Files
wasmtime/cranelift/codegen/src/machinst/abi.rs
Chris Fallin 05cbd667c7 Cranelift: use regalloc2 constraints on caller side of ABI code. (#4892)
* Cranelift: use regalloc2 constraints on caller side of ABI code.

This PR updates the shared ABI code and backends to use register-operand
constraints rather than explicit pinned-vreg moves for register
arguments and return values.

The s390x backend was not updated, because it has its own implementation
of ABI code. Ideally we could converge back to the code shared by x64
and aarch64 (which didn't exist when s390x ported calls to ISLE, so the
current situation is underestandable, to be clear!). I'll leave this for
future work.

This PR exposed several places where regalloc2 needed to be a bit more
flexible with constraints; it requires regalloc2#74 to be merged and
pulled in.

* Update to regalloc2 0.3.3.

In addition to version bump, this required removing two asserts as
`SpillSlot`s no longer carry their class (so we can't assert that they
have the correct class).

* Review comments.

* Filetest updates.

* Add cargo-vet audit for regalloc2 0.3.2 -> 0.3.3 upgrade.

* Update to regalloc2 0.4.0.
2022-09-21 01:17:04 +00:00

2322 lines
91 KiB
Rust

//! Implementation of a vanilla ABI, shared between several machines. The
//! implementation here assumes that arguments will be passed in registers
//! first, then additional args on the stack; that the stack grows downward,
//! contains a standard frame (return address and frame pointer), and the
//! compiler is otherwise free to allocate space below that with its choice of
//! layout; and that the machine has some notion of caller- and callee-save
//! registers. Most modern machines, e.g. x86-64 and AArch64, should fit this
//! mold and thus both of these backends use this shared implementation.
//!
//! See the documentation in specific machine backends for the "instantiation"
//! of this generic ABI, i.e., which registers are caller/callee-save, arguments
//! and return values, and any other special requirements.
//!
//! For now the implementation here assumes a 64-bit machine, but we intend to
//! make this 32/64-bit-generic shortly.
//!
//! # Vanilla ABI
//!
//! First, arguments and return values are passed in registers up to a certain
//! fixed count, after which they overflow onto the stack. Multiple return
//! values either fit in registers, or are returned in a separate return-value
//! area on the stack, given by a hidden extra parameter.
//!
//! Note that the exact stack layout is up to us. We settled on the
//! below design based on several requirements. In particular, we need
//! to be able to generate instructions (or instruction sequences) to
//! access arguments, stack slots, and spill slots before we know how
//! many spill slots or clobber-saves there will be, because of our
//! pass structure. We also prefer positive offsets to negative
//! offsets because of an asymmetry in some machines' addressing modes
//! (e.g., on AArch64, positive offsets have a larger possible range
//! without a long-form sequence to synthesize an arbitrary
//! offset). We also need clobber-save registers to be "near" the
//! frame pointer: Windows unwind information requires it to be within
//! 240 bytes of RBP. Finally, it is not allowed to access memory
//! below the current SP value.
//!
//! We assume that a prologue first pushes the frame pointer (and
//! return address above that, if the machine does not do that in
//! hardware). We set FP to point to this two-word frame record. We
//! store all other frame slots below this two-word frame record, with
//! the stack pointer remaining at or below this fixed frame storage
//! for the rest of the function. We can then access frame storage
//! slots using positive offsets from SP. In order to allow codegen
//! for the latter before knowing how SP might be adjusted around
//! callsites, we implement a "nominal SP" tracking feature by which a
//! fixup (distance between actual SP and a "nominal" SP) is known at
//! each instruction.
//!
//! Note that if we ever support dynamic stack-space allocation (for
//! `alloca`), we will need a way to reference spill slots and stack
//! slots without "nominal SP", because we will no longer be able to
//! know a static offset from SP to the slots at any particular
//! program point. Probably the best solution at that point will be to
//! revert to using the frame pointer as the reference for all slots,
//! and creating a "nominal FP" synthetic addressing mode (analogous
//! to "nominal SP" today) to allow generating spill/reload and
//! stackslot accesses before we know how large the clobber-saves will
//! be.
//!
//! # Stack Layout
//!
//! The stack looks like:
//!
//! ```plain
//! (high address)
//!
//! +---------------------------+
//! | ... |
//! | stack args |
//! | (accessed via FP) |
//! +---------------------------+
//! SP at function entry -----> | return address |
//! +---------------------------+
//! FP after prologue --------> | FP (pushed by prologue) |
//! +---------------------------+
//! | ... |
//! | clobbered callee-saves |
//! unwind-frame base ----> | (pushed by prologue) |
//! +---------------------------+
//! | ... |
//! | spill slots |
//! | (accessed via nominal SP) |
//! | ... |
//! | stack slots |
//! | (accessed via nominal SP) |
//! nominal SP ---------------> | (alloc'd by prologue) |
//! (SP at end of prologue) +---------------------------+
//! | [alignment as needed] |
//! | ... |
//! | args for call |
//! SP before making a call --> | (pushed at callsite) |
//! +---------------------------+
//!
//! (low address)
//! ```
//!
//! # Multi-value Returns
//!
//! We support multi-value returns by using multiple return-value
//! registers. In some cases this is an extension of the base system
//! ABI. See each platform's `abi.rs` implementation for details.
use crate::binemit::StackMap;
use crate::entity::{PrimaryMap, SecondaryMap};
use crate::fx::FxHashMap;
use crate::ir::types::*;
use crate::ir::{ArgumentExtension, ArgumentPurpose, DynamicStackSlot, Signature, StackSlot};
use crate::isa::TargetIsa;
use crate::settings;
use crate::settings::ProbestackStrategy;
use crate::CodegenResult;
use crate::{ir, isa};
use crate::{machinst::*, trace};
use alloc::vec::Vec;
use regalloc2::{PReg, PRegSet};
use smallvec::{smallvec, SmallVec};
use std::collections::HashMap;
use std::convert::TryFrom;
use std::marker::PhantomData;
use std::mem;
/// A small vector of instructions (with some reasonable size); appropriate for
/// a small fixed sequence implementing one operation.
pub type SmallInstVec<I> = SmallVec<[I; 4]>;
/// A type used by backends to track argument-binding info in the "args"
/// pseudoinst. The pseudoinst holds a vec of `ArgPair` structs.
#[derive(Clone, Debug)]
pub struct ArgPair {
/// The vreg that is defined by this args pseudoinst.
pub vreg: Writable<Reg>,
/// The preg that the arg arrives in; this constrains the vreg's
/// placement at the pseudoinst.
pub preg: Reg,
}
/// A location for (part of) an argument or return value. These "storage slots"
/// are specified for each register-sized part of an argument.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ABIArgSlot {
/// In a real register.
Reg {
/// Register that holds this arg.
reg: RealReg,
/// Value type of this arg.
ty: ir::Type,
/// Should this arg be zero- or sign-extended?
extension: ir::ArgumentExtension,
},
/// Arguments only: on stack, at given offset from SP at entry.
Stack {
/// Offset of this arg relative to the base of stack args.
offset: i64,
/// Value type of this arg.
ty: ir::Type,
/// Should this arg be zero- or sign-extended?
extension: ir::ArgumentExtension,
},
}
impl ABIArgSlot {
/// The type of the value that will be stored in this slot.
pub fn get_type(&self) -> ir::Type {
match self {
ABIArgSlot::Reg { ty, .. } => *ty,
ABIArgSlot::Stack { ty, .. } => *ty,
}
}
}
/// A vector of `ABIArgSlot`s. Inline capacity for one element because basically
/// 100% of values use one slot. Only `i128`s need multiple slots, and they are
/// super rare (and never happen with Wasm).
pub type ABIArgSlotVec = SmallVec<[ABIArgSlot; 1]>;
/// An ABIArg is composed of one or more parts. This allows for a CLIF-level
/// Value to be passed with its parts in more than one location at the ABI
/// level. For example, a 128-bit integer may be passed in two 64-bit registers,
/// or even a 64-bit register and a 64-bit stack slot, on a 64-bit machine. The
/// number of "parts" should correspond to the number of registers used to store
/// this type according to the machine backend.
///
/// As an invariant, the `purpose` for every part must match. As a further
/// invariant, a `StructArg` part cannot appear with any other part.
#[derive(Clone, Debug)]
pub enum ABIArg {
/// Storage slots (registers or stack locations) for each part of the
/// argument value. The number of slots must equal the number of register
/// parts used to store a value of this type.
Slots {
/// Slots, one per register part.
slots: ABIArgSlotVec,
/// Purpose of this arg.
purpose: ir::ArgumentPurpose,
},
/// Structure argument. We reserve stack space for it, but the CLIF-level
/// semantics are a little weird: the value passed to the call instruction,
/// and received in the corresponding block param, is a *pointer*. On the
/// caller side, we memcpy the data from the passed-in pointer to the stack
/// area; on the callee side, we compute a pointer to this stack area and
/// provide that as the argument's value.
StructArg {
/// Register or stack slot holding a pointer to the buffer as passed
/// by the caller to the callee. If None, the ABI defines the buffer
/// to reside at a well-known location (i.e. at `offset` below).
pointer: Option<ABIArgSlot>,
/// Offset of this arg relative to base of stack args.
offset: i64,
/// Size of this arg on the stack.
size: u64,
/// Purpose of this arg.
purpose: ir::ArgumentPurpose,
},
/// Implicit argument. Similar to a StructArg, except that we have the
/// target type, not a pointer type, at the CLIF-level. This argument is
/// still being passed via reference implicitly.
ImplicitPtrArg {
/// Register or stack slot holding a pointer to the buffer.
pointer: ABIArgSlot,
/// Offset of the argument buffer.
offset: i64,
/// Type of the implicit argument.
ty: Type,
/// Purpose of this arg.
purpose: ir::ArgumentPurpose,
},
}
impl ABIArg {
/// Create an ABIArg from one register.
pub fn reg(
reg: RealReg,
ty: ir::Type,
extension: ir::ArgumentExtension,
purpose: ir::ArgumentPurpose,
) -> ABIArg {
ABIArg::Slots {
slots: smallvec![ABIArgSlot::Reg { reg, ty, extension }],
purpose,
}
}
/// Create an ABIArg from one stack slot.
pub fn stack(
offset: i64,
ty: ir::Type,
extension: ir::ArgumentExtension,
purpose: ir::ArgumentPurpose,
) -> ABIArg {
ABIArg::Slots {
slots: smallvec![ABIArgSlot::Stack {
offset,
ty,
extension,
}],
purpose,
}
}
}
/// Are we computing information about arguments or return values? Much of the
/// handling is factored out into common routines; this enum allows us to
/// distinguish which case we're handling.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ArgsOrRets {
/// Arguments.
Args,
/// Return values.
Rets,
}
/// Abstract location for a machine-specific ABI impl to translate into the
/// appropriate addressing mode.
#[derive(Clone, Copy, Debug)]
pub enum StackAMode {
/// Offset from the frame pointer, possibly making use of a specific type
/// for a scaled indexing operation.
FPOffset(i64, ir::Type),
/// Offset from the nominal stack pointer, possibly making use of a specific
/// type for a scaled indexing operation.
NominalSPOffset(i64, ir::Type),
/// Offset from the real stack pointer, possibly making use of a specific
/// type for a scaled indexing operation.
SPOffset(i64, ir::Type),
}
impl StackAMode {
/// Offset by an addend.
pub fn offset(self, addend: i64) -> Self {
match self {
StackAMode::FPOffset(off, ty) => StackAMode::FPOffset(off + addend, ty),
StackAMode::NominalSPOffset(off, ty) => StackAMode::NominalSPOffset(off + addend, ty),
StackAMode::SPOffset(off, ty) => StackAMode::SPOffset(off + addend, ty),
}
}
}
/// Trait implemented by machine-specific backend to represent ISA flags.
pub trait IsaFlags: Clone {
/// Get a flag indicating whether forward-edge CFI is enabled.
fn is_forward_edge_cfi_enabled(&self) -> bool {
false
}
}
/// Trait implemented by machine-specific backend to provide information about
/// register assignments and to allow generating the specific instructions for
/// stack loads/saves, prologues/epilogues, etc.
pub trait ABIMachineSpec {
/// The instruction type.
type I: VCodeInst;
/// The ISA flags type.
type F: IsaFlags;
/// Returns the number of bits in a word, that is 32/64 for 32/64-bit architecture.
fn word_bits() -> u32;
/// Returns the number of bytes in a word.
fn word_bytes() -> u32 {
return Self::word_bits() / 8;
}
/// Returns word-size integer type.
fn word_type() -> Type {
match Self::word_bits() {
32 => I32,
64 => I64,
_ => unreachable!(),
}
}
/// Returns word register class.
fn word_reg_class() -> RegClass {
RegClass::Int
}
/// Returns required stack alignment in bytes.
fn stack_align(call_conv: isa::CallConv) -> u32;
/// Process a list of parameters or return values and allocate them to registers
/// and stack slots.
///
/// Returns the list of argument locations, the stack-space used (rounded up
/// to as alignment requires), and if `add_ret_area_ptr` was passed, the
/// index of the extra synthetic arg that was added.
fn compute_arg_locs(
call_conv: isa::CallConv,
flags: &settings::Flags,
params: &[ir::AbiParam],
args_or_rets: ArgsOrRets,
add_ret_area_ptr: bool,
) -> CodegenResult<(ABIArgVec, i64, Option<usize>)>;
/// Returns the offset from FP to the argument area, i.e., jumping over the saved FP, return
/// address, and maybe other standard elements depending on ABI (e.g. Wasm TLS reg).
fn fp_to_arg_offset(call_conv: isa::CallConv, flags: &settings::Flags) -> i64;
/// Generate a load from the stack.
fn gen_load_stack(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;
/// Generate a store to the stack.
fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Self::I;
/// Generate a move.
fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self::I;
/// Generate an integer-extend operation.
fn gen_extend(
to_reg: Writable<Reg>,
from_reg: Reg,
is_signed: bool,
from_bits: u8,
to_bits: u8,
) -> Self::I;
/// Generate an "args" pseudo-instruction to capture input args in
/// registers.
fn gen_args(isa_flags: &Self::F, args: Vec<ArgPair>) -> Self::I;
/// Generate a return instruction.
fn gen_ret(setup_frame: bool, isa_flags: &Self::F, rets: Vec<Reg>) -> Self::I;
/// Generate an add-with-immediate. Note that even if this uses a scratch
/// register, it must satisfy two requirements:
///
/// - The add-imm sequence must only clobber caller-save registers, because
/// it will be placed in the prologue before the clobbered callee-save
/// registers are saved.
///
/// - The add-imm sequence must work correctly when `from_reg` and/or
/// `into_reg` are the register returned by `get_stacklimit_reg()`.
fn gen_add_imm(into_reg: Writable<Reg>, from_reg: Reg, imm: u32) -> SmallInstVec<Self::I>;
/// Generate a sequence that traps with a `TrapCode::StackOverflow` code if
/// the stack pointer is less than the given limit register (assuming the
/// stack grows downward).
fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec<Self::I>;
/// Generate an instruction to compute an address of a stack slot (FP- or
/// SP-based offset).
fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;
/// Get a fixed register to use to compute a stack limit. This is needed for
/// certain sequences generated after the register allocator has already
/// run. This must satisfy two requirements:
///
/// - It must be a caller-save register, because it will be clobbered in the
/// prologue before the clobbered callee-save registers are saved.
///
/// - It must be safe to pass as an argument and/or destination to
/// `gen_add_imm()`. This is relevant when an addition with a large
/// immediate needs its own temporary; it cannot use the same fixed
/// temporary as this one.
fn get_stacklimit_reg() -> Reg;
/// Generate a store to the given [base+offset] address.
fn gen_load_base_offset(into_reg: Writable<Reg>, base: Reg, offset: i32, ty: Type) -> Self::I;
/// Generate a load from the given [base+offset] address.
fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Self::I;
/// Adjust the stack pointer up or down.
fn gen_sp_reg_adjust(amount: i32) -> SmallInstVec<Self::I>;
/// Generate a meta-instruction that adjusts the nominal SP offset.
fn gen_nominal_sp_adj(amount: i32) -> Self::I;
/// Generates the mandatory part of the prologue, irrespective of whether
/// the usual frame-setup sequence for this architecture is required or not,
/// e.g. extra unwind instructions.
fn gen_prologue_start(
_setup_frame: bool,
_call_conv: isa::CallConv,
_flags: &settings::Flags,
_isa_flags: &Self::F,
) -> SmallInstVec<Self::I> {
// By default, generates nothing.
smallvec![]
}
/// Generate the usual frame-setup sequence for this architecture: e.g.,
/// `push rbp / mov rbp, rsp` on x86-64, or `stp fp, lr, [sp, #-16]!` on
/// AArch64.
fn gen_prologue_frame_setup(flags: &settings::Flags) -> SmallInstVec<Self::I>;
/// Generate the usual frame-restore sequence for this architecture.
fn gen_epilogue_frame_restore(flags: &settings::Flags) -> SmallInstVec<Self::I>;
/// Generate a probestack call.
fn gen_probestack(_frame_size: u32) -> SmallInstVec<Self::I>;
/// Generate a inline stack probe.
fn gen_inline_probestack(_frame_size: u32, _guard_size: u32) -> SmallInstVec<Self::I>;
/// Get all clobbered registers that are callee-saved according to the ABI; the result
/// contains the registers in a sorted order.
fn get_clobbered_callee_saves(
call_conv: isa::CallConv,
flags: &settings::Flags,
sig: &Signature,
regs: &[Writable<RealReg>],
) -> Vec<Writable<RealReg>>;
/// Determine whether it is necessary to generate the usual frame-setup
/// sequence (refer to gen_prologue_frame_setup()).
fn is_frame_setup_needed(
is_leaf: bool,
stack_args_size: u32,
num_clobbered_callee_saves: usize,
fixed_frame_storage_size: u32,
) -> bool;
/// Generate a clobber-save sequence. The implementation here should return
/// a sequence of instructions that "push" or otherwise save to the stack all
/// registers written/modified by the function body that are callee-saved.
/// The sequence of instructions should adjust the stack pointer downward,
/// and should align as necessary according to ABI requirements.
///
/// Returns stack bytes used as well as instructions. Does not adjust
/// nominal SP offset; caller will do that.
fn gen_clobber_save(
call_conv: isa::CallConv,
setup_frame: bool,
flags: &settings::Flags,
clobbered_callee_saves: &[Writable<RealReg>],
fixed_frame_storage_size: u32,
outgoing_args_size: u32,
) -> (u64, SmallVec<[Self::I; 16]>);
/// Generate a clobber-restore sequence. This sequence should perform the
/// opposite of the clobber-save sequence generated above, assuming that SP
/// going into the sequence is at the same point that it was left when the
/// clobber-save sequence finished.
fn gen_clobber_restore(
call_conv: isa::CallConv,
sig: &Signature,
flags: &settings::Flags,
clobbers: &[Writable<RealReg>],
fixed_frame_storage_size: u32,
outgoing_args_size: u32,
) -> SmallVec<[Self::I; 16]>;
/// Generate a call instruction/sequence. This method is provided one
/// temporary register to use to synthesize the called address, if needed.
fn gen_call(
dest: &CallDest,
uses: CallArgList,
defs: CallRetList,
clobbers: PRegSet,
opcode: ir::Opcode,
tmp: Writable<Reg>,
callee_conv: isa::CallConv,
callee_conv: isa::CallConv,
) -> SmallVec<[Self::I; 2]>;
/// Generate a memcpy invocation. Used to set up struct
/// args. Takes `src`, `dst` as read-only inputs and requires two
/// temporaries to generate the call (for the size immediate and
/// possibly for the address of `memcpy` itself).
fn gen_memcpy(
call_conv: isa::CallConv,
dst: Reg,
src: Reg,
tmp1: Writable<Reg>,
tmp2: Writable<Reg>,
size: usize,
) -> SmallVec<[Self::I; 8]>;
/// Get the number of spillslots required for the given register-class.
fn get_number_of_spillslots_for_value(rc: RegClass, target_vector_bytes: u32) -> u32;
/// Get the current virtual-SP offset from an instruction-emission state.
fn get_virtual_sp_offset_from_state(s: &<Self::I as MachInstEmit>::State) -> i64;
/// Get the "nominal SP to FP" offset from an instruction-emission state.
fn get_nominal_sp_to_fp(s: &<Self::I as MachInstEmit>::State) -> i64;
/// Get all caller-save registers, that is, registers that we expect
/// not to be saved across a call to a callee with the given ABI.
fn get_regs_clobbered_by_call(call_conv_of_callee: isa::CallConv) -> PRegSet;
/// Get the needed extension mode, given the mode attached to the argument
/// in the signature and the calling convention. The input (the attribute in
/// the signature) specifies what extension type should be done *if* the ABI
/// requires extension to the full register; this method's return value
/// indicates whether the extension actually *will* be done.
fn get_ext_mode(
call_conv: isa::CallConv,
specified: ir::ArgumentExtension,
) -> ir::ArgumentExtension;
}
// A vector of `ABIArg`s with inline capacity, since they are typically small.
pub type ABIArgVec = SmallVec<[ABIArg; 6]>;
/// The id of an ABI signature within the `SigSet`.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct Sig(u32);
cranelift_entity::entity_impl!(Sig);
/// ABI information shared between body (callee) and caller.
#[derive(Clone)]
pub struct SigData {
/// Argument locations (regs or stack slots). Stack offsets are relative to
/// SP on entry to function.
args: ABIArgVec,
/// Return-value locations. Stack offsets are relative to the return-area
/// pointer.
rets: ABIArgVec,
/// Space on stack used to store arguments.
sized_stack_arg_space: i64,
/// Space on stack used to store return values.
sized_stack_ret_space: i64,
/// Index in `args` of the stack-return-value-area argument.
stack_ret_arg: Option<usize>,
/// Calling convention used.
call_conv: isa::CallConv,
}
impl SigData {
pub fn from_func_sig<M: ABIMachineSpec>(
sig: &ir::Signature,
flags: &settings::Flags,
) -> CodegenResult<SigData> {
let sig = ensure_struct_return_ptr_is_returned(sig);
// Compute args and retvals from signature. Handle retvals first,
// because we may need to add a return-area arg to the args.
let (rets, sized_stack_ret_space, _) = M::compute_arg_locs(
sig.call_conv,
flags,
&sig.returns,
ArgsOrRets::Rets,
/* extra ret-area ptr = */ false,
)?;
let need_stack_return_area = sized_stack_ret_space > 0;
let (args, sized_stack_arg_space, stack_ret_arg) = M::compute_arg_locs(
sig.call_conv,
flags,
&sig.params,
ArgsOrRets::Args,
need_stack_return_area,
)?;
trace!(
"ABISig: sig {:?} => args = {:?} rets = {:?} arg stack = {} ret stack = {} stack_ret_arg = {:?}",
sig,
args,
rets,
sized_stack_arg_space,
sized_stack_ret_space,
stack_ret_arg,
);
Ok(SigData {
args,
rets,
sized_stack_arg_space,
sized_stack_ret_space,
stack_ret_arg,
call_conv: sig.call_conv,
})
}
/// Return all uses (i.e, function args), defs (i.e., return values
/// and caller-saved registers), and clobbers for the callsite.
///
/// FIXME: used only by s390x; remove once that backend moves to
/// `call_clobbers` and constraint-based calls.
pub fn call_uses_defs_clobbers<M: ABIMachineSpec>(
&self,
) -> (SmallVec<[Reg; 8]>, SmallVec<[Writable<Reg>; 8]>, PRegSet) {
// Compute uses: all arg regs.
let mut uses = smallvec![];
for arg in &self.args {
match arg {
&ABIArg::Slots { ref slots, .. } => {
for slot in slots {
match slot {
&ABIArgSlot::Reg { reg, .. } => {
uses.push(Reg::from(reg));
}
_ => {}
}
}
}
&ABIArg::StructArg { ref pointer, .. } => {
if let Some(slot) = pointer {
match slot {
&ABIArgSlot::Reg { reg, .. } => {
uses.push(Reg::from(reg));
}
_ => {}
}
}
}
&ABIArg::ImplicitPtrArg { ref pointer, .. } => match pointer {
&ABIArgSlot::Reg { reg, .. } => {
uses.push(Reg::from(reg));
}
_ => {}
},
}
}
// Get clobbers: all caller-saves. These may include return value
// regs, which we will remove from the clobber set below.
let mut clobbers = M::get_regs_clobbered_by_call(self.call_conv);
// Compute defs: all retval regs, and all caller-save (clobbered) regs.
let mut defs = smallvec![];
for ret in &self.rets {
if let &ABIArg::Slots { ref slots, .. } = ret {
for slot in slots {
match slot {
&ABIArgSlot::Reg { reg, .. } => {
defs.push(Writable::from_reg(Reg::from(reg)));
clobbers.remove(PReg::from(reg));
}
_ => {}
}
}
}
}
(uses, defs, clobbers)
}
/// Return all clobbers for the callsite.
pub fn call_clobbers<M: ABIMachineSpec>(&self) -> PRegSet {
// Get clobbers: all caller-saves. These may include return value
// regs, which we will remove from the clobber set below.
let mut clobbers = M::get_regs_clobbered_by_call(self.call_conv);
// Remove retval regs from clobbers.
for ret in &self.rets {
if let &ABIArg::Slots { ref slots, .. } = ret {
for slot in slots {
match slot {
&ABIArgSlot::Reg { reg, .. } => {
log::trace!("call_clobbers: retval reg {:?}", reg);
clobbers.remove(PReg::from(reg));
}
_ => {}
}
}
}
}
clobbers
}
/// Get the number of arguments expected.
pub fn num_args(&self) -> usize {
if self.stack_ret_arg.is_some() {
self.args.len() - 1
} else {
self.args.len()
}
}
/// Get information specifying how to pass one argument.
pub fn get_arg(&self, idx: usize) -> ABIArg {
self.args[idx].clone()
}
/// Get total stack space required for arguments.
pub fn sized_stack_arg_space(&self) -> i64 {
self.sized_stack_arg_space
}
/// Get the number of return values expected.
pub fn num_rets(&self) -> usize {
self.rets.len()
}
/// Get information specifying how to pass one return value.
pub fn get_ret(&self, idx: usize) -> ABIArg {
self.rets[idx].clone()
}
/// Get total stack space required for return values.
pub fn sized_stack_ret_space(&self) -> i64 {
self.sized_stack_ret_space
}
/// Get information specifying how to pass the implicit pointer
/// to the return-value area on the stack, if required.
pub fn get_ret_arg(&self) -> Option<ABIArg> {
let ret_arg = self.stack_ret_arg?;
Some(self.args[ret_arg].clone())
}
/// Get calling convention used.
pub fn call_conv(&self) -> isa::CallConv {
self.call_conv
}
}
/// A (mostly) deduplicated set of ABI signatures.
///
/// We say "mostly" because we do not dedupe between signatures interned via
/// `ir::SigRef` (direct and indirect calls; the vast majority of signatures in
/// this set) vs via `ir::Signature` (the callee itself and libcalls). Doing
/// this final bit of deduplication would require filling out the
/// `ir_signature_to_abi_sig`, which is a bunch of allocations (not just the
/// hash map itself but params and returns vecs in each signature) that we want
/// to avoid.
///
/// In general, prefer using the `ir::SigRef`-taking methods to the
/// `ir::Signature`-taking methods when you can get away with it, as they don't
/// require cloning non-copy types that will trigger heap allocations.
///
/// This type can be indexed by `Sig` to access its associated `SigData`.
pub struct SigSet {
/// Interned `ir::Signature`s that we already have an ABI signature for.
ir_signature_to_abi_sig: FxHashMap<ir::Signature, Sig>,
/// Interned `ir::SigRef`s that we already have an ABI signature for.
ir_sig_ref_to_abi_sig: SecondaryMap<ir::SigRef, Option<Sig>>,
/// The actual ABI signatures, keyed by `Sig`.
sigs: PrimaryMap<Sig, SigData>,
}
impl SigSet {
/// Construct a new `SigSet`, interning all of the signatures used by the
/// given function.
pub fn new<M>(func: &ir::Function, flags: &settings::Flags) -> CodegenResult<Self>
where
M: ABIMachineSpec,
{
let mut sigs = SigSet {
ir_signature_to_abi_sig: FxHashMap::default(),
ir_sig_ref_to_abi_sig: SecondaryMap::with_capacity(func.dfg.signatures.len()),
sigs: PrimaryMap::with_capacity(1 + func.dfg.signatures.len()),
};
sigs.make_abi_sig_from_ir_signature::<M>(func.signature.clone(), flags)?;
for sig_ref in func.dfg.signatures.keys() {
sigs.make_abi_sig_from_ir_sig_ref::<M>(sig_ref, &func.dfg, flags)?;
}
Ok(sigs)
}
/// Have we already interned an ABI signature for the given `ir::Signature`?
pub fn have_abi_sig_for_signature(&self, signature: &ir::Signature) -> bool {
self.ir_signature_to_abi_sig.contains_key(signature)
}
/// Construct and intern an ABI signature for the given `ir::Signature`.
pub fn make_abi_sig_from_ir_signature<M>(
&mut self,
signature: ir::Signature,
flags: &settings::Flags,
) -> CodegenResult<Sig>
where
M: ABIMachineSpec,
{
// Because the `HashMap` entry API requires taking ownership of the
// lookup key -- and we want to avoid unnecessary clones of
// `ir::Signature`s, even at the cost of duplicate lookups -- we can't
// have a single, get-or-create-style method for interning
// `ir::Signature`s into ABI signatures. So at least (debug) assert that
// we aren't creating duplicate ABI signatures for the same
// `ir::Signature`.
debug_assert!(!self.have_abi_sig_for_signature(&signature));
let legalized_signature = crate::machinst::ensure_struct_return_ptr_is_returned(&signature);
let sig_data = SigData::from_func_sig::<M>(&legalized_signature, flags)?;
let sig = self.sigs.push(sig_data);
self.ir_signature_to_abi_sig.insert(signature, sig);
Ok(sig)
}
fn make_abi_sig_from_ir_sig_ref<M>(
&mut self,
sig_ref: ir::SigRef,
dfg: &ir::DataFlowGraph,
flags: &settings::Flags,
) -> CodegenResult<Sig>
where
M: ABIMachineSpec,
{
if let Some(sig) = self.ir_sig_ref_to_abi_sig[sig_ref] {
return Ok(sig);
}
let signature = &dfg.signatures[sig_ref];
let legalized_signature = crate::machinst::ensure_struct_return_ptr_is_returned(&signature);
let sig_data = SigData::from_func_sig::<M>(&legalized_signature, flags)?;
let sig = self.sigs.push(sig_data);
self.ir_sig_ref_to_abi_sig[sig_ref] = Some(sig);
Ok(sig)
}
/// Get the already-interned ABI signature id for the given `ir::SigRef`.
pub fn abi_sig_for_sig_ref(&self, sig_ref: ir::SigRef) -> Sig {
self.ir_sig_ref_to_abi_sig
.get(sig_ref)
// Should have a secondary map entry...
.expect("must call `make_abi_sig_from_ir_sig_ref` before `get_abi_sig_for_sig_ref`")
// ...and that entry should be initialized.
.expect("must call `make_abi_sig_from_ir_sig_ref` before `get_abi_sig_for_sig_ref`")
}
/// Get the already-interned ABI signature id for the given `ir::Signature`.
pub fn abi_sig_for_signature(&self, signature: &ir::Signature) -> Sig {
self.ir_signature_to_abi_sig
.get(signature)
.copied()
.expect("must call `make_abi_sig_from_ir_signature` before `get_abi_sig_for_signature`")
}
}
// NB: we do _not_ implement `IndexMut` because these signatures are
// deduplicated and shared!
impl std::ops::Index<Sig> for SigSet {
type Output = SigData;
fn index(&self, sig: Sig) -> &Self::Output {
&self.sigs[sig]
}
}
/// ABI object for a function body.
pub struct Callee<M: ABIMachineSpec> {
/// CLIF-level signature, possibly normalized.
ir_sig: ir::Signature,
/// Signature: arg and retval regs.
sig: Sig,
/// Defined dynamic types.
dynamic_type_sizes: HashMap<Type, u32>,
/// Offsets to each dynamic stackslot.
dynamic_stackslots: PrimaryMap<DynamicStackSlot, u32>,
/// Offsets to each sized stackslot.
sized_stackslots: PrimaryMap<StackSlot, u32>,
/// Total stack size of all stackslots
stackslots_size: u32,
/// Stack size to be reserved for outgoing arguments.
outgoing_args_size: u32,
/// Register-argument defs, to be provided to the `args`
/// pseudo-inst, and pregs to constrain them to.
reg_args: Vec<ArgPair>,
/// Clobbered registers, from regalloc.
clobbered: Vec<Writable<RealReg>>,
/// Total number of spillslots, including for 'dynamic' types, from regalloc.
spillslots: Option<usize>,
/// Storage allocated for the fixed part of the stack frame. This is
/// usually the same as the total frame size below.
fixed_frame_storage_size: u32,
/// "Total frame size", as defined by "distance between FP and nominal SP".
/// Some items are pushed below nominal SP, so the function may actually use
/// more stack than this would otherwise imply. It is simply the initial
/// frame/allocation size needed for stackslots and spillslots.
total_frame_size: Option<u32>,
/// The register holding the return-area pointer, if needed.
ret_area_ptr: Option<Writable<Reg>>,
/// Temp registers required for argument setup, if needed.
arg_temp_reg: Vec<Option<Writable<Reg>>>,
/// Calling convention this function expects.
call_conv: isa::CallConv,
/// The settings controlling this function's compilation.
flags: settings::Flags,
/// The ISA-specific flag values controlling this function's compilation.
isa_flags: M::F,
/// Whether or not this function is a "leaf", meaning it calls no other
/// functions
is_leaf: bool,
/// If this function has a stack limit specified, then `Reg` is where the
/// stack limit will be located after the instructions specified have been
/// executed.
///
/// Note that this is intended for insertion into the prologue, if
/// present. Also note that because the instructions here execute in the
/// prologue this happens after legalization/register allocation/etc so we
/// need to be extremely careful with each instruction. The instructions are
/// manually register-allocated and carefully only use caller-saved
/// registers and keep nothing live after this sequence of instructions.
stack_limit: Option<(Reg, SmallInstVec<M::I>)>,
/// Are we to invoke the probestack function in the prologue? If so,
/// what is the minimum size at which we must invoke it?
probestack_min_frame: Option<u32>,
/// Whether it is necessary to generate the usual frame-setup sequence.
setup_frame: bool,
_mach: PhantomData<M>,
}
fn get_special_purpose_param_register(
f: &ir::Function,
abi: &SigData,
purpose: ir::ArgumentPurpose,
) -> Option<Reg> {
let idx = f.signature.special_param_index(purpose)?;
match &abi.args[idx] {
&ABIArg::Slots { ref slots, .. } => match &slots[0] {
&ABIArgSlot::Reg { reg, .. } => Some(reg.into()),
_ => None,
},
_ => None,
}
}
impl<M: ABIMachineSpec> Callee<M> {
/// Create a new body ABI instance.
pub fn new<'a>(
f: &ir::Function,
isa: &dyn TargetIsa,
isa_flags: &M::F,
sigs: &SigSet,
) -> CodegenResult<Self> {
trace!("ABI: func signature {:?}", f.signature);
let flags = isa.flags().clone();
let sig = sigs.abi_sig_for_signature(&f.signature);
let call_conv = f.signature.call_conv;
// Only these calling conventions are supported.
debug_assert!(
call_conv == isa::CallConv::SystemV
|| call_conv == isa::CallConv::Fast
|| call_conv == isa::CallConv::Cold
|| call_conv.extends_windows_fastcall()
|| call_conv == isa::CallConv::AppleAarch64
|| call_conv == isa::CallConv::WasmtimeSystemV
|| call_conv == isa::CallConv::WasmtimeAppleAarch64,
"Unsupported calling convention: {:?}",
call_conv
);
// Compute sized stackslot locations and total stackslot size.
let mut sized_stack_offset: u32 = 0;
let mut sized_stackslots = PrimaryMap::new();
for (stackslot, data) in f.sized_stack_slots.iter() {
let off = sized_stack_offset;
sized_stack_offset += data.size;
let mask = M::word_bytes() - 1;
sized_stack_offset = (sized_stack_offset + mask) & !mask;
debug_assert_eq!(stackslot.as_u32() as usize, sized_stackslots.len());
sized_stackslots.push(off);
}
// Compute dynamic stackslot locations and total stackslot size.
let mut dynamic_stackslots = PrimaryMap::new();
let mut dynamic_stack_offset: u32 = sized_stack_offset;
for (stackslot, data) in f.dynamic_stack_slots.iter() {
debug_assert_eq!(stackslot.as_u32() as usize, dynamic_stackslots.len());
let off = dynamic_stack_offset;
let ty = f
.get_concrete_dynamic_ty(data.dyn_ty)
.unwrap_or_else(|| panic!("invalid dynamic vector type: {}", data.dyn_ty));
dynamic_stack_offset += isa.dynamic_vector_bytes(ty);
let mask = M::word_bytes() - 1;
dynamic_stack_offset = (dynamic_stack_offset + mask) & !mask;
dynamic_stackslots.push(off);
}
let stackslots_size = dynamic_stack_offset;
let mut dynamic_type_sizes = HashMap::with_capacity(f.dfg.dynamic_types.len());
for (dyn_ty, _data) in f.dfg.dynamic_types.iter() {
let ty = f
.get_concrete_dynamic_ty(dyn_ty)
.unwrap_or_else(|| panic!("invalid dynamic vector type: {}", dyn_ty));
let size = isa.dynamic_vector_bytes(ty);
dynamic_type_sizes.insert(ty, size);
}
// Figure out what instructions, if any, will be needed to check the
// stack limit. This can either be specified as a special-purpose
// argument or as a global value which often calculates the stack limit
// from the arguments.
let stack_limit =
get_special_purpose_param_register(f, &sigs[sig], ir::ArgumentPurpose::StackLimit)
.map(|reg| (reg, smallvec![]))
.or_else(|| {
f.stack_limit
.map(|gv| gen_stack_limit::<M>(f, &sigs[sig], gv))
});
// Determine whether a probestack call is required for large enough
// frames (and the minimum frame size if so).
let probestack_min_frame = if flags.enable_probestack() {
assert!(
!flags.probestack_func_adjusts_sp(),
"SP-adjusting probestack not supported in new backends"
);
Some(1 << flags.probestack_size_log2())
} else {
None
};
Ok(Self {
ir_sig: ensure_struct_return_ptr_is_returned(&f.signature),
sig,
dynamic_stackslots,
dynamic_type_sizes,
sized_stackslots,
stackslots_size,
outgoing_args_size: 0,
reg_args: vec![],
clobbered: vec![],
spillslots: None,
fixed_frame_storage_size: 0,
total_frame_size: None,
ret_area_ptr: None,
arg_temp_reg: vec![],
call_conv,
flags,
isa_flags: isa_flags.clone(),
is_leaf: f.is_leaf(),
stack_limit,
probestack_min_frame,
setup_frame: true,
_mach: PhantomData,
})
}
/// Inserts instructions necessary for checking the stack limit into the
/// prologue.
///
/// This function will generate instructions necessary for perform a stack
/// check at the header of a function. The stack check is intended to trap
/// if the stack pointer goes below a particular threshold, preventing stack
/// overflow in wasm or other code. The `stack_limit` argument here is the
/// register which holds the threshold below which we're supposed to trap.
/// This function is known to allocate `stack_size` bytes and we'll push
/// instructions onto `insts`.
///
/// Note that the instructions generated here are special because this is
/// happening so late in the pipeline (e.g. after register allocation). This
/// means that we need to do manual register allocation here and also be
/// careful to not clobber any callee-saved or argument registers. For now
/// this routine makes do with the `spilltmp_reg` as one temporary
/// register, and a second register of `tmp2` which is caller-saved. This
/// should be fine for us since no spills should happen in this sequence of
/// instructions, so our register won't get accidentally clobbered.
///
/// No values can be live after the prologue, but in this case that's ok
/// because we just need to perform a stack check before progressing with
/// the rest of the function.
fn insert_stack_check(
&self,
stack_limit: Reg,
stack_size: u32,
insts: &mut SmallInstVec<M::I>,
) {
// With no explicit stack allocated we can just emit the simple check of
// the stack registers against the stack limit register, and trap if
// it's out of bounds.
if stack_size == 0 {
insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
return;
}
// Note that the 32k stack size here is pretty special. See the
// documentation in x86/abi.rs for why this is here. The general idea is
// that we're protecting against overflow in the addition that happens
// below.
if stack_size >= 32 * 1024 {
insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
}
// Add the `stack_size` to `stack_limit`, placing the result in
// `scratch`.
//
// Note though that `stack_limit`'s register may be the same as
// `scratch`. If our stack size doesn't fit into an immediate this
// means we need a second scratch register for loading the stack size
// into a register.
let scratch = Writable::from_reg(M::get_stacklimit_reg());
insts.extend(M::gen_add_imm(scratch, stack_limit, stack_size).into_iter());
insts.extend(M::gen_stack_lower_bound_trap(scratch.to_reg()));
}
}
/// Generates the instructions necessary for the `gv` to be materialized into a
/// register.
///
/// This function will return a register that will contain the result of
/// evaluating `gv`. It will also return any instructions necessary to calculate
/// the value of the register.
///
/// Note that global values are typically lowered to instructions via the
/// standard legalization pass. Unfortunately though prologue generation happens
/// so late in the pipeline that we can't use these legalization passes to
/// generate the instructions for `gv`. As a result we duplicate some lowering
/// of `gv` here and support only some global values. This is similar to what
/// the x86 backend does for now, and hopefully this can be somewhat cleaned up
/// in the future too!
///
/// Also note that this function will make use of `writable_spilltmp_reg()` as a
/// temporary register to store values in if necessary. Currently after we write
/// to this register there's guaranteed to be no spilled values between where
/// it's used, because we're not participating in register allocation anyway!
fn gen_stack_limit<M: ABIMachineSpec>(
f: &ir::Function,
abi: &SigData,
gv: ir::GlobalValue,
) -> (Reg, SmallInstVec<M::I>) {
let mut insts = smallvec![];
let reg = generate_gv::<M>(f, abi, gv, &mut insts);
return (reg, insts);
}
fn generate_gv<M: ABIMachineSpec>(
f: &ir::Function,
abi: &SigData,
gv: ir::GlobalValue,
insts: &mut SmallInstVec<M::I>,
) -> Reg {
match f.global_values[gv] {
// Return the direct register the vmcontext is in
ir::GlobalValueData::VMContext => {
get_special_purpose_param_register(f, abi, ir::ArgumentPurpose::VMContext)
.expect("no vmcontext parameter found")
}
// Load our base value into a register, then load from that register
// in to a temporary register.
ir::GlobalValueData::Load {
base,
offset,
global_type: _,
readonly: _,
} => {
let base = generate_gv::<M>(f, abi, base, insts);
let into_reg = Writable::from_reg(M::get_stacklimit_reg());
insts.push(M::gen_load_base_offset(
into_reg,
base,
offset.into(),
M::word_type(),
));
return into_reg.to_reg();
}
ref other => panic!("global value for stack limit not supported: {}", other),
}
}
fn gen_load_stack_multi<M: ABIMachineSpec>(
from: StackAMode,
dst: ValueRegs<Writable<Reg>>,
ty: Type,
) -> SmallInstVec<M::I> {
let mut ret = smallvec![];
let (_, tys) = M::I::rc_for_type(ty).unwrap();
let mut offset = 0;
// N.B.: registers are given in the `ValueRegs` in target endian order.
for (&dst, &ty) in dst.regs().iter().zip(tys.iter()) {
ret.push(M::gen_load_stack(from.offset(offset), dst, ty));
offset += ty.bytes() as i64;
}
ret
}
fn gen_store_stack_multi<M: ABIMachineSpec>(
from: StackAMode,
src: ValueRegs<Reg>,
ty: Type,
) -> SmallInstVec<M::I> {
let mut ret = smallvec![];
let (_, tys) = M::I::rc_for_type(ty).unwrap();
let mut offset = 0;
// N.B.: registers are given in the `ValueRegs` in target endian order.
for (&src, &ty) in src.regs().iter().zip(tys.iter()) {
ret.push(M::gen_store_stack(from.offset(offset), src, ty));
offset += ty.bytes() as i64;
}
ret
}
pub(crate) fn ensure_struct_return_ptr_is_returned(sig: &ir::Signature) -> ir::Signature {
let params_structret = sig
.params
.iter()
.find(|p| p.purpose == ArgumentPurpose::StructReturn);
let rets_have_structret = sig.returns.len() > 0
&& sig
.returns
.iter()
.any(|arg| arg.purpose == ArgumentPurpose::StructReturn);
let mut sig = sig.clone();
if params_structret.is_some() && !rets_have_structret {
sig.returns.insert(0, params_structret.unwrap().clone());
}
sig
}
/// ### Pre-Regalloc Functions
///
/// These methods of `Callee` may only be called before regalloc.
impl<M: ABIMachineSpec> Callee<M> {
/// Access the (possibly legalized) signature.
pub fn signature(&self) -> &ir::Signature {
&self.ir_sig
}
/// Does the ABI-body code need temp registers (and if so, of what type)?
/// They will be provided to `init()` as the `temps` arg if so.
pub fn temps_needed(&self, sigs: &SigSet) -> Vec<Type> {
let mut temp_tys = vec![];
for arg in &sigs[self.sig].args {
match arg {
&ABIArg::ImplicitPtrArg { pointer, .. } => match &pointer {
&ABIArgSlot::Reg { .. } => {}
&ABIArgSlot::Stack { ty, .. } => {
temp_tys.push(ty);
}
},
_ => {}
}
}
if sigs[self.sig].stack_ret_arg.is_some() {
temp_tys.push(M::word_type());
}
temp_tys
}
/// Initialize. This is called after the Callee is constructed because it
/// may be provided with a vector of temp vregs, which can only be allocated
/// once the lowering context exists.
pub fn init(&mut self, sigs: &SigSet, temps: Vec<Writable<Reg>>) {
let mut temps_iter = temps.into_iter();
for arg in &sigs[self.sig].args {
let temp = match arg {
&ABIArg::ImplicitPtrArg { pointer, .. } => match &pointer {
&ABIArgSlot::Reg { .. } => None,
&ABIArgSlot::Stack { .. } => Some(temps_iter.next().unwrap()),
},
_ => None,
};
self.arg_temp_reg.push(temp);
}
if sigs[self.sig].stack_ret_arg.is_some() {
self.ret_area_ptr = Some(temps_iter.next().unwrap());
}
}
/// Accumulate outgoing arguments.
///
/// This ensures that at least `size` bytes are allocated in the prologue to
/// be available for use in function calls to hold arguments and/or return
/// values. If this function is called multiple times, the maximum of all
/// `size` values will be available.
pub fn accumulate_outgoing_args_size(&mut self, size: u32) {
if size > self.outgoing_args_size {
self.outgoing_args_size = size;
}
}
pub fn is_forward_edge_cfi_enabled(&self) -> bool {
self.isa_flags.is_forward_edge_cfi_enabled()
}
/// Get the calling convention implemented by this ABI object.
pub fn call_conv(&self, sigs: &SigSet) -> isa::CallConv {
sigs[self.sig].call_conv
}
/// The offsets of all sized stack slots (not spill slots) for debuginfo purposes.
pub fn sized_stackslot_offsets(&self) -> &PrimaryMap<StackSlot, u32> {
&self.sized_stackslots
}
/// The offsets of all dynamic stack slots (not spill slots) for debuginfo purposes.
pub fn dynamic_stackslot_offsets(&self) -> &PrimaryMap<DynamicStackSlot, u32> {
&self.dynamic_stackslots
}
/// Generate an instruction which copies an argument to a destination
/// register.
pub fn gen_copy_arg_to_regs(
&mut self,
sigs: &SigSet,
idx: usize,
into_regs: ValueRegs<Writable<Reg>>,
) -> SmallInstVec<M::I> {
let mut insts = smallvec![];
let mut copy_arg_slot_to_reg = |slot: &ABIArgSlot, into_reg: &Writable<Reg>| {
match slot {
&ABIArgSlot::Reg { reg, .. } => {
// Add a preg -> def pair to the eventual `args`
// instruction. Extension mode doesn't matter
// (we're copying out, not in; we ignore high bits
// by convention).
let arg = ArgPair {
vreg: *into_reg,
preg: reg.into(),
};
self.reg_args.push(arg);
}
&ABIArgSlot::Stack {
offset,
ty,
extension,
..
} => {
// However, we have to respect the extention mode for stack
// slots, or else we grab the wrong bytes on big-endian.
let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
let ty = match (ext, ty_bits(ty) as u32) {
(ArgumentExtension::Uext, n) | (ArgumentExtension::Sext, n)
if n < M::word_bits() =>
{
M::word_type()
}
_ => ty,
};
insts.push(M::gen_load_stack(
StackAMode::FPOffset(
M::fp_to_arg_offset(self.call_conv, &self.flags) + offset,
ty,
),
*into_reg,
ty,
));
}
}
};
match &sigs[self.sig].args[idx] {
&ABIArg::Slots { ref slots, .. } => {
assert_eq!(into_regs.len(), slots.len());
for (slot, into_reg) in slots.iter().zip(into_regs.regs().iter()) {
copy_arg_slot_to_reg(&slot, &into_reg);
}
}
&ABIArg::StructArg {
pointer, offset, ..
} => {
let into_reg = into_regs.only_reg().unwrap();
if let Some(slot) = pointer {
// Buffer address is passed in a register or stack slot.
copy_arg_slot_to_reg(&slot, &into_reg);
} else {
// Buffer address is implicitly defined by the ABI.
insts.push(M::gen_get_stack_addr(
StackAMode::FPOffset(
M::fp_to_arg_offset(self.call_conv, &self.flags) + offset,
I8,
),
into_reg,
I8,
));
}
}
&ABIArg::ImplicitPtrArg { pointer, ty, .. } => {
let into_reg = into_regs.only_reg().unwrap();
// We need to dereference the pointer.
let base = match &pointer {
&ABIArgSlot::Reg { reg, .. } => Reg::from(reg),
&ABIArgSlot::Stack { offset, ty, .. } => {
// In this case we need a temp register to hold the address.
// This was allocated in the `init` routine.
let addr_reg = self.arg_temp_reg[idx].unwrap();
insts.push(M::gen_load_stack(
StackAMode::FPOffset(
M::fp_to_arg_offset(self.call_conv, &self.flags) + offset,
ty,
),
addr_reg,
ty,
));
addr_reg.to_reg()
}
};
insts.push(M::gen_load_base_offset(into_reg, base, 0, ty));
}
}
insts
}
/// Is the given argument needed in the body (as opposed to, e.g., serving
/// only as a special ABI-specific placeholder)? This controls whether
/// lowering will copy it to a virtual reg use by CLIF instructions.
pub fn arg_is_needed_in_body(&self, _idx: usize) -> bool {
true
}
/// Generate an instruction which copies a source register to a return value slot.
pub fn gen_copy_regs_to_retval(
&self,
sigs: &SigSet,
idx: usize,
from_regs: ValueRegs<Writable<Reg>>,
) -> SmallInstVec<M::I> {
let mut ret = smallvec![];
let word_bits = M::word_bits() as u8;
match &sigs[self.sig].rets[idx] {
&ABIArg::Slots { ref slots, .. } => {
assert_eq!(from_regs.len(), slots.len());
for (slot, &from_reg) in slots.iter().zip(from_regs.regs().iter()) {
match slot {
&ABIArgSlot::Reg {
reg, ty, extension, ..
} => {
let from_bits = ty_bits(ty) as u8;
let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
let reg: Writable<Reg> = Writable::from_reg(Reg::from(reg));
match (ext, from_bits) {
(ArgumentExtension::Uext, n) | (ArgumentExtension::Sext, n)
if n < word_bits =>
{
let signed = ext == ArgumentExtension::Sext;
ret.push(M::gen_extend(
reg,
from_reg.to_reg(),
signed,
from_bits,
/* to_bits = */ word_bits,
));
}
_ => {
ret.push(M::gen_move(reg, from_reg.to_reg(), ty));
}
};
}
&ABIArgSlot::Stack {
offset,
ty,
extension,
..
} => {
let mut ty = ty;
let from_bits = ty_bits(ty) as u8;
// A machine ABI implementation should ensure that stack frames
// have "reasonable" size. All current ABIs for machinst
// backends (aarch64 and x64) enforce a 128MB limit.
let off = i32::try_from(offset).expect(
"Argument stack offset greater than 2GB; should hit impl limit first",
);
let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
// Trash the from_reg; it should be its last use.
match (ext, from_bits) {
(ArgumentExtension::Uext, n) | (ArgumentExtension::Sext, n)
if n < word_bits =>
{
assert_eq!(M::word_reg_class(), from_reg.to_reg().class());
let signed = ext == ArgumentExtension::Sext;
ret.push(M::gen_extend(
Writable::from_reg(from_reg.to_reg()),
from_reg.to_reg(),
signed,
from_bits,
/* to_bits = */ word_bits,
));
// Store the extended version.
ty = M::word_type();
}
_ => {}
};
ret.push(M::gen_store_base_offset(
self.ret_area_ptr.unwrap().to_reg(),
off,
from_reg.to_reg(),
ty,
));
}
}
}
}
&ABIArg::StructArg { .. } => {
panic!("StructArg in return position is unsupported");
}
&ABIArg::ImplicitPtrArg { .. } => {
panic!("ImplicitPtrArg in return position is unsupported");
}
}
ret
}
/// Generate any setup instruction needed to save values to the
/// return-value area. This is usually used when were are multiple return
/// values or an otherwise large return value that must be passed on the
/// stack; typically the ABI specifies an extra hidden argument that is a
/// pointer to that memory.
pub fn gen_retval_area_setup(&mut self, sigs: &SigSet) -> Option<M::I> {
if let Some(i) = sigs[self.sig].stack_ret_arg {
let insts =
self.gen_copy_arg_to_regs(sigs, i, ValueRegs::one(self.ret_area_ptr.unwrap()));
insts.into_iter().next().map(|inst| {
trace!(
"gen_retval_area_setup: inst {:?}; ptr reg is {:?}",
inst,
self.ret_area_ptr.unwrap().to_reg()
);
inst
})
} else {
trace!("gen_retval_area_setup: not needed");
None
}
}
/// Generate a return instruction.
pub fn gen_ret(&self, sigs: &SigSet) -> M::I {
let mut rets = vec![];
for ret in &sigs[self.sig].rets {
match ret {
ABIArg::Slots { slots, .. } => {
for slot in slots {
match slot {
ABIArgSlot::Reg { reg, .. } => rets.push(Reg::from(*reg)),
_ => {}
}
}
}
_ => {}
}
}
M::gen_ret(self.setup_frame, &self.isa_flags, rets)
}
/// Produce an instruction that computes a sized stackslot address.
pub fn sized_stackslot_addr(
&self,
slot: StackSlot,
offset: u32,
into_reg: Writable<Reg>,
) -> M::I {
// Offset from beginning of stackslot area, which is at nominal SP (see
// [MemArg::NominalSPOffset] for more details on nominal SP tracking).
let stack_off = self.sized_stackslots[slot] as i64;
let sp_off: i64 = stack_off + (offset as i64);
M::gen_get_stack_addr(StackAMode::NominalSPOffset(sp_off, I8), into_reg, I8)
}
/// Produce an instruction that computes a dynamic stackslot address.
pub fn dynamic_stackslot_addr(&self, slot: DynamicStackSlot, into_reg: Writable<Reg>) -> M::I {
let stack_off = self.dynamic_stackslots[slot] as i64;
M::gen_get_stack_addr(
StackAMode::NominalSPOffset(stack_off, I64X2XN),
into_reg,
I64X2XN,
)
}
/// Load from a spillslot.
pub fn load_spillslot(
&self,
slot: SpillSlot,
ty: Type,
into_regs: ValueRegs<Writable<Reg>>,
) -> SmallInstVec<M::I> {
// Offset from beginning of spillslot area, which is at nominal SP + stackslots_size.
let islot = slot.index() as i64;
let spill_off = islot * M::word_bytes() as i64;
let sp_off = self.stackslots_size as i64 + spill_off;
trace!("load_spillslot: slot {:?} -> sp_off {}", slot, sp_off);
gen_load_stack_multi::<M>(StackAMode::NominalSPOffset(sp_off, ty), into_regs, ty)
}
/// Store to a spillslot.
pub fn store_spillslot(
&self,
slot: SpillSlot,
ty: Type,
from_regs: ValueRegs<Reg>,
) -> SmallInstVec<M::I> {
// Offset from beginning of spillslot area, which is at nominal SP + stackslots_size.
let islot = slot.index() as i64;
let spill_off = islot * M::word_bytes() as i64;
let sp_off = self.stackslots_size as i64 + spill_off;
trace!("store_spillslot: slot {:?} -> sp_off {}", slot, sp_off);
gen_store_stack_multi::<M>(StackAMode::NominalSPOffset(sp_off, ty), from_regs, ty)
}
/// Get an `args` pseudo-inst, if any, that should appear at the
/// very top of the function body prior to regalloc.
pub fn take_args(&mut self) -> Option<M::I> {
if self.reg_args.len() > 0 {
// Very first instruction is an `args` pseudo-inst that
// establishes live-ranges for in-register arguments and
// constrains them at the start of the function to the
// locations defined by the ABI.
Some(M::gen_args(
&self.isa_flags,
std::mem::take(&mut self.reg_args),
))
} else {
None
}
}
}
/// ### Post-Regalloc Functions
///
/// These methods of `Callee` may only be called after
/// regalloc.
impl<M: ABIMachineSpec> Callee<M> {
/// Update with the number of spillslots, post-regalloc.
pub fn set_num_spillslots(&mut self, slots: usize) {
self.spillslots = Some(slots);
}
/// Update with the clobbered registers, post-regalloc.
pub fn set_clobbered(&mut self, clobbered: Vec<Writable<RealReg>>) {
self.clobbered = clobbered;
}
/// Generate a stack map, given a list of spillslots and the emission state
/// at a given program point (prior to emission of the safepointing
/// instruction).
pub fn spillslots_to_stack_map(
&self,
slots: &[SpillSlot],
state: &<M::I as MachInstEmit>::State,
) -> StackMap {
let virtual_sp_offset = M::get_virtual_sp_offset_from_state(state);
let nominal_sp_to_fp = M::get_nominal_sp_to_fp(state);
assert!(virtual_sp_offset >= 0);
trace!(
"spillslots_to_stackmap: slots = {:?}, state = {:?}",
slots,
state
);
let map_size = (virtual_sp_offset + nominal_sp_to_fp) as u32;
let bytes = M::word_bytes();
let map_words = (map_size + bytes - 1) / bytes;
let mut bits = std::iter::repeat(false)
.take(map_words as usize)
.collect::<Vec<bool>>();
let first_spillslot_word =
((self.stackslots_size + virtual_sp_offset as u32) / bytes) as usize;
for &slot in slots {
let slot = slot.index();
bits[first_spillslot_word + slot] = true;
}
StackMap::from_slice(&bits[..])
}
/// Generate a prologue, post-regalloc.
///
/// This should include any stack frame or other setup necessary to use the
/// other methods (`load_arg`, `store_retval`, and spillslot accesses.)
/// `self` is mutable so that we can store information in it which will be
/// useful when creating the epilogue.
pub fn gen_prologue(&mut self, sigs: &SigSet) -> SmallInstVec<M::I> {
let bytes = M::word_bytes();
let total_stacksize = self.stackslots_size + bytes * self.spillslots.unwrap() as u32;
let mask = M::stack_align(self.call_conv) - 1;
let total_stacksize = (total_stacksize + mask) & !mask; // 16-align the stack.
let clobbered_callee_saves = M::get_clobbered_callee_saves(
self.call_conv,
&self.flags,
self.signature(),
&self.clobbered,
);
let mut insts = smallvec![];
self.fixed_frame_storage_size += total_stacksize;
self.setup_frame = self.flags.preserve_frame_pointers()
|| M::is_frame_setup_needed(
self.is_leaf,
self.stack_args_size(sigs),
clobbered_callee_saves.len(),
self.fixed_frame_storage_size,
);
insts.extend(
M::gen_prologue_start(
self.setup_frame,
self.call_conv,
&self.flags,
&self.isa_flags,
)
.into_iter(),
);
if self.setup_frame {
// set up frame
insts.extend(M::gen_prologue_frame_setup(&self.flags).into_iter());
}
// Leaf functions with zero stack don't need a stack check if one's
// specified, otherwise always insert the stack check.
if total_stacksize > 0 || !self.is_leaf {
if let Some((reg, stack_limit_load)) = &self.stack_limit {
insts.extend(stack_limit_load.clone());
self.insert_stack_check(*reg, total_stacksize, &mut insts);
}
let needs_probestack = self
.probestack_min_frame
.map_or(false, |min_frame| total_stacksize >= min_frame);
if needs_probestack {
insts.extend(
if self.flags.probestack_strategy() == ProbestackStrategy::Inline {
let guard_size = 1 << self.flags.probestack_size_log2();
M::gen_inline_probestack(total_stacksize, guard_size)
} else {
M::gen_probestack(total_stacksize)
},
);
}
}
// Save clobbered registers.
let (clobber_size, clobber_insts) = M::gen_clobber_save(
self.call_conv,
self.setup_frame,
&self.flags,
&clobbered_callee_saves,
self.fixed_frame_storage_size,
self.outgoing_args_size,
);
insts.extend(clobber_insts);
// N.B.: "nominal SP", which we use to refer to stackslots and
// spillslots, is defined to be equal to the stack pointer at this point
// in the prologue.
//
// If we push any further data onto the stack in the function
// body, we emit a virtual-SP adjustment meta-instruction so
// that the nominal SP references behave as if SP were still
// at this point. See documentation for
// [crate::machinst::abi](this module) for more details
// on stackframe layout and nominal SP maintenance.
self.total_frame_size = Some(total_stacksize + clobber_size as u32);
insts
}
/// Generate an epilogue, post-regalloc.
///
/// Note that this must generate the actual return instruction (rather than
/// emitting this in the lowering logic), because the epilogue code comes
/// before the return and the two are likely closely related.
pub fn gen_epilogue(&self) -> SmallInstVec<M::I> {
let mut insts = smallvec![];
// Restore clobbered registers.
insts.extend(M::gen_clobber_restore(
self.call_conv,
self.signature(),
&self.flags,
&self.clobbered,
self.fixed_frame_storage_size,
self.outgoing_args_size,
));
// N.B.: we do *not* emit a nominal SP adjustment here, because (i) there will be no
// references to nominal SP offsets before the return below, and (ii) the instruction
// emission tracks running SP offset linearly (in straight-line order), not according to
// the CFG, so early returns in the middle of function bodies would cause an incorrect
// offset for the rest of the body.
if self.setup_frame {
insts.extend(M::gen_epilogue_frame_restore(&self.flags));
}
// This `ret` doesn't need any return registers attached
// because we are post-regalloc and don't need to
// represent the implicit uses anymore.
insts.push(M::gen_ret(self.setup_frame, &self.isa_flags, vec![]));
trace!("Epilogue: {:?}", insts);
insts
}
/// Returns the full frame size for the given function, after prologue
/// emission has run. This comprises the spill slots and stack-storage slots
/// (but not storage for clobbered callee-save registers, arguments pushed
/// at callsites within this function, or other ephemeral pushes).
pub fn frame_size(&self) -> u32 {
self.total_frame_size
.expect("frame size not computed before prologue generation")
}
/// Returns the size of arguments expected on the stack.
pub fn stack_args_size(&self, sigs: &SigSet) -> u32 {
sigs[self.sig].sized_stack_arg_space as u32
}
/// Get the spill-slot size.
pub fn get_spillslot_size(&self, rc: RegClass) -> u32 {
let max = if self.dynamic_type_sizes.len() == 0 {
16
} else {
*self
.dynamic_type_sizes
.iter()
.max_by(|x, y| x.1.cmp(&y.1))
.map(|(_k, v)| v)
.unwrap()
};
M::get_number_of_spillslots_for_value(rc, max)
}
/// Generate a spill.
pub fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg) -> M::I {
let ty = M::I::canonical_type_for_rc(Reg::from(from_reg).class());
self.store_spillslot(to_slot, ty, ValueRegs::one(Reg::from(from_reg)))
.into_iter()
.next()
.unwrap()
}
/// Generate a reload (fill).
pub fn gen_reload(&self, to_reg: Writable<RealReg>, from_slot: SpillSlot) -> M::I {
let ty = M::I::canonical_type_for_rc(to_reg.to_reg().class());
self.load_spillslot(
from_slot,
ty,
writable_value_regs(ValueRegs::one(Reg::from(to_reg.to_reg()))),
)
.into_iter()
.next()
.unwrap()
}
}
/// An input argument to a call instruction: the vreg that is used,
/// and the preg it is constrained to (per the ABI).
#[derive(Clone, Debug)]
pub struct CallArgPair {
/// The virtual register to use for the argument.
pub vreg: Reg,
/// The real register into which the arg goes.
pub preg: Reg,
}
/// An output return value from a call instruction: the vreg that is
/// defined, and the preg it is constrained to (per the ABI).
#[derive(Clone, Debug)]
pub struct CallRetPair {
/// The virtual register to define from this return value.
pub vreg: Writable<Reg>,
/// The real register from which the return value is read.
pub preg: Reg,
}
pub type CallArgList = SmallVec<[CallArgPair; 8]>;
pub type CallRetList = SmallVec<[CallRetPair; 8]>;
/// ABI object for a callsite.
pub struct Caller<M: ABIMachineSpec> {
/// The called function's signature.
sig: Sig,
/// All register uses for the callsite, i.e., function args, with
/// VReg and the physical register it is constrained to.
uses: CallArgList,
/// All defs for the callsite, i.e., return values.
defs: CallRetList,
/// Caller-save clobbers.
clobbers: PRegSet,
/// Call destination.
dest: CallDest,
/// Actual call opcode; used to distinguish various types of calls.
opcode: ir::Opcode,
/// Caller's calling convention.
caller_conv: isa::CallConv,
/// The settings controlling this compilation.
flags: settings::Flags,
_mach: PhantomData<M>,
}
/// Destination for a call.
#[derive(Debug, Clone)]
pub enum CallDest {
/// Call to an ExtName (named function symbol).
ExtName(ir::ExternalName, RelocDistance),
/// Indirect call to a function pointer in a register.
Reg(Reg),
}
impl<M: ABIMachineSpec> Caller<M> {
/// Create a callsite ABI object for a call directly to the specified function.
pub fn from_func(
sigs: &SigSet,
sig_ref: ir::SigRef,
extname: &ir::ExternalName,
dist: RelocDistance,
caller_conv: isa::CallConv,
flags: settings::Flags,
) -> CodegenResult<Caller<M>> {
let sig = sigs.abi_sig_for_sig_ref(sig_ref);
let clobbers = sigs[sig].call_clobbers::<M>();
Ok(Caller {
sig,
uses: smallvec![],
defs: smallvec![],
clobbers,
dest: CallDest::ExtName(extname.clone(), dist),
opcode: ir::Opcode::Call,
caller_conv,
flags,
_mach: PhantomData,
})
}
/// Create a callsite ABI object for a call directly to the specified
/// libcall.
pub fn from_libcall(
sigs: &SigSet,
sig: &ir::Signature,
extname: &ir::ExternalName,
dist: RelocDistance,
caller_conv: isa::CallConv,
flags: settings::Flags,
) -> CodegenResult<Caller<M>> {
let sig = sigs.abi_sig_for_signature(sig);
let clobbers = sigs[sig].call_clobbers::<M>();
Ok(Caller {
sig,
uses: smallvec![],
defs: smallvec![],
clobbers,
dest: CallDest::ExtName(extname.clone(), dist),
opcode: ir::Opcode::Call,
caller_conv,
flags,
_mach: PhantomData,
})
}
/// Create a callsite ABI object for a call to a function pointer with the
/// given signature.
pub fn from_ptr(
sigs: &SigSet,
sig_ref: ir::SigRef,
ptr: Reg,
opcode: ir::Opcode,
caller_conv: isa::CallConv,
flags: settings::Flags,
) -> CodegenResult<Caller<M>> {
let sig = sigs.abi_sig_for_sig_ref(sig_ref);
let clobbers = sigs[sig].call_clobbers::<M>();
Ok(Caller {
sig,
uses: smallvec![],
defs: smallvec![],
clobbers,
dest: CallDest::Reg(ptr),
opcode,
caller_conv,
flags,
_mach: PhantomData,
})
}
}
fn adjust_stack_and_nominal_sp<M: ABIMachineSpec>(ctx: &mut Lower<M::I>, off: i32, is_sub: bool) {
if off == 0 {
return;
}
let amt = if is_sub { -off } else { off };
for inst in M::gen_sp_reg_adjust(amt) {
ctx.emit(inst);
}
ctx.emit(M::gen_nominal_sp_adj(-amt));
}
impl<M: ABIMachineSpec> Caller<M> {
/// Get the number of arguments expected.
pub fn num_args(&self, sigs: &SigSet) -> usize {
let data = &sigs[self.sig];
if data.stack_ret_arg.is_some() {
data.args.len() - 1
} else {
data.args.len()
}
}
/// Emit code to pre-adjust the stack, prior to argument copies and call.
pub fn emit_stack_pre_adjust(&self, ctx: &mut Lower<M::I>) {
let off =
ctx.sigs()[self.sig].sized_stack_arg_space + ctx.sigs()[self.sig].sized_stack_ret_space;
adjust_stack_and_nominal_sp::<M>(ctx, off as i32, /* is_sub = */ true)
}
/// Emit code to post-adjust the satck, after call return and return-value copies.
pub fn emit_stack_post_adjust(&self, ctx: &mut Lower<M::I>) {
let off =
ctx.sigs()[self.sig].sized_stack_arg_space + ctx.sigs()[self.sig].sized_stack_ret_space;
adjust_stack_and_nominal_sp::<M>(ctx, off as i32, /* is_sub = */ false)
}
/// Emit a copy of a large argument into its associated stack buffer, if any.
/// We must be careful to perform all these copies (as necessary) before setting
/// up the argument registers, since we may have to invoke memcpy(), which could
/// clobber any registers already set up. The back-end should call this routine
/// for all arguments before calling emit_copy_regs_to_arg for all arguments.
pub fn emit_copy_regs_to_buffer(
&self,
ctx: &mut Lower<M::I>,
idx: usize,
from_regs: ValueRegs<Reg>,
) {
match &ctx.sigs()[self.sig].args[idx] {
&ABIArg::Slots { .. } => {}
&ABIArg::StructArg { offset, size, .. } => {
let src_ptr = from_regs.only_reg().unwrap();
let dst_ptr = ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
ctx.emit(M::gen_get_stack_addr(
StackAMode::SPOffset(offset, I8),
dst_ptr,
I8,
));
// Emit a memcpy from `src_ptr` to `dst_ptr` of `size` bytes.
// N.B.: because we process StructArg params *first*, this is
// safe w.r.t. clobbers: we have not yet filled in any other
// arg regs.
let memcpy_call_conv =
isa::CallConv::for_libcall(&self.flags, ctx.sigs()[self.sig].call_conv);
let tmp1 = ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
let tmp2 = ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
for insn in M::gen_memcpy(
memcpy_call_conv,
dst_ptr.to_reg(),
src_ptr,
tmp1,
tmp2,
size as usize,
)
.into_iter()
{
ctx.emit(insn);
}
}
&ABIArg::ImplicitPtrArg { .. } => unimplemented!(), // Only supported via ISLE.
}
}
/// Add a constraint for an argument value from a source register.
/// For large arguments with associated stack buffer, this may
/// load the address of the buffer into the argument register, if
/// required by the ABI.
pub fn gen_arg(
&mut self,
ctx: &mut Lower<M::I>,
idx: usize,
from_regs: ValueRegs<Reg>,
) -> SmallInstVec<M::I> {
let mut insts = smallvec![];
let word_rc = M::word_reg_class();
let word_bits = M::word_bits() as usize;
// How many temps do we need for extends? Allocate them ahead
// of time, since we can't do it while we're iterating over
// the sig and immutably borrowing `ctx`.
let needed_tmps = match &ctx.sigs()[self.sig].args[idx] {
&ABIArg::Slots { ref slots, .. } => slots
.iter()
.map(|slot| match slot {
&ABIArgSlot::Reg { extension, .. }
if extension != ir::ArgumentExtension::None =>
{
1
}
&ABIArgSlot::Reg { ty, .. } if ty.is_ref() => 1,
&ABIArgSlot::Reg { .. } => 0,
&ABIArgSlot::Stack { extension, .. }
if extension != ir::ArgumentExtension::None =>
{
1
}
&ABIArgSlot::Stack { .. } => 0,
})
.sum(),
_ => 0,
};
let mut temps: SmallVec<[Writable<Reg>; 16]> = (0..needed_tmps)
.map(|_| ctx.alloc_tmp(M::word_type()).only_reg().unwrap())
.collect();
match &ctx.sigs()[self.sig].args[idx] {
&ABIArg::Slots { ref slots, .. } => {
assert_eq!(from_regs.len(), slots.len());
for (slot, from_reg) in slots.iter().zip(from_regs.regs().iter()) {
match slot {
&ABIArgSlot::Reg {
reg, ty, extension, ..
} => {
let ext = M::get_ext_mode(ctx.sigs()[self.sig].call_conv, extension);
if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
assert_eq!(word_rc, reg.class());
let signed = match ext {
ir::ArgumentExtension::Uext => false,
ir::ArgumentExtension::Sext => true,
_ => unreachable!(),
};
let extend_result =
temps.pop().expect("Must have allocated enough temps");
insts.push(M::gen_extend(
extend_result,
*from_reg,
signed,
ty_bits(ty) as u8,
word_bits as u8,
));
self.uses.push(CallArgPair {
vreg: extend_result.to_reg(),
preg: reg.into(),
});
} else if ty.is_ref() {
// Reference-typed args need to be
// passed as a copy; the original vreg
// is constrained to the stack and
// this copy is in a reg.
let ref_copy =
temps.pop().expect("Must have allocated enough temps");
insts.push(M::gen_move(ref_copy, *from_reg, M::word_type()));
self.uses.push(CallArgPair {
vreg: ref_copy.to_reg(),
preg: reg.into(),
});
} else {
self.uses.push(CallArgPair {
vreg: *from_reg,
preg: reg.into(),
});
}
}
&ABIArgSlot::Stack {
offset,
ty,
extension,
..
} => {
let ext = M::get_ext_mode(ctx.sigs()[self.sig].call_conv, extension);
let (data, ty) =
if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
assert_eq!(word_rc, from_reg.class());
let signed = match ext {
ir::ArgumentExtension::Uext => false,
ir::ArgumentExtension::Sext => true,
_ => unreachable!(),
};
let extend_result =
temps.pop().expect("Must have allocated enough temps");
insts.push(M::gen_extend(
extend_result,
*from_reg,
signed,
ty_bits(ty) as u8,
word_bits as u8,
));
// Store the extended version.
(extend_result.to_reg(), M::word_type())
} else {
(*from_reg, ty)
};
insts.push(M::gen_store_stack(
StackAMode::SPOffset(offset, ty),
data,
ty,
));
}
}
}
}
&ABIArg::StructArg { pointer, .. } => {
assert!(pointer.is_none()); // Only supported via ISLE.
}
&ABIArg::ImplicitPtrArg { .. } => unimplemented!(), // Only supported via ISLE.
}
insts
}
/// Define a return value after the call returns.
pub fn gen_retval(
&mut self,
ctx: &Lower<M::I>,
idx: usize,
into_regs: ValueRegs<Writable<Reg>>,
) -> SmallInstVec<M::I> {
let mut insts = smallvec![];
match &ctx.sigs()[self.sig].rets[idx] {
&ABIArg::Slots { ref slots, .. } => {
assert_eq!(into_regs.len(), slots.len());
for (slot, into_reg) in slots.iter().zip(into_regs.regs().iter()) {
match slot {
// Extension mode doesn't matter because we're copying out, not in,
// and we ignore high bits in our own registers by convention.
&ABIArgSlot::Reg { reg, .. } => {
self.defs.push(CallRetPair {
vreg: *into_reg,
preg: reg.into(),
});
}
&ABIArgSlot::Stack { offset, ty, .. } => {
let ret_area_base = ctx.sigs()[self.sig].sized_stack_arg_space;
insts.push(M::gen_load_stack(
StackAMode::SPOffset(offset + ret_area_base, ty),
*into_reg,
ty,
));
}
}
}
}
&ABIArg::StructArg { .. } => {
panic!("StructArg not supported in return position");
}
&ABIArg::ImplicitPtrArg { .. } => {
panic!("ImplicitPtrArg not supported in return position");
}
}
insts
}
/// Emit the call itself.
///
/// The returned instruction should have proper use- and def-sets according
/// to the argument registers, return-value registers, and clobbered
/// registers for this function signature in this ABI.
///
/// (Arg registers are uses, and retval registers are defs. Clobbered
/// registers are also logically defs, but should never be read; their
/// values are "defined" (to the regalloc) but "undefined" in every other
/// sense.)
///
/// This function should only be called once, as it is allowed to re-use
/// parts of the `Caller` object in emitting instructions.
pub fn emit_call(&mut self, ctx: &mut Lower<M::I>) {
let word_type = M::word_type();
if let Some(i) = ctx.sigs()[self.sig].stack_ret_arg {
let rd = ctx.alloc_tmp(word_type).only_reg().unwrap();
let ret_area_base = ctx.sigs()[self.sig].sized_stack_arg_space;
ctx.emit(M::gen_get_stack_addr(
StackAMode::SPOffset(ret_area_base, I8),
rd,
I8,
));
for inst in self.gen_arg(ctx, i, ValueRegs::one(rd.to_reg())) {
ctx.emit(inst);
}
}
let (uses, defs) = (
mem::replace(&mut self.uses, Default::default()),
mem::replace(&mut self.defs, Default::default()),
);
let tmp = ctx.alloc_tmp(word_type).only_reg().unwrap();
for inst in M::gen_call(
&self.dest,
uses,
defs,
self.clobbers,
self.opcode,
tmp,
ctx.sigs()[self.sig].call_conv,
self.caller_conv,
)
.into_iter()
{
ctx.emit(inst);
}
}
}