Files
wasmtime/cranelift/codegen/src/context.rs
Alex Crichton 195bf0e29a Fully support multiple returns in Wasmtime (#2806)
* Fully support multiple returns in Wasmtime

For quite some time now Wasmtime has "supported" multiple return values,
but only in the mose bare bones ways. Up until recently you couldn't get
a typed version of functions with multiple return values, and never have
you been able to use `Func::wrap` with functions that return multiple
values. Even recently where `Func::typed` can call functions that return
multiple values it uses a double-indirection by calling a trampoline
which calls the real function.

The underlying reason for this lack of support is that cranelift's ABI
for returning multiple values is not possible to write in Rust. For
example if a wasm function returns two `i32` values there is no Rust (or
C!) function you can write to correspond to that. This commit, however
fixes that.

This commit adds two new ABIs to Cranelift: `WasmtimeSystemV` and
`WasmtimeFastcall`. The intention is that these Wasmtime-specific ABIs
match their corresponding ABI (e.g. `SystemV` or `WindowsFastcall`) for
everything *except* how multiple values are returned. For multiple
return values we simply define our own version of the ABI which Wasmtime
implements, which is that for N return values the first is returned as
if the function only returned that and the latter N-1 return values are
returned via an out-ptr that's the last parameter to the function.

These custom ABIs provides the ability for Wasmtime to bind these in
Rust meaning that `Func::wrap` can now wrap functions that return
multiple values and `Func::typed` no longer uses trampolines when
calling functions that return multiple values. Although there's lots of
internal changes there's no actual changes in the API surface area of
Wasmtime, just a few more impls of more public traits which means that
more types are supported in more places!

Another change made with this PR is a consolidation of how the ABI of
each function in a wasm module is selected. The native `SystemV` ABI,
for example, is more efficient at returning multiple values than the
wasmtime version of the ABI (since more things are in more registers).
To continue to take advantage of this Wasmtime will now classify some
functions in a wasm module with the "fast" ABI. Only functions that are
not reachable externally from the module are classified with the fast
ABI (e.g. those not exported, used in tables, or used with `ref.func`).
This should enable purely internal functions of modules to have a faster
calling convention than those which might be exposed to Wasmtime itself.

Closes #1178

* Tweak some names and add docs

* "fix" lightbeam compile

* Fix TODO with dummy environ

* Unwind info is a property of the target, not the ABI

* Remove lightbeam unused imports

* Attempt to fix arm64

* Document new ABIs aren't stable

* Fix filetests to use the right target

* Don't always do 64-bit stores with cranelift

This was overwriting upper bits when 32-bit registers were being stored
into return values, so fix the code inline to do a sized store instead
of one-size-fits-all store.

* At least get tests passing on the old backend

* Fix a typo

* Add some filetests with mixed abi calls

* Get `multi` example working

* Fix doctests on old x86 backend

* Add a mixture of wasmtime/system_v tests
2021-04-07 12:34:26 -05:00

485 lines
16 KiB
Rust

//! Cranelift compilation context and main entry point.
//!
//! When compiling many small functions, it is important to avoid repeatedly allocating and
//! deallocating the data structures needed for compilation. The `Context` struct is used to hold
//! on to memory allocations between function compilations.
//!
//! The context does not hold a `TargetIsa` instance which has to be provided as an argument
//! instead. This is because an ISA instance is immutable and can be used by multiple compilation
//! contexts concurrently. Typically, you would have one context per compilation thread and only a
//! single ISA instance.
use crate::binemit::{
relax_branches, shrink_instructions, CodeInfo, MemoryCodeSink, RelocSink, StackMapSink,
TrapSink,
};
use crate::dce::do_dce;
use crate::dominator_tree::DominatorTree;
use crate::flowgraph::ControlFlowGraph;
use crate::ir::Function;
use crate::isa::TargetIsa;
use crate::legalize_function;
use crate::legalizer::simple_legalize;
use crate::licm::do_licm;
use crate::loop_analysis::LoopAnalysis;
use crate::machinst::{MachCompileResult, MachStackMap};
use crate::nan_canonicalization::do_nan_canonicalization;
use crate::postopt::do_postopt;
use crate::redundant_reload_remover::RedundantReloadRemover;
use crate::regalloc;
use crate::remove_constant_phis::do_remove_constant_phis;
use crate::result::CodegenResult;
use crate::settings::{FlagsOrIsa, OptLevel};
use crate::simple_gvn::do_simple_gvn;
use crate::simple_preopt::do_preopt;
use crate::timing;
use crate::unreachable_code::eliminate_unreachable_code;
use crate::value_label::{build_value_labels_ranges, ComparableSourceLoc, ValueLabelsRanges};
use crate::verifier::{verify_context, verify_locations, VerifierErrors, VerifierResult};
#[cfg(feature = "souper-harvest")]
use alloc::string::String;
use alloc::vec::Vec;
use log::debug;
#[cfg(feature = "souper-harvest")]
use crate::souper_harvest::do_souper_harvest;
/// Persistent data structures and compilation pipeline.
pub struct Context {
/// The function we're compiling.
pub func: Function,
/// The control flow graph of `func`.
pub cfg: ControlFlowGraph,
/// Dominator tree for `func`.
pub domtree: DominatorTree,
/// Register allocation context.
pub regalloc: regalloc::Context,
/// Loop analysis of `func`.
pub loop_analysis: LoopAnalysis,
/// Redundant-reload remover context.
pub redundant_reload_remover: RedundantReloadRemover,
/// Result of MachBackend compilation, if computed.
pub mach_compile_result: Option<MachCompileResult>,
/// Flag: do we want a disassembly with the MachCompileResult?
pub want_disasm: bool,
}
impl Context {
/// Allocate a new compilation context.
///
/// The returned instance should be reused for compiling multiple functions in order to avoid
/// needless allocator thrashing.
pub fn new() -> Self {
Self::for_function(Function::new())
}
/// Allocate a new compilation context with an existing Function.
///
/// The returned instance should be reused for compiling multiple functions in order to avoid
/// needless allocator thrashing.
pub fn for_function(func: Function) -> Self {
Self {
func,
cfg: ControlFlowGraph::new(),
domtree: DominatorTree::new(),
regalloc: regalloc::Context::new(),
loop_analysis: LoopAnalysis::new(),
redundant_reload_remover: RedundantReloadRemover::new(),
mach_compile_result: None,
want_disasm: false,
}
}
/// Clear all data structures in this context.
pub fn clear(&mut self) {
self.func.clear();
self.cfg.clear();
self.domtree.clear();
self.regalloc.clear();
self.loop_analysis.clear();
self.redundant_reload_remover.clear();
self.mach_compile_result = None;
self.want_disasm = false;
}
/// Set the flag to request a disassembly when compiling with a
/// `MachBackend` backend.
pub fn set_disasm(&mut self, val: bool) {
self.want_disasm = val;
}
/// Compile the function, and emit machine code into a `Vec<u8>`.
///
/// Run the function through all the passes necessary to generate code for the target ISA
/// represented by `isa`, as well as the final step of emitting machine code into a
/// `Vec<u8>`. The machine code is not relocated. Instead, any relocations are emitted
/// into `relocs`.
///
/// This function calls `compile` and `emit_to_memory`, taking care to resize `mem` as
/// needed, so it provides a safe interface.
///
/// Returns information about the function's code and read-only data.
pub fn compile_and_emit(
&mut self,
isa: &dyn TargetIsa,
mem: &mut Vec<u8>,
relocs: &mut dyn RelocSink,
traps: &mut dyn TrapSink,
stack_maps: &mut dyn StackMapSink,
) -> CodegenResult<CodeInfo> {
let info = self.compile(isa)?;
let old_len = mem.len();
mem.resize(old_len + info.total_size as usize, 0);
let new_info = unsafe {
self.emit_to_memory(
isa,
mem.as_mut_ptr().add(old_len),
relocs,
traps,
stack_maps,
)
};
debug_assert!(new_info == info);
Ok(info)
}
/// Compile the function.
///
/// Run the function through all the passes necessary to generate code for the target ISA
/// represented by `isa`. This does not include the final step of emitting machine code into a
/// code sink.
///
/// Returns information about the function's code and read-only data.
pub fn compile(&mut self, isa: &dyn TargetIsa) -> CodegenResult<CodeInfo> {
let _tt = timing::compile();
self.verify_if(isa)?;
let opt_level = isa.flags().opt_level();
debug!(
"Compiling (opt level {:?}):\n{}",
opt_level,
self.func.display(isa)
);
self.compute_cfg();
if opt_level != OptLevel::None {
self.preopt(isa)?;
}
if isa.flags().enable_nan_canonicalization() {
self.canonicalize_nans(isa)?;
}
self.legalize(isa)?;
if opt_level != OptLevel::None {
self.postopt(isa)?;
self.compute_domtree();
self.compute_loop_analysis();
self.licm(isa)?;
self.simple_gvn(isa)?;
}
self.compute_domtree();
self.eliminate_unreachable_code(isa)?;
if opt_level != OptLevel::None {
self.dce(isa)?;
}
self.remove_constant_phis(isa)?;
if let Some(backend) = isa.get_mach_backend() {
let result = backend.compile_function(&self.func, self.want_disasm)?;
let info = result.code_info();
self.mach_compile_result = Some(result);
Ok(info)
} else {
self.regalloc(isa)?;
self.prologue_epilogue(isa)?;
if opt_level == OptLevel::Speed || opt_level == OptLevel::SpeedAndSize {
self.redundant_reload_remover(isa)?;
}
if opt_level == OptLevel::SpeedAndSize {
self.shrink_instructions(isa)?;
}
let result = self.relax_branches(isa);
debug!("Compiled:\n{}", self.func.display(isa));
result
}
}
/// Emit machine code directly into raw memory.
///
/// Write all of the function's machine code to the memory at `mem`. The size of the machine
/// code is returned by `compile` above.
///
/// The machine code is not relocated. Instead, any relocations are emitted into `relocs`.
///
/// # Safety
///
/// This function is unsafe since it does not perform bounds checking on the memory buffer,
/// and it can't guarantee that the `mem` pointer is valid.
///
/// Returns information about the emitted code and data.
pub unsafe fn emit_to_memory(
&self,
isa: &dyn TargetIsa,
mem: *mut u8,
relocs: &mut dyn RelocSink,
traps: &mut dyn TrapSink,
stack_maps: &mut dyn StackMapSink,
) -> CodeInfo {
let _tt = timing::binemit();
let mut sink = MemoryCodeSink::new(mem, relocs, traps, stack_maps);
if let Some(ref result) = &self.mach_compile_result {
result.buffer.emit(&mut sink);
let info = sink.info;
// New backends do not emit StackMaps through the `CodeSink` because its interface
// requires `Value`s; instead, the `StackMap` objects are directly accessible via
// `result.buffer.stack_maps()`.
for &MachStackMap {
offset_end,
ref stack_map,
..
} in result.buffer.stack_maps()
{
stack_maps.add_stack_map(offset_end, stack_map.clone());
}
info
} else {
isa.emit_function_to_memory(&self.func, &mut sink);
sink.info
}
}
/// Creates unwind information for the function.
///
/// Returns `None` if the function has no unwind information.
#[cfg(feature = "unwind")]
pub fn create_unwind_info(
&self,
isa: &dyn TargetIsa,
) -> CodegenResult<Option<crate::isa::unwind::UnwindInfo>> {
if let Some(backend) = isa.get_mach_backend() {
let unwind_info_kind = isa.unwind_info_kind();
let result = self.mach_compile_result.as_ref().unwrap();
return backend.emit_unwind_info(result, unwind_info_kind);
}
isa.create_unwind_info(&self.func)
}
/// Run the verifier on the function.
///
/// Also check that the dominator tree and control flow graph are consistent with the function.
pub fn verify<'a, FOI: Into<FlagsOrIsa<'a>>>(&self, fisa: FOI) -> VerifierResult<()> {
let mut errors = VerifierErrors::default();
let _ = verify_context(&self.func, &self.cfg, &self.domtree, fisa, &mut errors);
if errors.is_empty() {
Ok(())
} else {
Err(errors)
}
}
/// Run the verifier only if the `enable_verifier` setting is true.
pub fn verify_if<'a, FOI: Into<FlagsOrIsa<'a>>>(&self, fisa: FOI) -> CodegenResult<()> {
let fisa = fisa.into();
if fisa.flags.enable_verifier() {
self.verify(fisa)?;
}
Ok(())
}
/// Run the locations verifier on the function.
pub fn verify_locations(&self, isa: &dyn TargetIsa) -> VerifierResult<()> {
let mut errors = VerifierErrors::default();
let _ = verify_locations(isa, &self.func, &self.cfg, None, &mut errors);
if errors.is_empty() {
Ok(())
} else {
Err(errors)
}
}
/// Run the locations verifier only if the `enable_verifier` setting is true.
pub fn verify_locations_if(&self, isa: &dyn TargetIsa) -> CodegenResult<()> {
if isa.flags().enable_verifier() {
self.verify_locations(isa)?;
}
Ok(())
}
/// Perform dead-code elimination on the function.
pub fn dce<'a, FOI: Into<FlagsOrIsa<'a>>>(&mut self, fisa: FOI) -> CodegenResult<()> {
do_dce(&mut self.func, &mut self.domtree);
self.verify_if(fisa)?;
Ok(())
}
/// Perform constant-phi removal on the function.
pub fn remove_constant_phis<'a, FOI: Into<FlagsOrIsa<'a>>>(
&mut self,
fisa: FOI,
) -> CodegenResult<()> {
do_remove_constant_phis(&mut self.func, &mut self.domtree);
self.verify_if(fisa)?;
Ok(())
}
/// Perform pre-legalization rewrites on the function.
pub fn preopt(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
do_preopt(&mut self.func, &mut self.cfg, isa);
self.verify_if(isa)?;
Ok(())
}
/// Perform NaN canonicalizing rewrites on the function.
pub fn canonicalize_nans(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
do_nan_canonicalization(&mut self.func);
self.verify_if(isa)
}
/// Run the legalizer for `isa` on the function.
pub fn legalize(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
// Legalization invalidates the domtree and loop_analysis by mutating the CFG.
// TODO: Avoid doing this when legalization doesn't actually mutate the CFG.
self.domtree.clear();
self.loop_analysis.clear();
if isa.get_mach_backend().is_some() {
// Run some specific legalizations only.
simple_legalize(&mut self.func, &mut self.cfg, isa);
self.verify_if(isa)
} else {
legalize_function(&mut self.func, &mut self.cfg, isa);
debug!("Legalized:\n{}", self.func.display(isa));
self.verify_if(isa)
}
}
/// Perform post-legalization rewrites on the function.
pub fn postopt(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
do_postopt(&mut self.func, isa);
self.verify_if(isa)?;
Ok(())
}
/// Compute the control flow graph.
pub fn compute_cfg(&mut self) {
self.cfg.compute(&self.func)
}
/// Compute dominator tree.
pub fn compute_domtree(&mut self) {
self.domtree.compute(&self.func, &self.cfg)
}
/// Compute the loop analysis.
pub fn compute_loop_analysis(&mut self) {
self.loop_analysis
.compute(&self.func, &self.cfg, &self.domtree)
}
/// Compute the control flow graph and dominator tree.
pub fn flowgraph(&mut self) {
self.compute_cfg();
self.compute_domtree()
}
/// Perform simple GVN on the function.
pub fn simple_gvn<'a, FOI: Into<FlagsOrIsa<'a>>>(&mut self, fisa: FOI) -> CodegenResult<()> {
do_simple_gvn(&mut self.func, &mut self.domtree);
self.verify_if(fisa)
}
/// Perform LICM on the function.
pub fn licm(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
do_licm(
isa,
&mut self.func,
&mut self.cfg,
&mut self.domtree,
&mut self.loop_analysis,
);
self.verify_if(isa)
}
/// Perform unreachable code elimination.
pub fn eliminate_unreachable_code<'a, FOI>(&mut self, fisa: FOI) -> CodegenResult<()>
where
FOI: Into<FlagsOrIsa<'a>>,
{
eliminate_unreachable_code(&mut self.func, &mut self.cfg, &self.domtree);
self.verify_if(fisa)
}
/// Run the register allocator.
pub fn regalloc(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
self.regalloc
.run(isa, &mut self.func, &mut self.cfg, &mut self.domtree)
}
/// Insert prologue and epilogues after computing the stack frame layout.
pub fn prologue_epilogue(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
isa.prologue_epilogue(&mut self.func)?;
self.verify_if(isa)?;
self.verify_locations_if(isa)?;
Ok(())
}
/// Do redundant-reload removal after allocation of both registers and stack slots.
pub fn redundant_reload_remover(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
self.redundant_reload_remover
.run(isa, &mut self.func, &self.cfg);
self.verify_if(isa)?;
Ok(())
}
/// Run the instruction shrinking pass.
pub fn shrink_instructions(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
shrink_instructions(&mut self.func, isa);
self.verify_if(isa)?;
self.verify_locations_if(isa)?;
Ok(())
}
/// Run the branch relaxation pass and return information about the function's code and
/// read-only data.
pub fn relax_branches(&mut self, isa: &dyn TargetIsa) -> CodegenResult<CodeInfo> {
let info = relax_branches(&mut self.func, &mut self.cfg, &mut self.domtree, isa)?;
self.verify_if(isa)?;
self.verify_locations_if(isa)?;
Ok(info)
}
/// Builds ranges and location for specified value labels.
pub fn build_value_labels_ranges(
&self,
isa: &dyn TargetIsa,
) -> CodegenResult<ValueLabelsRanges> {
Ok(build_value_labels_ranges::<ComparableSourceLoc>(
&self.func,
&self.regalloc,
self.mach_compile_result.as_ref(),
isa,
))
}
/// Harvest candidate left-hand sides for superoptimization with Souper.
#[cfg(feature = "souper-harvest")]
pub fn souper_harvest(
&mut self,
out: &mut std::sync::mpsc::Sender<String>,
) -> CodegenResult<()> {
do_souper_harvest(&self.func, out);
Ok(())
}
}