Files
wasmtime/cranelift/interpreter/src/interpreter.rs
Andrew Brown 87b1a85cc6 Fix confusion caused by overloading of FuncRef
Prior to this change, the interpreter would use an incorrect `FuncRef` for accessing functions from the function store. This is now clarified and fixed by a new type--`FuncIndex`.
2020-11-30 17:28:30 -08:00

337 lines
12 KiB
Rust

//! Cranelift IR interpreter.
//!
//! This module partially contains the logic for interpreting Cranelift IR.
use crate::environment::{FuncIndex, FunctionStore};
use crate::frame::Frame;
use crate::instruction::DfgInstructionContext;
use crate::state::{MemoryError, State};
use crate::step::{step, ControlFlow, StepError};
use crate::value::ValueError;
use cranelift_codegen::data_value::DataValue;
use cranelift_codegen::ir::condcodes::{FloatCC, IntCC};
use cranelift_codegen::ir::{Block, FuncRef, Function, Type, Value as ValueRef};
use log::trace;
use std::collections::HashSet;
use std::fmt::Debug;
use thiserror::Error;
/// The Cranelift interpreter; this contains some high-level functions to control the interpreter's
/// flow. The interpreter state is defined separately (see [InterpreterState]) as the execution
/// semantics for each Cranelift instruction (see [step]).
pub struct Interpreter<'a> {
state: InterpreterState<'a>,
}
impl<'a> Interpreter<'a> {
pub fn new(state: InterpreterState<'a>) -> Self {
Self { state }
}
/// Call a function by name; this is a helpful proxy for [Interpreter::call_by_index].
pub fn call_by_name(
&mut self,
func_name: &str,
arguments: &[DataValue],
) -> Result<ControlFlow<'a, DataValue>, InterpreterError> {
let index = self
.state
.functions
.index_of(func_name)
.ok_or_else(|| InterpreterError::UnknownFunctionName(func_name.to_string()))?;
self.call_by_index(index, arguments)
}
/// Call a function by its index in the [FunctionStore]; this is a proxy for [Interpreter::call].
pub fn call_by_index(
&mut self,
index: FuncIndex,
arguments: &[DataValue],
) -> Result<ControlFlow<'a, DataValue>, InterpreterError> {
match self.state.functions.get_by_index(index) {
None => Err(InterpreterError::UnknownFunctionIndex(index)),
Some(func) => self.call(func, arguments),
}
}
/// Interpret a call to a [Function] given its [DataValue] arguments.
fn call(
&mut self,
function: &'a Function,
arguments: &[DataValue],
) -> Result<ControlFlow<'a, DataValue>, InterpreterError> {
trace!("Call: {}({:?})", function.name, arguments);
let first_block = function
.layout
.blocks()
.next()
.expect("to have a first block");
let parameters = function.dfg.block_params(first_block);
self.state.push_frame(function);
self.state
.current_frame_mut()
.set_all(parameters, arguments.to_vec());
self.block(first_block)
}
/// Interpret a [Block] in a [Function]. This drives the interpretation over sequences of
/// instructions, which may continue in other blocks, until the function returns.
fn block(&mut self, block: Block) -> Result<ControlFlow<'a, DataValue>, InterpreterError> {
trace!("Block: {}", block);
let function = self.state.current_frame_mut().function;
let layout = &function.layout;
let mut maybe_inst = layout.first_inst(block);
while let Some(inst) = maybe_inst {
let inst_context = DfgInstructionContext::new(inst, &function.dfg);
match step(&mut self.state, inst_context)? {
ControlFlow::Assign(values) => {
self.state
.current_frame_mut()
.set_all(function.dfg.inst_results(inst), values.to_vec());
maybe_inst = layout.next_inst(inst)
}
ControlFlow::Continue => maybe_inst = layout.next_inst(inst),
ControlFlow::ContinueAt(block, block_arguments) => {
trace!("Block: {}", block);
self.state
.current_frame_mut()
.set_all(function.dfg.block_params(block), block_arguments.to_vec());
maybe_inst = layout.first_inst(block)
}
ControlFlow::Call(called_function, arguments) => {
let returned_arguments =
self.call(called_function, &arguments)?.unwrap_return();
self.state
.current_frame_mut()
.set_all(function.dfg.inst_results(inst), returned_arguments);
maybe_inst = layout.next_inst(inst)
}
ControlFlow::Return(returned_values) => {
self.state.pop_frame();
return Ok(ControlFlow::Return(returned_values));
}
ControlFlow::Trap(trap) => return Ok(ControlFlow::Trap(trap)),
}
}
Err(InterpreterError::Unreachable)
}
}
/// The ways interpretation can fail.
#[derive(Error, Debug)]
pub enum InterpreterError {
#[error("failed to interpret instruction")]
StepError(#[from] StepError),
#[error("reached an unreachable statement")]
Unreachable,
#[error("unknown function index (has it been added to the function store?): {0}")]
UnknownFunctionIndex(FuncIndex),
#[error("unknown function with name (has it been added to the function store?): {0}")]
UnknownFunctionName(String),
#[error("value error")]
ValueError(#[from] ValueError),
}
/// Maintains the [Interpreter]'s state, implementing the [State] trait.
pub struct InterpreterState<'a> {
pub functions: FunctionStore<'a>,
pub frame_stack: Vec<Frame<'a>>,
pub heap: Vec<u8>,
pub iflags: HashSet<IntCC>,
pub fflags: HashSet<FloatCC>,
}
impl Default for InterpreterState<'_> {
fn default() -> Self {
Self {
functions: FunctionStore::default(),
frame_stack: vec![],
heap: vec![0; 1024],
iflags: HashSet::new(),
fflags: HashSet::new(),
}
}
}
impl<'a> InterpreterState<'a> {
pub fn with_function_store(self, functions: FunctionStore<'a>) -> Self {
Self { functions, ..self }
}
fn current_frame_mut(&mut self) -> &mut Frame<'a> {
let num_frames = self.frame_stack.len();
match num_frames {
0 => panic!("unable to retrieve the current frame because no frames were pushed"),
_ => &mut self.frame_stack[num_frames - 1],
}
}
fn current_frame(&self) -> &Frame<'a> {
let num_frames = self.frame_stack.len();
match num_frames {
0 => panic!("unable to retrieve the current frame because no frames were pushed"),
_ => &self.frame_stack[num_frames - 1],
}
}
}
impl<'a> State<'a, DataValue> for InterpreterState<'a> {
fn get_function(&self, func_ref: FuncRef) -> Option<&'a Function> {
self.functions
.get_from_func_ref(func_ref, self.frame_stack.last().unwrap().function)
}
fn push_frame(&mut self, function: &'a Function) {
self.frame_stack.push(Frame::new(function));
}
fn pop_frame(&mut self) {
self.frame_stack.pop();
}
fn get_value(&self, name: ValueRef) -> Option<DataValue> {
Some(self.current_frame().get(name).clone()) // TODO avoid clone?
}
fn set_value(&mut self, name: ValueRef, value: DataValue) -> Option<DataValue> {
self.current_frame_mut().set(name, value)
}
fn has_iflag(&self, flag: IntCC) -> bool {
self.iflags.contains(&flag)
}
fn has_fflag(&self, flag: FloatCC) -> bool {
self.fflags.contains(&flag)
}
fn set_iflag(&mut self, flag: IntCC) {
self.iflags.insert(flag);
}
fn set_fflag(&mut self, flag: FloatCC) {
self.fflags.insert(flag);
}
fn clear_flags(&mut self) {
self.iflags.clear();
self.fflags.clear()
}
fn load_heap(&self, offset: usize, ty: Type) -> Result<DataValue, MemoryError> {
if offset + 16 < self.heap.len() {
let pointer = self.heap[offset..offset + 16].as_ptr() as *const _ as *const u128;
Ok(unsafe { DataValue::read_value_from(pointer, ty) })
} else {
Err(MemoryError::InsufficientMemory(offset, self.heap.len()))
}
}
fn store_heap(&mut self, offset: usize, v: DataValue) -> Result<(), MemoryError> {
if offset + 16 < self.heap.len() {
let pointer = self.heap[offset..offset + 16].as_mut_ptr() as *mut _ as *mut u128;
Ok(unsafe { v.write_value_to(pointer) })
} else {
Err(MemoryError::InsufficientMemory(offset, self.heap.len()))
}
}
fn load_stack(&self, _offset: usize, _ty: Type) -> Result<DataValue, MemoryError> {
unimplemented!()
}
fn store_stack(&mut self, _offset: usize, _v: DataValue) -> Result<(), MemoryError> {
unimplemented!()
}
}
#[cfg(test)]
mod tests {
use super::*;
use cranelift_codegen::ir::immediates::Ieee32;
use cranelift_reader::parse_functions;
// Most interpreter tests should use the more ergonomic `test interpret` filetest but this
// unit test serves as a sanity check that the interpreter still works without all of the
// filetest infrastructure.
#[test]
fn sanity() {
let code = "function %test() -> b1 {
block0:
v0 = iconst.i32 1
v1 = iadd_imm v0, 1
v2 = irsub_imm v1, 44 ; 44 - 2 == 42 (see irsub_imm's semantics)
v3 = icmp_imm eq v2, 42
return v3
}";
let func = parse_functions(code).unwrap().into_iter().next().unwrap();
let mut env = FunctionStore::default();
env.add(func.name.to_string(), &func);
let state = InterpreterState::default().with_function_store(env);
let result = Interpreter::new(state)
.call_by_name("%test", &[])
.unwrap()
.unwrap_return();
assert_eq!(result, vec![DataValue::B(true)])
}
// This test verifies that functions can refer to each other using the function store. A double indirection is
// required, which is tricky to get right: a referenced function is a FuncRef when called but a FuncIndex inside the
// function store. This test would preferably be a CLIF filetest but the filetest infrastructure only looks at a
// single function at a time--we need more than one function in the store for this test.
#[test]
fn function_references() {
let code = "
function %child(i32) -> i32 {
block0(v0: i32):
v1 = iadd_imm v0, -1
return v1
}
function %parent(i32) -> i32 {
fn42 = %child(i32) -> i32
block0(v0: i32):
v1 = iadd_imm v0, 1
v2 = call fn42(v1)
return v2
}";
let mut env = FunctionStore::default();
let funcs = parse_functions(code).unwrap().to_vec();
funcs.iter().for_each(|f| env.add(f.name.to_string(), f));
let state = InterpreterState::default().with_function_store(env);
let result = Interpreter::new(state)
.call_by_name("%parent", &[DataValue::I32(0)])
.unwrap()
.unwrap_return();
assert_eq!(result, vec![DataValue::I32(0)])
}
#[test]
fn state_heap_roundtrip() -> Result<(), MemoryError> {
let mut state = InterpreterState::default();
let mut roundtrip = |dv: DataValue| {
state.store_heap(0, dv.clone())?;
assert_eq!(dv, state.load_heap(0, dv.ty())?);
Ok(())
};
roundtrip(DataValue::B(true))?;
roundtrip(DataValue::I64(42))?;
roundtrip(DataValue::F32(Ieee32::from(0.42)))
}
#[test]
fn state_flags() {
let mut state = InterpreterState::default();
let flag = IntCC::Overflow;
assert!(!state.has_iflag(flag));
state.set_iflag(flag);
assert!(state.has_iflag(flag));
state.clear_flags();
assert!(!state.has_iflag(flag));
}
}