|
assert_eq!(v0, [i0, i1]);
|
|
assert_eq!(v1, [i2, i3]);
|
|
}
|
|
|
|
#[test]
|
|
fn split_block() {
|
|
let mut layout = Layout::new();
|
|
|
|
let e0 = Block::new(0);
|
|
let e1 = Block::new(1);
|
|
let e2 = Block::new(2);
|
|
|
|
let i0 = Inst::new(0);
|
|
let i1 = Inst::new(1);
|
|
let i2 = Inst::new(2);
|
|
let i3 = Inst::new(3);
|
|
|
|
layout.append_block(e0);
|
|
layout.append_inst(i0, e0);
|
|
assert_eq!(layout.inst_block(i0), Some(e0));
|
|
layout.split_block(e1, i0);
|
|
assert_eq!(layout.inst_block(i0), Some(e1));
|
|
|
|
{
|
|
let mut cur = LayoutCursor::new(&mut layout);
|
|
assert_eq!(cur.next_block(), Some(e0));
|
|
assert_eq!(cur.next_inst(), None);
|
|
assert_eq!(cur.next_block(), Some(e1));
|
|
assert_eq!(cur.next_inst(), Some(i0));
|
|
assert_eq!(cur.next_inst(), None);
|
|
assert_eq!(cur.next_block(), None);
|
|
|
|
// Check backwards links.
|
|
assert_eq!(cur.prev_block(), Some(e1));
|
|
assert_eq!(cur.prev_inst(), Some(i0));
|
|
assert_eq!(cur.prev_inst(), None);
|
|
assert_eq!(cur.prev_block(), Some(e0));
|
|
assert_eq!(cur.prev_inst(), None);
|
|
assert_eq!(cur.prev_block(), None);
|
|
}
|
|
|
|
layout.append_inst(i1, e0);
|
|
layout.append_inst(i2, e0);
|
|
layout.append_inst(i3, e0);
|
|
layout.split_block(e2, i2);
|
|
|
|
assert_eq!(layout.inst_block(i0), Some(e1));
|
|
assert_eq!(layout.inst_block(i1), Some(e0));
|
|
assert_eq!(layout.inst_block(i2), Some(e2));
|
|
assert_eq!(layout.inst_block(i3), Some(e2));
|
|
|
|
{
|
|
let mut cur = LayoutCursor::new(&mut layout);
|
|
assert_eq!(cur.next_block(), Some(e0));
|
|
assert_eq!(cur.next_inst(), Some(i1));
|
|
assert_eq!(cur.next_inst(), None);
|
|
assert_eq!(cur.next_block(), Some(e2));
|
|
assert_eq!(cur.next_inst(), Some(i2));
|
|
assert_eq!(cur.next_inst(), Some(i3));
|
|
assert_eq!(cur.next_inst(), None);
|
|
assert_eq!(cur.next_block(), Some(e1));
|
|
assert_eq!(cur.next_inst(), Some(i0));
|
|
assert_eq!(cur.next_inst(), None);
|
|
assert_eq!(cur.next_block(), None);
|
|
|
|
assert_eq!(cur.prev_block(), Some(e1));
|
|
assert_eq!(cur.prev_inst(), Some(i0));
|
|
assert_eq!(cur.prev_inst(), None);
|
|
assert_eq!(cur.prev_block(), Some(e2));
|
|
assert_eq!(cur.prev_inst(), Some(i3));
|
|
assert_eq!(cur.prev_inst(), Some(i2));
|
|
assert_eq!(cur.prev_inst(), None);
|
|
assert_eq!(cur.prev_block(), Some(e0));
|
|
assert_eq!(cur.prev_inst(), Some(i1));
|
|
assert_eq!(cur.prev_inst(), None);
|
|
assert_eq!(cur.prev_block(), None);
|
|
}
|
|
|
|
// Check `ProgramOrder`.
|
|
assert_eq!(layout.cmp(e2, e2), Ordering::Equal);
|
|
assert_eq!(layout.cmp(e2, i2), Ordering::Less);
|
|
assert_eq!(layout.cmp(i3, i2), Ordering::Greater);
|
|
|
|
assert_eq!(layout.is_block_gap(i1, e2), true);
|
|
assert_eq!(layout.is_block_gap(i3, e1), true);
|
|
assert_eq!(layout.is_block_gap(i1, e1), false);
|
|
assert_eq!(layout.is_block_gap(i2, e1), false);
|
|
}
|
|
}
|