Files
wasmtime/build.rs
Ulrich Weigand 9c5c872b3b s390x: Add support for all remaining atomic operations (#3746)
This adds support for all atomic operations that were unimplemented
so far in the s390x back end:
- atomic_rmw operations xchg, nand, smin, smax, umin, umax
- $I8 and $I16 versions of atomic_rmw and atomic_cas
- little endian versions of atomic_rmw and atomic_cas

All of these have to be implemented by a compare-and-swap loop;
and for the $I8 and $I16 versions the actual atomic instruction
needs to operate on the surrounding aligned 32-bit word.

Since we cannot emit new control flow during ISLE instruction
selection, these compare-and-swap loops are emitted as a single
meta-instruction to be expanded at emit time.

However, since there is a large number of different versions of
the loop required to implement all the above operations, I've
implemented a facility to allow specifying the loop bodies
from within ISLE after all, by creating a vector of MInst
structures that will be emitted as part of the meta-instruction.

There are still restrictions, in particular instructions that
are part of the loop body may not modify any virtual register.
But even so, this approach looks preferable to doing everything
in emit.rs.

A few instructions needed in those compare-and-swap loop bodies
were added as well, in particular the RxSBG family of instructions
as well as the LOAD REVERSED in-register byte-swap instructions.

This patch also adds filetest runtests to verify the semantics
of all operations, in particular the subword and little-endian
variants (those are currently only executed on s390x).
2022-02-08 13:48:44 -08:00

187 lines
5.6 KiB
Rust

//! Build program to generate a program which runs all the testsuites.
//!
//! By generating a separate `#[test]` test for each file, we allow cargo test
//! to automatically run the files in parallel.
use anyhow::Context;
use std::env;
use std::fmt::Write;
use std::fs;
use std::path::{Path, PathBuf};
use std::process::Command;
fn main() -> anyhow::Result<()> {
println!("cargo:rerun-if-changed=build.rs");
let out_dir = PathBuf::from(
env::var_os("OUT_DIR").expect("The OUT_DIR environment variable must be set"),
);
let mut out = String::new();
for strategy in &["Cranelift"] {
writeln!(out, "#[cfg(test)]")?;
writeln!(out, "#[allow(non_snake_case)]")?;
writeln!(out, "mod {} {{", strategy)?;
with_test_module(&mut out, "misc", |out| {
test_directory(out, "tests/misc_testsuite", strategy)?;
test_directory_module(out, "tests/misc_testsuite/multi-memory", strategy)?;
test_directory_module(out, "tests/misc_testsuite/module-linking", strategy)?;
test_directory_module(out, "tests/misc_testsuite/simd", strategy)?;
test_directory_module(out, "tests/misc_testsuite/threads", strategy)?;
test_directory_module(out, "tests/misc_testsuite/memory64", strategy)?;
Ok(())
})?;
with_test_module(&mut out, "spec", |out| {
let spec_tests = test_directory(out, "tests/spec_testsuite", strategy)?;
// Skip running spec_testsuite tests if the submodule isn't checked
// out.
if spec_tests > 0 {
test_directory_module(out, "tests/spec_testsuite/proposals/simd", strategy)?;
test_directory_module(out, "tests/spec_testsuite/proposals/memory64", strategy)?;
} else {
println!(
"cargo:warning=The spec testsuite is disabled. To enable, run `git submodule \
update --remote`."
);
}
Ok(())
})?;
writeln!(out, "}}")?;
}
// Write out our auto-generated tests and opportunistically format them with
// `rustfmt` if it's installed.
let output = out_dir.join("wast_testsuite_tests.rs");
fs::write(&output, out)?;
drop(Command::new("rustfmt").arg(&output).status());
Ok(())
}
fn test_directory_module(
out: &mut String,
path: impl AsRef<Path>,
strategy: &str,
) -> anyhow::Result<usize> {
let path = path.as_ref();
let testsuite = &extract_name(path);
with_test_module(out, testsuite, |out| test_directory(out, path, strategy))
}
fn test_directory(
out: &mut String,
path: impl AsRef<Path>,
strategy: &str,
) -> anyhow::Result<usize> {
let path = path.as_ref();
let mut dir_entries: Vec<_> = path
.read_dir()
.context(format!("failed to read {:?}", path))?
.map(|r| r.expect("reading testsuite directory entry"))
.filter_map(|dir_entry| {
let p = dir_entry.path();
let ext = p.extension()?;
// Only look at wast files.
if ext != "wast" {
return None;
}
// Ignore files starting with `.`, which could be editor temporary files
if p.file_stem()?.to_str()?.starts_with(".") {
return None;
}
Some(p)
})
.collect();
dir_entries.sort();
let testsuite = &extract_name(path);
for entry in dir_entries.iter() {
write_testsuite_tests(out, entry, testsuite, strategy, false)?;
write_testsuite_tests(out, entry, testsuite, strategy, true)?;
}
Ok(dir_entries.len())
}
/// Extract a valid Rust identifier from the stem of a path.
fn extract_name(path: impl AsRef<Path>) -> String {
path.as_ref()
.file_stem()
.expect("filename should have a stem")
.to_str()
.expect("filename should be representable as a string")
.replace("-", "_")
.replace("/", "_")
}
fn with_test_module<T>(
out: &mut String,
testsuite: &str,
f: impl FnOnce(&mut String) -> anyhow::Result<T>,
) -> anyhow::Result<T> {
out.push_str("mod ");
out.push_str(testsuite);
out.push_str(" {\n");
let result = f(out)?;
out.push_str("}\n");
Ok(result)
}
fn write_testsuite_tests(
out: &mut String,
path: impl AsRef<Path>,
testsuite: &str,
strategy: &str,
pooling: bool,
) -> anyhow::Result<()> {
let path = path.as_ref();
let testname = extract_name(path);
writeln!(out, "#[test]")?;
// Ignore when using QEMU for running tests (limited memory).
if ignore(testsuite, &testname, strategy) {
writeln!(out, "#[ignore]")?;
}
writeln!(
out,
"fn r#{}{}() {{",
&testname,
if pooling { "_pooling" } else { "" }
)?;
writeln!(out, " let _ = env_logger::try_init();")?;
writeln!(
out,
" crate::wast::run_wast(r#\"{}\"#, crate::wast::Strategy::{}, {}).unwrap();",
path.display(),
strategy,
pooling
)?;
writeln!(out, "}}")?;
writeln!(out)?;
Ok(())
}
/// Ignore tests that aren't supported yet.
fn ignore(testsuite: &str, testname: &str, strategy: &str) -> bool {
match strategy {
"Cranelift" => match (testsuite, testname) {
// No simd support yet for s390x.
("simd", _) if platform_is_s390x() => return true,
("memory64", "simd") if platform_is_s390x() => return true,
_ => {}
},
_ => panic!("unrecognized strategy"),
}
false
}
fn platform_is_s390x() -> bool {
env::var("CARGO_CFG_TARGET_ARCH").unwrap() == "s390x"
}