Files
wasmtime/crates/environ/src/module_environ.rs
Peter Huene a464465e2f Code review feedback changes.
* Add `anyhow` dependency to `wasmtime-runtime`.
* Revert `get_data` back to `fn`.
* Remove `DataInitializer` and box the data in `Module` translation instead.
* Improve comments on `MemoryInitialization`.
* Remove `MemoryInitialization::OutOfBounds` in favor of proper bulk memory
  semantics.
* Use segmented memory initialization except for when the uffd feature is
  enabled on Linux.
* Validate modules with the allocator after translation.
* Updated various functions in the runtime to return `anyhow::Result`.
* Use a slice when copying pages instead of `ptr::copy_nonoverlapping`.
* Remove unnecessary casts in `OnDemandAllocator::deallocate`.
* Better document the `uffd` feature.
* Use WebAssembly page-sized pages in the paged initialization.
* Remove the stack pool from the uffd handler and simply protect just the guard
  pages.
2021-03-04 18:19:46 -08:00

1079 lines
40 KiB
Rust

use crate::module::{
Initializer, InstanceSignature, MemoryInitialization, MemoryInitializer, MemoryPlan, Module,
ModuleSignature, ModuleType, ModuleUpvar, TableInitializer, TablePlan, TypeTables,
};
use crate::tunables::Tunables;
use cranelift_codegen::ir;
use cranelift_codegen::ir::{AbiParam, ArgumentPurpose};
use cranelift_codegen::isa::TargetFrontendConfig;
use cranelift_entity::PrimaryMap;
use cranelift_wasm::{
self, translate_module, Alias, DataIndex, DefinedFuncIndex, ElemIndex, EntityIndex, EntityType,
FuncIndex, Global, GlobalIndex, InstanceIndex, InstanceTypeIndex, Memory, MemoryIndex,
ModuleIndex, ModuleTypeIndex, SignatureIndex, Table, TableIndex, TargetEnvironment, TypeIndex,
WasmError, WasmFuncType, WasmResult,
};
use std::collections::{hash_map::Entry, HashMap};
use std::convert::TryFrom;
use std::mem;
use std::path::PathBuf;
use std::sync::Arc;
use wasmparser::Type as WasmType;
use wasmparser::{FuncValidator, FunctionBody, ValidatorResources, WasmFeatures};
/// Object containing the standalone environment information.
pub struct ModuleEnvironment<'data> {
/// The current module being translated
result: ModuleTranslation<'data>,
/// Modules which have finished translation. This only really applies for
/// the module linking proposal.
results: Vec<ModuleTranslation<'data>>,
/// Modules which are in-progress being translated, or otherwise also known
/// as the outer modules of the current module being processed.
in_progress: Vec<ModuleTranslation<'data>>,
/// How many modules that have not yet made their way into `results` which
/// are coming at some point.
modules_to_be: usize,
/// Intern'd types for this entire translation, shared by all modules.
types: TypeTables,
// Various bits and pieces of configuration
features: WasmFeatures,
target_config: TargetFrontendConfig,
tunables: Tunables,
first_module: bool,
}
/// The result of translating via `ModuleEnvironment`. Function bodies are not
/// yet translated, and data initializers have not yet been copied out of the
/// original buffer.
#[derive(Default)]
pub struct ModuleTranslation<'data> {
/// Module information.
pub module: Module,
/// References to the function bodies.
pub function_body_inputs: PrimaryMap<DefinedFuncIndex, FunctionBodyData<'data>>,
/// DWARF debug information, if enabled, parsed from the module.
pub debuginfo: DebugInfoData<'data>,
/// Set if debuginfo was found but it was not parsed due to `Tunables`
/// configuration.
pub has_unparsed_debuginfo: bool,
/// When we're parsing the code section this will be incremented so we know
/// which function is currently being defined.
code_index: u32,
implicit_instances: HashMap<&'data str, InstanceIndex>,
/// The artifacts which are needed from the parent module when this module
/// is created. This is used to insert into `Initializer::CreateModule` when
/// this module is defined in the parent.
creation_artifacts: Vec<usize>,
/// Same as `creation_artifacts`, but for modules instead of artifacts.
creation_modules: Vec<ModuleUpvar>,
}
/// Contains function data: byte code and its offset in the module.
pub struct FunctionBodyData<'a> {
/// The body of the function, containing code and locals.
pub body: FunctionBody<'a>,
/// Validator for the function body
pub validator: FuncValidator<ValidatorResources>,
}
#[derive(Debug, Default)]
#[allow(missing_docs)]
pub struct DebugInfoData<'a> {
pub dwarf: Dwarf<'a>,
pub name_section: NameSection<'a>,
pub wasm_file: WasmFileInfo,
debug_loc: gimli::DebugLoc<Reader<'a>>,
debug_loclists: gimli::DebugLocLists<Reader<'a>>,
pub debug_ranges: gimli::DebugRanges<Reader<'a>>,
pub debug_rnglists: gimli::DebugRngLists<Reader<'a>>,
}
#[allow(missing_docs)]
pub type Dwarf<'input> = gimli::Dwarf<Reader<'input>>;
type Reader<'input> = gimli::EndianSlice<'input, gimli::LittleEndian>;
#[derive(Debug, Default)]
#[allow(missing_docs)]
pub struct NameSection<'a> {
pub module_name: Option<&'a str>,
pub func_names: HashMap<u32, &'a str>,
pub locals_names: HashMap<u32, HashMap<u32, &'a str>>,
}
#[derive(Debug, Default)]
#[allow(missing_docs)]
pub struct WasmFileInfo {
pub path: Option<PathBuf>,
pub code_section_offset: u64,
pub imported_func_count: u32,
pub funcs: Vec<FunctionMetadata>,
}
#[derive(Debug)]
#[allow(missing_docs)]
pub struct FunctionMetadata {
pub params: Box<[WasmType]>,
pub locals: Box<[(u32, WasmType)]>,
}
impl<'data> ModuleEnvironment<'data> {
/// Allocates the environment data structures.
pub fn new(
target_config: TargetFrontendConfig,
tunables: &Tunables,
features: &WasmFeatures,
) -> Self {
Self {
result: ModuleTranslation::default(),
results: Vec::with_capacity(1),
in_progress: Vec::new(),
modules_to_be: 1,
types: Default::default(),
target_config,
tunables: tunables.clone(),
features: *features,
first_module: true,
}
}
fn pointer_type(&self) -> ir::Type {
self.target_config.pointer_type()
}
/// Translate a wasm module using this environment.
///
/// This consumes the `ModuleEnvironment` and produces a list of
/// `ModuleTranslation`s as well as a `TypeTables`. The list of module
/// translations corresponds to all wasm modules found in the input `data`.
/// Note that for MVP modules this will always be a list with one element,
/// but with the module linking proposal this may have many elements.
///
/// For the module linking proposal the top-level module is returned as the
/// first return value.
///
/// The `TypeTables` structure returned contains intern'd versions of types
/// referenced from each module translation. This primarily serves as the
/// source of truth for module-linking use cases where modules can refer to
/// other module's types. All `SignatureIndex`, `ModuleTypeIndex`, and
/// `InstanceTypeIndex` values are resolved through the returned tables.
pub fn translate(
mut self,
data: &'data [u8],
) -> WasmResult<(usize, Vec<ModuleTranslation<'data>>, TypeTables)> {
translate_module(data, &mut self)?;
assert!(self.results.len() > 0);
Ok((self.results.len() - 1, self.results, self.types))
}
fn declare_export(&mut self, export: EntityIndex, name: &str) -> WasmResult<()> {
self.result
.module
.exports
.insert(String::from(name), export);
Ok(())
}
fn register_dwarf_section(&mut self, name: &str, data: &'data [u8]) {
if !self.tunables.generate_native_debuginfo && !self.tunables.parse_wasm_debuginfo {
self.result.has_unparsed_debuginfo = true;
return;
}
if !name.starts_with(".debug_") {
return;
}
let info = &mut self.result.debuginfo;
let dwarf = &mut info.dwarf;
let endian = gimli::LittleEndian;
let slice = gimli::EndianSlice::new(data, endian);
match name {
".debug_str" => dwarf.debug_str = gimli::DebugStr::new(data, endian),
".debug_abbrev" => dwarf.debug_abbrev = gimli::DebugAbbrev::new(data, endian),
".debug_info" => dwarf.debug_info = gimli::DebugInfo::new(data, endian),
".debug_line" => dwarf.debug_line = gimli::DebugLine::new(data, endian),
".debug_addr" => dwarf.debug_addr = gimli::DebugAddr::from(slice),
".debug_line_str" => dwarf.debug_line_str = gimli::DebugLineStr::from(slice),
".debug_str_sup" => dwarf.debug_str_sup = gimli::DebugStr::from(slice),
".debug_ranges" => info.debug_ranges = gimli::DebugRanges::new(data, endian),
".debug_rnglists" => info.debug_rnglists = gimli::DebugRngLists::new(data, endian),
".debug_loc" => info.debug_loc = gimli::DebugLoc::from(slice),
".debug_loclists" => info.debug_loclists = gimli::DebugLocLists::from(slice),
".debug_str_offsets" => dwarf.debug_str_offsets = gimli::DebugStrOffsets::from(slice),
".debug_types" => dwarf.debug_types = gimli::DebugTypes::from(slice),
other => {
log::warn!("unknown debug section `{}`", other);
return;
}
}
dwarf.ranges = gimli::RangeLists::new(info.debug_ranges, info.debug_rnglists);
dwarf.locations = gimli::LocationLists::new(info.debug_loc, info.debug_loclists);
}
/// Declares a new import with the `module` and `field` names, importing the
/// `ty` specified.
///
/// Note that this method is somewhat tricky due to the implementation of
/// the module linking proposal. In the module linking proposal two-level
/// imports are recast as single-level imports of instances. That recasting
/// happens here by recording an import of an instance for the first time
/// we see a two-level import.
///
/// When the module linking proposal is disabled, however, disregard this
/// logic and instead work directly with two-level imports since no
/// instances are defined.
fn declare_import(&mut self, module: &'data str, field: Option<&'data str>, ty: EntityType) {
if !self.features.module_linking {
assert!(field.is_some());
let index = self.push_type(ty);
self.result.module.initializers.push(Initializer::Import {
name: module.to_owned(),
field: field.map(|s| s.to_string()),
index,
});
return;
}
match field {
Some(field) => {
// If this is a two-level import then this is actually an
// implicit import of an instance, where each two-level import
// is an alias directive from the original instance. The first
// thing we do here is lookup our implicit instance, creating a
// blank one if it wasn't already created.
let instance = match self.result.implicit_instances.entry(module) {
Entry::Occupied(e) => *e.get(),
Entry::Vacant(v) => {
let ty = self
.types
.instance_signatures
.push(InstanceSignature::default());
let idx = self.result.module.instances.push(ty);
self.result.module.initializers.push(Initializer::Import {
name: module.to_owned(),
field: None,
index: EntityIndex::Instance(idx),
});
*v.insert(idx)
}
};
// Update the implicit instance's type signature with this new
// field and its type.
self.types.instance_signatures[self.result.module.instances[instance]]
.exports
.insert(field.to_string(), ty.clone());
// Record our implicit alias annotation which corresponds to
// this import that we're processing.
self.result
.module
.initializers
.push(Initializer::AliasInstanceExport {
instance,
export: field.to_string(),
});
// And then record the type information for the item that we're
// processing.
self.push_type(ty);
}
None => {
// Without a field then this is a single-level import (a feature
// of module linking) which means we're simply importing that
// name with the specified type. Record the type information and
// then the name that we're importing.
let index = self.push_type(ty);
self.result.module.initializers.push(Initializer::Import {
name: module.to_owned(),
field: None,
index,
});
}
}
}
fn push_type(&mut self, ty: EntityType) -> EntityIndex {
match ty {
EntityType::Function(ty) => {
EntityIndex::Function(self.result.module.functions.push(ty))
}
EntityType::Table(ty) => {
let plan = TablePlan::for_table(ty, &self.tunables);
EntityIndex::Table(self.result.module.table_plans.push(plan))
}
EntityType::Memory(ty) => {
let plan = MemoryPlan::for_memory(ty, &self.tunables);
EntityIndex::Memory(self.result.module.memory_plans.push(plan))
}
EntityType::Global(ty) => EntityIndex::Global(self.result.module.globals.push(ty)),
EntityType::Instance(ty) => {
EntityIndex::Instance(self.result.module.instances.push(ty))
}
EntityType::Module(ty) => EntityIndex::Module(self.result.module.modules.push(ty)),
EntityType::Event(_) => unimplemented!(),
}
}
fn gen_type_of_module(&mut self, module: &Module) -> ModuleTypeIndex {
let imports = module
.imports()
.map(|(s, field, ty)| {
assert!(field.is_none());
(s.to_string(), ty)
})
.collect();
let exports = module
.exports
.iter()
.map(|(name, idx)| (name.clone(), module.type_of(*idx)))
.collect();
// FIXME(#2469): this instance/module signature insertion should likely
// be deduplicated.
let exports = self
.types
.instance_signatures
.push(InstanceSignature { exports });
self.types
.module_signatures
.push(ModuleSignature { imports, exports })
}
}
impl<'data> TargetEnvironment for ModuleEnvironment<'data> {
fn target_config(&self) -> TargetFrontendConfig {
self.target_config
}
fn reference_type(&self, ty: cranelift_wasm::WasmType) -> ir::Type {
crate::reference_type(ty, self.pointer_type())
}
}
/// This trait is useful for `translate_module` because it tells how to translate
/// environment-dependent wasm instructions. These functions should not be called by the user.
impl<'data> cranelift_wasm::ModuleEnvironment<'data> for ModuleEnvironment<'data> {
fn reserve_types(&mut self, num: u32) -> WasmResult<()> {
let num = usize::try_from(num).unwrap();
self.result.module.types.reserve(num);
self.types.native_signatures.reserve(num);
self.types.wasm_signatures.reserve(num);
Ok(())
}
fn declare_type_func(&mut self, wasm: WasmFuncType, sig: ir::Signature) -> WasmResult<()> {
let sig = translate_signature(sig, self.pointer_type());
// FIXME(#2469): Signatures should be deduplicated in these two tables
// since `SignatureIndex` is already a index space separate from the
// module's index space. Note that this may get more urgent with
// module-linking modules where types are more likely to get repeated
// (across modules).
let sig_index = self.types.native_signatures.push(sig);
let sig_index2 = self.types.wasm_signatures.push(wasm);
debug_assert_eq!(sig_index, sig_index2);
self.result
.module
.types
.push(ModuleType::Function(sig_index));
Ok(())
}
fn declare_type_module(
&mut self,
declared_imports: &[(&'data str, Option<&'data str>, EntityType)],
exports: &[(&'data str, EntityType)],
) -> WasmResult<()> {
let mut imports = indexmap::IndexMap::new();
let mut instance_types = HashMap::new();
for (module, field, ty) in declared_imports {
match field {
Some(field) => {
let idx = *instance_types
.entry(module)
.or_insert_with(|| self.types.instance_signatures.push(Default::default()));
self.types.instance_signatures[idx]
.exports
.insert(field.to_string(), ty.clone());
if !imports.contains_key(*module) {
imports.insert(module.to_string(), EntityType::Instance(idx));
}
}
None => {
imports.insert(module.to_string(), ty.clone());
}
}
}
let exports = exports
.iter()
.map(|e| (e.0.to_string(), e.1.clone()))
.collect();
// FIXME(#2469): Like signatures above we should probably deduplicate
// the listings of module types since with module linking it's possible
// you'll need to write down the module type in multiple locations.
let exports = self
.types
.instance_signatures
.push(InstanceSignature { exports });
let idx = self
.types
.module_signatures
.push(ModuleSignature { imports, exports });
self.result.module.types.push(ModuleType::Module(idx));
Ok(())
}
fn declare_type_instance(&mut self, exports: &[(&'data str, EntityType)]) -> WasmResult<()> {
let exports = exports
.iter()
.map(|e| (e.0.to_string(), e.1.clone()))
.collect();
// FIXME(#2469): Like signatures above we should probably deduplicate
// the listings of instance types since with module linking it's
// possible you'll need to write down the module type in multiple
// locations.
let idx = self
.types
.instance_signatures
.push(InstanceSignature { exports });
self.result.module.types.push(ModuleType::Instance(idx));
Ok(())
}
fn type_to_signature(&self, index: TypeIndex) -> WasmResult<SignatureIndex> {
match self.result.module.types[index] {
ModuleType::Function(sig) => Ok(sig),
_ => unreachable!(),
}
}
fn type_to_module_type(&self, index: TypeIndex) -> WasmResult<ModuleTypeIndex> {
match self.result.module.types[index] {
ModuleType::Module(sig) => Ok(sig),
_ => unreachable!(),
}
}
fn type_to_instance_type(&self, index: TypeIndex) -> WasmResult<InstanceTypeIndex> {
match self.result.module.types[index] {
ModuleType::Instance(sig) => Ok(sig),
_ => unreachable!(),
}
}
fn reserve_imports(&mut self, num: u32) -> WasmResult<()> {
Ok(self
.result
.module
.initializers
.reserve(usize::try_from(num).unwrap()))
}
fn declare_func_import(
&mut self,
index: TypeIndex,
module: &'data str,
field: Option<&'data str>,
) -> WasmResult<()> {
debug_assert_eq!(
self.result.module.functions.len(),
self.result.module.num_imported_funcs,
"Imported functions must be declared first"
);
let sig_index = self.result.module.types[index].unwrap_function();
self.declare_import(module, field, EntityType::Function(sig_index));
self.result.module.num_imported_funcs += 1;
self.result.debuginfo.wasm_file.imported_func_count += 1;
Ok(())
}
fn declare_table_import(
&mut self,
table: Table,
module: &'data str,
field: Option<&'data str>,
) -> WasmResult<()> {
debug_assert_eq!(
self.result.module.table_plans.len(),
self.result.module.num_imported_tables,
"Imported tables must be declared first"
);
self.declare_import(module, field, EntityType::Table(table));
self.result.module.num_imported_tables += 1;
Ok(())
}
fn declare_memory_import(
&mut self,
memory: Memory,
module: &'data str,
field: Option<&'data str>,
) -> WasmResult<()> {
debug_assert_eq!(
self.result.module.memory_plans.len(),
self.result.module.num_imported_memories,
"Imported memories must be declared first"
);
if memory.shared {
return Err(WasmError::Unsupported("shared memories".to_owned()));
}
self.declare_import(module, field, EntityType::Memory(memory));
self.result.module.num_imported_memories += 1;
Ok(())
}
fn declare_global_import(
&mut self,
global: Global,
module: &'data str,
field: Option<&'data str>,
) -> WasmResult<()> {
debug_assert_eq!(
self.result.module.globals.len(),
self.result.module.num_imported_globals,
"Imported globals must be declared first"
);
self.declare_import(module, field, EntityType::Global(global));
self.result.module.num_imported_globals += 1;
Ok(())
}
fn declare_module_import(
&mut self,
ty_index: TypeIndex,
module: &'data str,
field: Option<&'data str>,
) -> WasmResult<()> {
let signature = self.type_to_module_type(ty_index)?;
self.declare_import(module, field, EntityType::Module(signature));
Ok(())
}
fn declare_instance_import(
&mut self,
ty_index: TypeIndex,
module: &'data str,
field: Option<&'data str>,
) -> WasmResult<()> {
let signature = self.type_to_instance_type(ty_index)?;
self.declare_import(module, field, EntityType::Instance(signature));
Ok(())
}
fn reserve_func_types(&mut self, num: u32) -> WasmResult<()> {
self.result
.module
.functions
.reserve_exact(usize::try_from(num).unwrap());
self.result
.function_body_inputs
.reserve_exact(usize::try_from(num).unwrap());
Ok(())
}
fn declare_func_type(&mut self, index: TypeIndex) -> WasmResult<()> {
let sig_index = self.result.module.types[index].unwrap_function();
self.result.module.functions.push(sig_index);
Ok(())
}
fn reserve_tables(&mut self, num: u32) -> WasmResult<()> {
self.result
.module
.table_plans
.reserve_exact(usize::try_from(num).unwrap());
Ok(())
}
fn declare_table(&mut self, table: Table) -> WasmResult<()> {
let plan = TablePlan::for_table(table, &self.tunables);
self.result.module.table_plans.push(plan);
Ok(())
}
fn reserve_memories(&mut self, num: u32) -> WasmResult<()> {
self.result
.module
.memory_plans
.reserve_exact(usize::try_from(num).unwrap());
Ok(())
}
fn declare_memory(&mut self, memory: Memory) -> WasmResult<()> {
if memory.shared {
return Err(WasmError::Unsupported("shared memories".to_owned()));
}
let plan = MemoryPlan::for_memory(memory, &self.tunables);
self.result.module.memory_plans.push(plan);
Ok(())
}
fn reserve_globals(&mut self, num: u32) -> WasmResult<()> {
self.result
.module
.globals
.reserve_exact(usize::try_from(num).unwrap());
Ok(())
}
fn declare_global(&mut self, global: Global) -> WasmResult<()> {
self.result.module.globals.push(global);
Ok(())
}
fn reserve_exports(&mut self, num: u32) -> WasmResult<()> {
self.result
.module
.exports
.reserve(usize::try_from(num).unwrap());
Ok(())
}
fn declare_func_export(&mut self, func_index: FuncIndex, name: &str) -> WasmResult<()> {
self.declare_export(EntityIndex::Function(func_index), name)
}
fn declare_table_export(&mut self, table_index: TableIndex, name: &str) -> WasmResult<()> {
self.declare_export(EntityIndex::Table(table_index), name)
}
fn declare_memory_export(&mut self, memory_index: MemoryIndex, name: &str) -> WasmResult<()> {
self.declare_export(EntityIndex::Memory(memory_index), name)
}
fn declare_global_export(&mut self, global_index: GlobalIndex, name: &str) -> WasmResult<()> {
self.declare_export(EntityIndex::Global(global_index), name)
}
fn declare_module_export(&mut self, index: ModuleIndex, name: &str) -> WasmResult<()> {
self.declare_export(EntityIndex::Module(index), name)
}
fn declare_instance_export(&mut self, index: InstanceIndex, name: &str) -> WasmResult<()> {
self.declare_export(EntityIndex::Instance(index), name)
}
fn declare_start_func(&mut self, func_index: FuncIndex) -> WasmResult<()> {
debug_assert!(self.result.module.start_func.is_none());
self.result.module.start_func = Some(func_index);
Ok(())
}
fn reserve_table_elements(&mut self, num: u32) -> WasmResult<()> {
self.result
.module
.table_initializers
.reserve_exact(usize::try_from(num).unwrap());
Ok(())
}
fn declare_table_elements(
&mut self,
table_index: TableIndex,
base: Option<GlobalIndex>,
offset: usize,
elements: Box<[FuncIndex]>,
) -> WasmResult<()> {
self.result
.module
.table_initializers
.push(TableInitializer {
table_index,
base,
offset,
elements,
});
Ok(())
}
fn declare_passive_element(
&mut self,
elem_index: ElemIndex,
segments: Box<[FuncIndex]>,
) -> WasmResult<()> {
let index = self.result.module.passive_elements.len();
self.result.module.passive_elements.push(segments);
let old = self
.result
.module
.passive_elements_map
.insert(elem_index, index);
debug_assert!(
old.is_none(),
"should never get duplicate element indices, that would be a bug in `cranelift_wasm`'s \
translation"
);
Ok(())
}
fn reserve_function_bodies(&mut self, _count: u32, offset: u64) {
self.result.debuginfo.wasm_file.code_section_offset = offset;
}
fn define_function_body(
&mut self,
validator: FuncValidator<ValidatorResources>,
body: FunctionBody<'data>,
) -> WasmResult<()> {
if self.tunables.generate_native_debuginfo {
let func_index = self.result.code_index + self.result.module.num_imported_funcs as u32;
let func_index = FuncIndex::from_u32(func_index);
let sig_index = self.result.module.functions[func_index];
let sig = &self.types.wasm_signatures[sig_index];
let mut locals = Vec::new();
for pair in body.get_locals_reader()? {
locals.push(pair?);
}
self.result
.debuginfo
.wasm_file
.funcs
.push(FunctionMetadata {
locals: locals.into_boxed_slice(),
params: sig.params.iter().cloned().map(|i| i.into()).collect(),
});
}
self.result
.function_body_inputs
.push(FunctionBodyData { validator, body });
self.result.code_index += 1;
Ok(())
}
fn reserve_data_initializers(&mut self, num: u32) -> WasmResult<()> {
match &mut self.result.module.memory_initialization {
MemoryInitialization::Segmented(initializers) => {
initializers.reserve_exact(usize::try_from(num).unwrap())
}
_ => unreachable!(),
}
Ok(())
}
fn declare_data_initialization(
&mut self,
memory_index: MemoryIndex,
base: Option<GlobalIndex>,
offset: usize,
data: &'data [u8],
) -> WasmResult<()> {
match &mut self.result.module.memory_initialization {
MemoryInitialization::Segmented(initializers) => {
initializers.push(MemoryInitializer {
memory_index,
base,
offset,
data: data.into(),
});
}
_ => unreachable!(),
}
Ok(())
}
fn reserve_passive_data(&mut self, _count: u32) -> WasmResult<()> {
// Note: the count passed in here is the *total* segment count
// There is no way to reserve for just the passive segments as they are discovered when iterating the data section entries
// Given that the total segment count might be much larger than the passive count, do not reserve
Ok(())
}
fn declare_passive_data(&mut self, data_index: DataIndex, data: &'data [u8]) -> WasmResult<()> {
let index = self.result.module.passive_data.len();
self.result.module.passive_data.push(Arc::from(data));
let old = self
.result
.module
.passive_data_map
.insert(data_index, index);
debug_assert!(
old.is_none(),
"a module can't have duplicate indices, this would be a cranelift-wasm bug"
);
Ok(())
}
fn declare_module_name(&mut self, name: &'data str) {
self.result.module.name = Some(name.to_string());
if self.tunables.generate_native_debuginfo {
self.result.debuginfo.name_section.module_name = Some(name);
}
}
fn declare_func_name(&mut self, func_index: FuncIndex, name: &'data str) {
self.result
.module
.func_names
.insert(func_index, name.to_string());
if self.tunables.generate_native_debuginfo {
self.result
.debuginfo
.name_section
.func_names
.insert(func_index.as_u32(), name);
}
}
fn declare_local_name(&mut self, func_index: FuncIndex, local: u32, name: &'data str) {
if self.tunables.generate_native_debuginfo {
self.result
.debuginfo
.name_section
.locals_names
.entry(func_index.as_u32())
.or_insert(HashMap::new())
.insert(local, name);
}
}
fn custom_section(&mut self, name: &'data str, data: &'data [u8]) -> WasmResult<()> {
self.register_dwarf_section(name, data);
match name {
"webidl-bindings" | "wasm-interface-types" => Err(WasmError::Unsupported(
"\
Support for interface types has temporarily been removed from `wasmtime`.
For more information about this temoprary you can read on the issue online:
https://github.com/bytecodealliance/wasmtime/issues/1271
and for re-adding support for interface types you can see this issue:
https://github.com/bytecodealliance/wasmtime/issues/677
"
.to_owned(),
)),
// skip other sections
_ => Ok(()),
}
}
fn wasm_features(&self) -> WasmFeatures {
self.features
}
fn reserve_modules(&mut self, amount: u32) {
// Go ahead and reserve space in the final `results` array for `amount`
// more modules.
self.modules_to_be += amount as usize;
self.results.reserve(self.modules_to_be);
// Then also reserve space in our own local module's metadata fields
// we'll be adding to.
self.result.module.modules.reserve(amount as usize);
self.result.module.initializers.reserve(amount as usize);
}
fn module_start(&mut self) {
// If this is the first time this method is called, nothing to do.
if self.first_module {
self.first_module = false;
return;
}
// Reset our internal state for a new module by saving the current
// module in `results`.
let in_progress = mem::replace(&mut self.result, ModuleTranslation::default());
self.in_progress.push(in_progress);
self.modules_to_be -= 1;
}
fn module_end(&mut self) {
self.result.creation_artifacts.shrink_to_fit();
self.result.creation_modules.shrink_to_fit();
let (record_initializer, mut done) = match self.in_progress.pop() {
Some(m) => (true, mem::replace(&mut self.result, m)),
None => (false, mem::take(&mut self.result)),
};
if record_initializer {
// Record the type of the module we just finished in our own
// module's list of modules.
let sig = self.gen_type_of_module(&done.module);
self.result.module.modules.push(sig);
// The root module will store the artifacts for this finished
// module at `artifact_index`. This then needs to be inherited by
// all later modules coming down to our now-current `self.result`...
let mut artifact_index = self.results.len();
for result in self.in_progress.iter_mut().chain(Some(&mut self.result)) {
result.creation_artifacts.push(artifact_index);
artifact_index = result.creation_artifacts.len() - 1;
}
// ... and then `self.result` needs to create a new module with
// whatever was record to save off as its own artifacts/modules.
self.result
.module
.initializers
.push(Initializer::CreateModule {
artifact_index,
artifacts: mem::take(&mut done.creation_artifacts),
modules: mem::take(&mut done.creation_modules),
});
}
// And the final step is to insert the module into the list of finished
// modules to get returned at the end.
self.results.push(done);
}
fn reserve_instances(&mut self, amt: u32) {
self.result.module.instances.reserve(amt as usize);
self.result.module.initializers.reserve(amt as usize);
}
fn declare_instance(
&mut self,
module: ModuleIndex,
args: Vec<(&'data str, EntityIndex)>,
) -> WasmResult<()> {
let args = args.into_iter().map(|(s, i)| (s.to_string(), i)).collect();
// Record the type of this instance with the type signature of the
// module we're instantiating and then also add an initializer which
// records that we'll be adding to the instance index space here.
let module_ty = self.result.module.modules[module];
let instance_ty = self.types.module_signatures[module_ty].exports;
self.result.module.instances.push(instance_ty);
self.result
.module
.initializers
.push(Initializer::Instantiate { module, args });
Ok(())
}
fn declare_alias(&mut self, alias: Alias) -> WasmResult<()> {
match alias {
// Types are easy, we statically know everything so we're just
// copying some pointers from our parent module to our own module.
//
// Note that we don't add an initializer for this alias because
// we statically know where all types point to.
Alias::OuterType {
relative_depth,
index,
} => {
let module_idx = self.in_progress.len() - 1 - (relative_depth as usize);
let ty = self.in_progress[module_idx].module.types[index];
self.result.module.types.push(ty);
}
// Modules are a bit trickier since we need to record how to track
// the state from the original module down to our own.
Alias::OuterModule {
relative_depth,
index,
} => {
// First we can copy the type from the parent module into our
// own module to record what type our module definition will
// have.
let module_idx = self.in_progress.len() - 1 - (relative_depth as usize);
let module_ty = self.in_progress[module_idx].module.modules[index];
self.result.module.modules.push(module_ty);
// Next we'll be injecting a module value that is closed over,
// and that will be used to define the module into the index
// space. Record an initializer about where our module is
// sourced from (which will be stored within each module value
// itself).
let module_index = self.result.creation_modules.len();
self.result
.module
.initializers
.push(Initializer::DefineModule(module_index));
// And finally we need to record a breadcrumb trail of how to
// get the module value into `module_index`. The module just
// after our destination module will use a `ModuleIndex` to
// fetch the module value, and everything else inbetween will
// inherit that module's closed-over value.
let mut upvar = ModuleUpvar::Local(index);
for outer in self.in_progress[module_idx + 1..].iter_mut() {
let upvar = mem::replace(
&mut upvar,
ModuleUpvar::Inherit(outer.creation_modules.len()),
);
outer.creation_modules.push(upvar);
}
self.result.creation_modules.push(upvar);
}
// This case is slightly more involved, we'll be recording all the
// type information for each kind of entity, and then we also need
// to record an initialization step to get the export from the
// instance.
Alias::InstanceExport { instance, export } => {
let ty = self.result.module.instances[instance];
match &self.types.instance_signatures[ty].exports[export] {
EntityType::Global(g) => {
self.result.module.globals.push(g.clone());
self.result.module.num_imported_globals += 1;
}
EntityType::Memory(mem) => {
let plan = MemoryPlan::for_memory(*mem, &self.tunables);
self.result.module.memory_plans.push(plan);
self.result.module.num_imported_memories += 1;
}
EntityType::Table(t) => {
let plan = TablePlan::for_table(*t, &self.tunables);
self.result.module.table_plans.push(plan);
self.result.module.num_imported_tables += 1;
}
EntityType::Function(sig) => {
self.result.module.functions.push(*sig);
self.result.module.num_imported_funcs += 1;
self.result.debuginfo.wasm_file.imported_func_count += 1;
}
EntityType::Instance(sig) => {
self.result.module.instances.push(*sig);
}
EntityType::Module(sig) => {
self.result.module.modules.push(*sig);
}
EntityType::Event(_) => unimplemented!(),
}
self.result
.module
.initializers
.push(Initializer::AliasInstanceExport {
instance,
export: export.to_string(),
})
}
}
Ok(())
}
}
/// Add environment-specific function parameters.
pub fn translate_signature(mut sig: ir::Signature, pointer_type: ir::Type) -> ir::Signature {
// Prepend the vmctx argument.
sig.params.insert(
0,
AbiParam::special(pointer_type, ArgumentPurpose::VMContext),
);
// Prepend the caller vmctx argument.
sig.params.insert(1, AbiParam::new(pointer_type));
sig
}