Files
wasmtime/lib/cretonne/src/isa/intel/binemit.rs
2017-07-18 09:27:36 -07:00

171 lines
5.6 KiB
Rust

//! Emitting binary Intel machine code.
use binemit::{CodeSink, Reloc, bad_encoding};
use ir::{Function, Inst, InstructionData};
use isa::RegUnit;
include!(concat!(env!("OUT_DIR"), "/binemit-intel.rs"));
/// Intel relocations.
pub enum RelocKind {
/// A 4-byte relative function reference. Based from relocation + 4 bytes.
PCRel4,
}
pub static RELOC_NAMES: [&'static str; 1] = ["PCRel4"];
impl Into<Reloc> for RelocKind {
fn into(self) -> Reloc {
Reloc(self as u16)
}
}
// Mandatory prefix bytes for Mp* opcodes.
const PREFIX: [u8; 3] = [0x66, 0xf3, 0xf2];
// A REX prefix with no bits set: 0b0100WRXB.
const BASE_REX: u8 = 0b0100_0000;
// Create a single-register REX prefix, setting the B bit to bit 3 of the register.
// This is used for instructions that encode a register in the low 3 bits of the opcode and for
// instructions that use the ModR/M `reg` field for something else.
fn rex1(reg_b: RegUnit) -> u8 {
let b = ((reg_b >> 3) & 1) as u8;
BASE_REX | b
}
// Create a dual-register REX prefix, setting:
//
// REX.B = bit 3 of r/m register.
// REX.R = bit 3 of reg register.
fn rex2(rm: RegUnit, reg: RegUnit) -> u8 {
let b = ((rm >> 3) & 1) as u8;
let r = ((reg >> 3) & 1) as u8;
BASE_REX | b | (r << 2)
}
// Emit a REX prefix.
//
// The R, X, and B bits are computed from registers using the functions above. The W bit is
// extracted from `bits`.
fn rex_prefix<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
debug_assert_eq!(rex & 0xf8, BASE_REX);
let w = ((bits >> 15) & 1) as u8;
sink.put1(rex | (w << 3));
}
// Emit a single-byte opcode with no REX prefix.
fn put_op1<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
debug_assert_eq!(bits & 0x8f00, 0, "Invalid encoding bits for Op1*");
debug_assert_eq!(rex, BASE_REX, "Invalid registers for REX-less Op1 encoding");
sink.put1(bits as u8);
}
// Emit a single-byte opcode with REX prefix.
fn put_rexop1<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
debug_assert_eq!(bits & 0x0f00, 0, "Invalid encoding bits for Op1*");
rex_prefix(bits, rex, sink);
sink.put1(bits as u8);
}
// Emit two-byte opcode: 0F XX
fn put_op2<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
debug_assert_eq!(bits & 0x8f00, 0x0400, "Invalid encoding bits for Op2*");
debug_assert_eq!(rex, BASE_REX, "Invalid registers for REX-less Op2 encoding");
sink.put1(0x0f);
sink.put1(bits as u8);
}
// Emit two-byte opcode: 0F XX with REX prefix.
fn put_rexop2<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
debug_assert_eq!(bits & 0x0f00, 0x0400, "Invalid encoding bits for RexOp2*");
rex_prefix(bits, rex, sink);
sink.put1(0x0f);
sink.put1(bits as u8);
}
// Emit single-byte opcode with mandatory prefix.
fn put_mp1<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
debug_assert_eq!(bits & 0x8c00, 0, "Invalid encoding bits for Mp1*");
let pp = (bits >> 8) & 3;
sink.put1(PREFIX[(pp - 1) as usize]);
debug_assert_eq!(rex, BASE_REX, "Invalid registers for REX-less Mp1 encoding");
sink.put1(bits as u8);
}
// Emit two-byte opcode (0F XX) with mandatory prefix.
fn put_mp2<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
debug_assert_eq!(bits & 0x8c00, 0x0400, "Invalid encoding bits for Mp2*");
let pp = (bits >> 8) & 3;
sink.put1(PREFIX[(pp - 1) as usize]);
debug_assert_eq!(rex, BASE_REX, "Invalid registers for REX-less Mp2 encoding");
sink.put1(0x0f);
sink.put1(bits as u8);
}
// Emit two-byte opcode (0F XX) with mandatory prefix and REX.
fn put_rexmp2<CS: CodeSink + ?Sized>(bits: u16, rex: u8, sink: &mut CS) {
debug_assert_eq!(bits & 0x0c00, 0x0400, "Invalid encoding bits for Mp2*");
let pp = (bits >> 8) & 3;
sink.put1(PREFIX[(pp - 1) as usize]);
rex_prefix(bits, rex, sink);
sink.put1(0x0f);
sink.put1(bits as u8);
}
/// Emit a ModR/M byte for reg-reg operands.
fn modrm_rr<CS: CodeSink + ?Sized>(rm: RegUnit, reg: RegUnit, sink: &mut CS) {
let reg = reg as u8 & 7;
let rm = rm as u8 & 7;
let mut b = 0b11000000;
b |= reg << 3;
b |= rm;
sink.put1(b);
}
/// Emit a ModR/M byte where the reg bits are part of the opcode.
fn modrm_r_bits<CS: CodeSink + ?Sized>(rm: RegUnit, bits: u16, sink: &mut CS) {
let reg = (bits >> 12) as u8 & 7;
let rm = rm as u8 & 7;
let mut b = 0b11000000;
b |= reg << 3;
b |= rm;
sink.put1(b);
}
/// Emit a mode 00 ModR/M byte. This is a register-indirect addressing mode with no offset.
/// Registers %rsp and %rbp are invalid for `rm`, %rsp indicates a SIB byte, and %rbp indicates an
/// absolute immediate 32-bit address.
fn modrm_rm<CS: CodeSink + ?Sized>(rm: RegUnit, reg: RegUnit, sink: &mut CS) {
let reg = reg as u8 & 7;
let rm = rm as u8 & 7;
let mut b = 0b00000000;
b |= reg << 3;
b |= rm;
sink.put1(b);
}
/// Emit a mode 01 ModR/M byte. This is a register-indirect addressing mode with 8-bit
/// displacement.
/// Register %rsp is invalid for `rm`. It indicates the presence of a SIB byte.
fn modrm_disp8<CS: CodeSink + ?Sized>(rm: RegUnit, reg: RegUnit, sink: &mut CS) {
let reg = reg as u8 & 7;
let rm = rm as u8 & 7;
let mut b = 0b01000000;
b |= reg << 3;
b |= rm;
sink.put1(b);
}
/// Emit a mode 10 ModR/M byte. This is a register-indirect addressing mode with 32-bit
/// displacement.
/// Register %rsp is invalid for `rm`. It indicates the presence of a SIB byte.
fn modrm_disp32<CS: CodeSink + ?Sized>(rm: RegUnit, reg: RegUnit, sink: &mut CS) {
let reg = reg as u8 & 7;
let rm = rm as u8 & 7;
let mut b = 0b10000000;
b |= reg << 3;
b |= rm;
sink.put1(b);
}