Since results are in a value list, they don't need to form a linked list any longer. - Simplify make_inst_results() to create values in the natural order. - Eliminate the last use of next_secondary_value(). - Delete unused result manipulation methods.
859 lines
31 KiB
Rust
859 lines
31 KiB
Rust
//! Data flow graph tracking Instructions, Values, and EBBs.
|
|
|
|
use ir::{Ebb, Inst, Value, Type, SigRef, Signature, FuncRef, ValueList, ValueListPool};
|
|
use ir::entities::ExpandedValue;
|
|
use ir::instructions::{Opcode, InstructionData, CallInfo};
|
|
use ir::extfunc::ExtFuncData;
|
|
use entity_map::{EntityMap, PrimaryEntityData};
|
|
use ir::builder::{InsertBuilder, ReplaceBuilder};
|
|
use ir::layout::Cursor;
|
|
use write::write_operands;
|
|
|
|
use std::fmt;
|
|
use std::ops::{Index, IndexMut};
|
|
use std::u16;
|
|
|
|
/// A data flow graph defines all instructions and extended basic blocks in a function as well as
|
|
/// the data flow dependencies between them. The DFG also tracks values which can be either
|
|
/// instruction results or EBB arguments.
|
|
///
|
|
/// The layout of EBBs in the function and of instructions in each EBB is recorded by the
|
|
/// `FunctionLayout` data structure which form the other half of the function representation.
|
|
///
|
|
#[derive(Clone)]
|
|
pub struct DataFlowGraph {
|
|
/// Data about all of the instructions in the function, including opcodes and operands.
|
|
/// The instructions in this map are not in program order. That is tracked by `Layout`, along
|
|
/// with the EBB containing each instruction.
|
|
insts: EntityMap<Inst, InstructionData>,
|
|
|
|
/// List of result values for each instruction.
|
|
///
|
|
/// This map gets resized automatically by `make_inst()` so it is always in sync with the
|
|
/// primary `insts` map.
|
|
results: EntityMap<Inst, ValueList>,
|
|
|
|
/// Extended basic blocks in the function and their arguments.
|
|
/// This map is not in program order. That is handled by `Layout`, and so is the sequence of
|
|
/// instructions contained in each EBB.
|
|
ebbs: EntityMap<Ebb, EbbData>,
|
|
|
|
/// Memory pool of value lists.
|
|
///
|
|
/// The `ValueList` references into this pool appear in many places:
|
|
///
|
|
/// - Instructions in `insts` that don't have room for their entire argument list inline.
|
|
/// - Instruction result values in `results`.
|
|
/// - EBB arguments in `ebbs`.
|
|
pub value_lists: ValueListPool,
|
|
|
|
/// Extended value table. Most `Value` references refer directly to their defining instruction.
|
|
/// Others index into this table.
|
|
///
|
|
/// This is implemented directly with a `Vec` rather than an `EntityMap<Value, ...>` because
|
|
/// the Value entity references can refer to two things -- an instruction or an extended value.
|
|
extended_values: Vec<ValueData>,
|
|
|
|
/// Function signature table. These signatures are referenced by indirect call instructions as
|
|
/// well as the external function references.
|
|
pub signatures: EntityMap<SigRef, Signature>,
|
|
|
|
/// External function references. These are functions that can be called directly.
|
|
pub ext_funcs: EntityMap<FuncRef, ExtFuncData>,
|
|
}
|
|
|
|
impl PrimaryEntityData for InstructionData {}
|
|
impl PrimaryEntityData for EbbData {}
|
|
impl PrimaryEntityData for Signature {}
|
|
impl PrimaryEntityData for ExtFuncData {}
|
|
|
|
impl DataFlowGraph {
|
|
/// Create a new empty `DataFlowGraph`.
|
|
pub fn new() -> DataFlowGraph {
|
|
DataFlowGraph {
|
|
insts: EntityMap::new(),
|
|
results: EntityMap::new(),
|
|
ebbs: EntityMap::new(),
|
|
value_lists: ValueListPool::new(),
|
|
extended_values: Vec::new(),
|
|
signatures: EntityMap::new(),
|
|
ext_funcs: EntityMap::new(),
|
|
}
|
|
}
|
|
|
|
/// Get the total number of instructions created in this function, whether they are currently
|
|
/// inserted in the layout or not.
|
|
///
|
|
/// This is intended for use with `EntityMap::with_capacity`.
|
|
pub fn num_insts(&self) -> usize {
|
|
self.insts.len()
|
|
}
|
|
|
|
/// Returns `true` if the given instruction reference is valid.
|
|
pub fn inst_is_valid(&self, inst: Inst) -> bool {
|
|
self.insts.is_valid(inst)
|
|
}
|
|
|
|
/// Get the total number of extended basic blocks created in this function, whether they are
|
|
/// currently inserted in the layout or not.
|
|
///
|
|
/// This is intended for use with `EntityMap::with_capacity`.
|
|
pub fn num_ebbs(&self) -> usize {
|
|
self.ebbs.len()
|
|
}
|
|
|
|
/// Returns `true` if the given ebb reference is valid.
|
|
pub fn ebb_is_valid(&self, ebb: Ebb) -> bool {
|
|
self.ebbs.is_valid(ebb)
|
|
}
|
|
}
|
|
|
|
/// Handling values.
|
|
///
|
|
/// Values are either EBB arguments or instruction results.
|
|
impl DataFlowGraph {
|
|
// Allocate an extended value entry.
|
|
fn make_value(&mut self, data: ValueData) -> Value {
|
|
let vref = Value::new_table(self.extended_values.len());
|
|
self.extended_values.push(data);
|
|
vref
|
|
}
|
|
|
|
/// Check if a value reference is valid.
|
|
pub fn value_is_valid(&self, v: Value) -> bool {
|
|
match v.expand() {
|
|
ExpandedValue::Direct(inst) => self.insts.is_valid(inst),
|
|
ExpandedValue::Table(index) => index < self.extended_values.len(),
|
|
}
|
|
}
|
|
|
|
/// Get the type of a value.
|
|
pub fn value_type(&self, v: Value) -> Type {
|
|
use ir::entities::ExpandedValue::*;
|
|
match v.expand() {
|
|
Direct(i) => self.insts[i].first_type(),
|
|
Table(i) => {
|
|
match self.extended_values[i] {
|
|
ValueData::Inst { ty, .. } => ty,
|
|
ValueData::Arg { ty, .. } => ty,
|
|
ValueData::Alias { ty, .. } => ty,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Get the definition of a value.
|
|
///
|
|
/// This is either the instruction that defined it or the Ebb that has the value as an
|
|
/// argument.
|
|
pub fn value_def(&self, v: Value) -> ValueDef {
|
|
use ir::entities::ExpandedValue::*;
|
|
match v.expand() {
|
|
Direct(inst) => ValueDef::Res(inst, 0),
|
|
Table(idx) => {
|
|
match self.extended_values[idx] {
|
|
ValueData::Inst { inst, num, .. } => {
|
|
assert_eq!(Some(v),
|
|
self.results[inst].get(num as usize, &self.value_lists),
|
|
"Dangling result value {}: {}",
|
|
v,
|
|
self.display_inst(inst));
|
|
ValueDef::Res(inst, num as usize)
|
|
}
|
|
ValueData::Arg { ebb, num, .. } => {
|
|
assert_eq!(Some(v),
|
|
self.ebbs[ebb].args.get(num as usize, &self.value_lists),
|
|
"Dangling EBB argument value");
|
|
ValueDef::Arg(ebb, num as usize)
|
|
}
|
|
ValueData::Alias { original, .. } => {
|
|
// Make sure we only recurse one level. `resolve_aliases` has safeguards to
|
|
// detect alias loops without overrunning the stack.
|
|
self.value_def(self.resolve_aliases(original))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Resolve value aliases.
|
|
///
|
|
/// Find the original SSA value that `value` aliases.
|
|
pub fn resolve_aliases(&self, value: Value) -> Value {
|
|
use ir::entities::ExpandedValue::Table;
|
|
let mut v = value;
|
|
|
|
// Note that extended_values may be empty here.
|
|
for _ in 0..1 + self.extended_values.len() {
|
|
v = match v.expand() {
|
|
Table(idx) => {
|
|
match self.extended_values[idx] {
|
|
ValueData::Alias { original, .. } => {
|
|
// Follow alias values.
|
|
original
|
|
}
|
|
_ => return v,
|
|
}
|
|
}
|
|
_ => return v,
|
|
};
|
|
}
|
|
panic!("Value alias loop detected for {}", value);
|
|
}
|
|
|
|
/// Resolve value copies.
|
|
///
|
|
/// Find the original definition of a value, looking through value aliases as well as
|
|
/// copy/spill/fill instructions.
|
|
pub fn resolve_copies(&self, value: Value) -> Value {
|
|
let mut v = value;
|
|
|
|
for _ in 0..self.insts.len() {
|
|
v = self.resolve_aliases(v);
|
|
v = match self.value_def(v) {
|
|
ValueDef::Res(inst, 0) => {
|
|
match self[inst] {
|
|
InstructionData::Unary { opcode, arg, .. } => {
|
|
match opcode {
|
|
Opcode::Copy | Opcode::Spill | Opcode::Fill => arg,
|
|
_ => return v,
|
|
}
|
|
}
|
|
_ => return v,
|
|
}
|
|
}
|
|
_ => return v,
|
|
};
|
|
}
|
|
panic!("Copy loop detected for {}", value);
|
|
}
|
|
|
|
/// Turn a value into an alias of another.
|
|
///
|
|
/// Change the `dest` value to behave as an alias of `src`. This means that all uses of `dest`
|
|
/// will behave as if they used that value `src`.
|
|
///
|
|
/// The `dest` value cannot be a direct value defined as the first result of an instruction. To
|
|
/// replace a direct value with `src`, its defining instruction should be replaced with a
|
|
/// `copy src` instruction. See `replace()`.
|
|
pub fn change_to_alias(&mut self, dest: Value, src: Value) {
|
|
use ir::entities::ExpandedValue::Table;
|
|
|
|
// Try to create short alias chains by finding the original source value.
|
|
// This also avoids the creation of loops.
|
|
let original = self.resolve_aliases(src);
|
|
assert!(dest != original,
|
|
"Aliasing {} to {} would create a loop",
|
|
dest,
|
|
src);
|
|
let ty = self.value_type(original);
|
|
assert_eq!(self.value_type(dest),
|
|
ty,
|
|
"Aliasing {} to {} would change its type {} to {}",
|
|
dest,
|
|
src,
|
|
self.value_type(dest),
|
|
ty);
|
|
|
|
if let Table(idx) = dest.expand() {
|
|
self.extended_values[idx] = ValueData::Alias {
|
|
ty: ty,
|
|
original: original,
|
|
};
|
|
} else {
|
|
panic!("Cannot change direct value {} into an alias", dest);
|
|
}
|
|
}
|
|
|
|
/// Create a new value alias.
|
|
///
|
|
/// Note that this function should only be called by the parser.
|
|
pub fn make_value_alias(&mut self, src: Value) -> Value {
|
|
let ty = self.value_type(src);
|
|
|
|
let data = ValueData::Alias {
|
|
ty: ty,
|
|
original: src,
|
|
};
|
|
self.make_value(data)
|
|
}
|
|
}
|
|
|
|
/// Where did a value come from?
|
|
#[derive(Debug, PartialEq, Eq)]
|
|
pub enum ValueDef {
|
|
/// Value is the n'th result of an instruction.
|
|
Res(Inst, usize),
|
|
/// Value is the n'th argument to an EBB.
|
|
Arg(Ebb, usize),
|
|
}
|
|
|
|
// Internal table storage for extended values.
|
|
#[derive(Clone, Debug)]
|
|
enum ValueData {
|
|
// Value is defined by an instruction.
|
|
Inst { ty: Type, num: u16, inst: Inst },
|
|
|
|
// Value is an EBB argument.
|
|
Arg { ty: Type, num: u16, ebb: Ebb },
|
|
|
|
// Value is an alias of another value.
|
|
// An alias value can't be linked as an instruction result or EBB argument. It is used as a
|
|
// placeholder when the original instruction or EBB has been rewritten or modified.
|
|
Alias { ty: Type, original: Value },
|
|
}
|
|
|
|
/// Instructions.
|
|
///
|
|
impl DataFlowGraph {
|
|
/// Create a new instruction.
|
|
///
|
|
/// The type of the first result is indicated by `data.ty`. If the instruction produces
|
|
/// multiple results, also call `make_inst_results` to allocate value table entries.
|
|
pub fn make_inst(&mut self, data: InstructionData) -> Inst {
|
|
let n = self.num_insts() + 1;
|
|
self.results.resize(n);
|
|
self.insts.push(data)
|
|
}
|
|
|
|
/// Get the instruction reference that will be assigned to the next instruction created by
|
|
/// `make_inst`.
|
|
///
|
|
/// This is only really useful to the parser.
|
|
pub fn next_inst(&self) -> Inst {
|
|
self.insts.next_key()
|
|
}
|
|
|
|
/// Returns an object that displays `inst`.
|
|
pub fn display_inst(&self, inst: Inst) -> DisplayInst {
|
|
DisplayInst(self, inst)
|
|
}
|
|
|
|
/// Get all value arguments on `inst` as a slice.
|
|
pub fn inst_args(&self, inst: Inst) -> &[Value] {
|
|
self.insts[inst].arguments(&self.value_lists)
|
|
}
|
|
|
|
/// Get all value arguments on `inst` as a mutable slice.
|
|
pub fn inst_args_mut(&mut self, inst: Inst) -> &mut [Value] {
|
|
self.insts[inst].arguments_mut(&mut self.value_lists)
|
|
}
|
|
|
|
/// Get the fixed value arguments on `inst` as a slice.
|
|
pub fn inst_fixed_args(&self, inst: Inst) -> &[Value] {
|
|
let fixed_args = self[inst]
|
|
.opcode()
|
|
.constraints()
|
|
.fixed_value_arguments();
|
|
&self.inst_args(inst)[..fixed_args]
|
|
}
|
|
|
|
/// Get the fixed value arguments on `inst` as a mutable slice.
|
|
pub fn inst_fixed_args_mut(&mut self, inst: Inst) -> &mut [Value] {
|
|
let fixed_args = self[inst]
|
|
.opcode()
|
|
.constraints()
|
|
.fixed_value_arguments();
|
|
&mut self.inst_args_mut(inst)[..fixed_args]
|
|
}
|
|
|
|
/// Get the variable value arguments on `inst` as a slice.
|
|
pub fn inst_variable_args(&self, inst: Inst) -> &[Value] {
|
|
let fixed_args = self[inst]
|
|
.opcode()
|
|
.constraints()
|
|
.fixed_value_arguments();
|
|
&self.inst_args(inst)[fixed_args..]
|
|
}
|
|
|
|
/// Get the variable value arguments on `inst` as a mutable slice.
|
|
pub fn inst_variable_args_mut(&mut self, inst: Inst) -> &mut [Value] {
|
|
let fixed_args = self[inst]
|
|
.opcode()
|
|
.constraints()
|
|
.fixed_value_arguments();
|
|
&mut self.inst_args_mut(inst)[fixed_args..]
|
|
}
|
|
|
|
/// Create result values for an instruction that produces multiple results.
|
|
///
|
|
/// Instructions that produce no result values only need to be created with `make_inst`,
|
|
/// otherwise call `make_inst_results` to allocate value table entries for the results.
|
|
///
|
|
/// The result value types are determined from the instruction's value type constraints and the
|
|
/// provided `ctrl_typevar` type for polymorphic instructions. For non-polymorphic
|
|
/// instructions, `ctrl_typevar` is ignored, and `VOID` can be used.
|
|
///
|
|
/// The type of the first result value is also set, even if it was already set in the
|
|
/// `InstructionData` passed to `make_inst`. If this function is called with a single-result
|
|
/// instruction, that is the only effect.
|
|
pub fn make_inst_results(&mut self, inst: Inst, ctrl_typevar: Type) -> usize {
|
|
let constraints = self.insts[inst].opcode().constraints();
|
|
let fixed_results = constraints.fixed_results();
|
|
let mut total_results = fixed_results;
|
|
|
|
self.results[inst].clear(&mut self.value_lists);
|
|
|
|
// The fixed results will appear at the front of the list.
|
|
for res_idx in 0..fixed_results {
|
|
self.append_result(inst, constraints.result_type(res_idx, ctrl_typevar));
|
|
}
|
|
|
|
// Get the call signature if this is a function call.
|
|
if let Some(sig) = self.call_signature(inst) {
|
|
// Create result values corresponding to the call return types.
|
|
let var_results = self.signatures[sig].return_types.len();
|
|
total_results += var_results;
|
|
for res_idx in 0..var_results {
|
|
let ty = self.signatures[sig].return_types[res_idx].value_type;
|
|
self.append_result(inst, ty);
|
|
}
|
|
}
|
|
|
|
if let Some(v) = self.results[inst].first(&mut self.value_lists) {
|
|
let ty = self.value_type(v);
|
|
*self[inst].first_type_mut() = ty;
|
|
}
|
|
|
|
total_results
|
|
}
|
|
|
|
/// Create an `InsertBuilder` that will insert an instruction at the cursor's current position.
|
|
pub fn ins<'c, 'fc: 'c, 'fd>(&'fd mut self,
|
|
at: &'c mut Cursor<'fc>)
|
|
-> InsertBuilder<'c, 'fc, 'fd> {
|
|
InsertBuilder::new(self, at)
|
|
}
|
|
|
|
/// Create a `ReplaceBuilder` that will replace `inst` with a new instruction in place.
|
|
pub fn replace(&mut self, inst: Inst) -> ReplaceBuilder {
|
|
ReplaceBuilder::new(self, inst)
|
|
}
|
|
|
|
/// Detach secondary instruction results.
|
|
///
|
|
/// If `inst` produces two or more results, detach these secondary result values from `inst`.
|
|
/// The first result value cannot be detached.
|
|
///
|
|
/// Use this method to detach secondary values before using `replace(inst)` to provide an
|
|
/// alternate instruction for computing the primary result value.
|
|
pub fn detach_secondary_results(&mut self, inst: Inst) {
|
|
if let Some(first) = self.results[inst].first(&mut self.value_lists) {
|
|
self.results[inst].clear(&mut self.value_lists);
|
|
self.results[inst].push(first, &mut self.value_lists);
|
|
}
|
|
}
|
|
|
|
/// Detach the list of result values from `inst` and return it.
|
|
///
|
|
/// This leaves `inst` without any result values. New result values can be created by calling
|
|
/// `make_inst_results` or by using a `replace(inst)` builder.
|
|
pub fn detach_results(&mut self, inst: Inst) -> ValueList {
|
|
self.results[inst].take()
|
|
}
|
|
|
|
/// Attach an existing value to the result value list for `inst`.
|
|
///
|
|
/// The `res` value is appended to the end of the result list.
|
|
///
|
|
/// This is a very low-level operation. Usually, instruction results with the correct types are
|
|
/// created automatically. The `res` value must not be attached to anything else.
|
|
pub fn attach_result(&mut self, inst: Inst, res: Value) {
|
|
let num = self.results[inst].push(res, &mut self.value_lists);
|
|
assert!(num <= u16::MAX as usize, "Too many result values");
|
|
let ty = self.value_type(res);
|
|
if let ExpandedValue::Table(idx) = res.expand() {
|
|
self.extended_values[idx] = ValueData::Inst {
|
|
ty: ty,
|
|
num: num as u16,
|
|
inst: inst,
|
|
};
|
|
} else {
|
|
panic!("Unexpected direct value");
|
|
}
|
|
}
|
|
|
|
/// Append a new instruction result value to `inst`.
|
|
pub fn append_result(&mut self, inst: Inst, ty: Type) -> Value {
|
|
let res = self.make_value(ValueData::Inst {
|
|
ty: ty,
|
|
inst: inst,
|
|
num: 0,
|
|
});
|
|
self.attach_result(inst, res);
|
|
res
|
|
}
|
|
|
|
/// Get the first result of an instruction.
|
|
///
|
|
/// This function panics if the instruction doesn't have any result.
|
|
pub fn first_result(&self, inst: Inst) -> Value {
|
|
self.results[inst]
|
|
.first(&self.value_lists)
|
|
.expect("Instruction has no results")
|
|
}
|
|
|
|
/// Test if `inst` has any result values currently.
|
|
pub fn has_results(&self, inst: Inst) -> bool {
|
|
!self.results[inst].is_empty()
|
|
}
|
|
|
|
/// Return all the results of an instruction.
|
|
pub fn inst_results(&self, inst: Inst) -> &[Value] {
|
|
self.results[inst].as_slice(&self.value_lists)
|
|
}
|
|
|
|
/// Get the call signature of a direct or indirect call instruction.
|
|
/// Returns `None` if `inst` is not a call instruction.
|
|
pub fn call_signature(&self, inst: Inst) -> Option<SigRef> {
|
|
match self.insts[inst].analyze_call(&self.value_lists) {
|
|
CallInfo::NotACall => None,
|
|
CallInfo::Direct(f, _) => Some(self.ext_funcs[f].signature),
|
|
CallInfo::Indirect(s, _) => Some(s),
|
|
}
|
|
}
|
|
|
|
/// Compute the type of an instruction result from opcode constraints and call signatures.
|
|
///
|
|
/// This computes the same sequence of result types that `make_inst_results()` above would
|
|
/// assign to the created result values, but it does not depend on `make_inst_results()` being
|
|
/// called first.
|
|
///
|
|
/// Returns `None` if asked about a result index that is too large.
|
|
pub fn compute_result_type(&self,
|
|
inst: Inst,
|
|
result_idx: usize,
|
|
ctrl_typevar: Type)
|
|
-> Option<Type> {
|
|
let constraints = self.insts[inst].opcode().constraints();
|
|
let fixed_results = constraints.fixed_results();
|
|
|
|
if result_idx < fixed_results {
|
|
return Some(constraints.result_type(result_idx, ctrl_typevar));
|
|
}
|
|
|
|
// Not a fixed result, try to extract a return type from the call signature.
|
|
self.call_signature(inst)
|
|
.and_then(|sigref| {
|
|
self.signatures[sigref]
|
|
.return_types
|
|
.get(result_idx - fixed_results)
|
|
.map(|&arg| arg.value_type)
|
|
})
|
|
}
|
|
}
|
|
|
|
/// Allow immutable access to instructions via indexing.
|
|
impl Index<Inst> for DataFlowGraph {
|
|
type Output = InstructionData;
|
|
|
|
fn index<'a>(&'a self, inst: Inst) -> &'a InstructionData {
|
|
&self.insts[inst]
|
|
}
|
|
}
|
|
|
|
/// Allow mutable access to instructions via indexing.
|
|
impl IndexMut<Inst> for DataFlowGraph {
|
|
fn index_mut<'a>(&'a mut self, inst: Inst) -> &'a mut InstructionData {
|
|
&mut self.insts[inst]
|
|
}
|
|
}
|
|
|
|
/// Extended basic blocks.
|
|
impl DataFlowGraph {
|
|
/// Create a new basic block.
|
|
pub fn make_ebb(&mut self) -> Ebb {
|
|
self.ebbs.push(EbbData::new())
|
|
}
|
|
|
|
/// Get the number of arguments on `ebb`.
|
|
pub fn num_ebb_args(&self, ebb: Ebb) -> usize {
|
|
self.ebbs[ebb].args.len(&self.value_lists)
|
|
}
|
|
|
|
/// Append an argument with type `ty` to `ebb`.
|
|
pub fn append_ebb_arg(&mut self, ebb: Ebb, ty: Type) -> Value {
|
|
let val = self.make_value(ValueData::Arg {
|
|
ty: ty,
|
|
ebb: ebb,
|
|
num: 0,
|
|
});
|
|
self.attach_ebb_arg(ebb, val);
|
|
val
|
|
}
|
|
|
|
/// Get the arguments to an EBB.
|
|
pub fn ebb_args(&self, ebb: Ebb) -> &[Value] {
|
|
self.ebbs[ebb].args.as_slice(&self.value_lists)
|
|
}
|
|
|
|
/// Replace an EBB argument with a new value of type `ty`.
|
|
///
|
|
/// The `old_value` must be an attached EBB argument. It is removed from its place in the list
|
|
/// of arguments and replaced by a new value of type `new_type`. The new value gets the same
|
|
/// position in the list, and other arguments are not disturbed.
|
|
///
|
|
/// The old value is left detached, so it should probably be changed into something else.
|
|
///
|
|
/// Returns the new value.
|
|
pub fn replace_ebb_arg(&mut self, old_arg: Value, new_type: Type) -> Value {
|
|
let old_data = if let ExpandedValue::Table(index) = old_arg.expand() {
|
|
self.extended_values[index].clone()
|
|
} else {
|
|
panic!("old_arg: {} must be an EBB argument", old_arg);
|
|
};
|
|
|
|
// Create new value identical to the old one except for the type.
|
|
let (ebb, num) = if let ValueData::Arg { num, ebb, .. } = old_data {
|
|
(ebb, num)
|
|
} else {
|
|
panic!("old_arg: {} must be an EBB argument: {:?}",
|
|
old_arg,
|
|
old_data);
|
|
};
|
|
let new_arg = self.make_value(ValueData::Arg {
|
|
ty: new_type,
|
|
num: num,
|
|
ebb: ebb,
|
|
});
|
|
|
|
self.ebbs[ebb].args.as_mut_slice(&mut self.value_lists)[num as usize] = new_arg;
|
|
new_arg
|
|
}
|
|
|
|
/// Detach all the arguments from `ebb` and return them as a `ValueList`.
|
|
///
|
|
/// This is a quite low-level operation. Sensible things to do with the detached EBB arguments
|
|
/// is to put them back on the same EBB with `attach_ebb_arg()` or change them into aliases
|
|
/// with `change_to_alias()`.
|
|
pub fn detach_ebb_args(&mut self, ebb: Ebb) -> ValueList {
|
|
self.ebbs[ebb].args.take()
|
|
}
|
|
|
|
/// Append an existing argument value to `ebb`.
|
|
///
|
|
/// The appended value should already be an EBB argument belonging to `ebb`, but it can't be
|
|
/// attached. In practice, this means that it should be one of the values returned from
|
|
/// `detach_ebb_args()`.
|
|
///
|
|
/// In almost all cases, you should be using `append_ebb_arg()` instead of this method.
|
|
pub fn attach_ebb_arg(&mut self, ebb: Ebb, arg: Value) {
|
|
let arg_num = self.ebbs[ebb].args.push(arg, &mut self.value_lists);
|
|
assert!(arg_num <= u16::MAX as usize, "Too many arguments to EBB");
|
|
|
|
// Now update `arg` itself.
|
|
let arg_ebb = ebb;
|
|
if let ExpandedValue::Table(idx) = arg.expand() {
|
|
if let ValueData::Arg { ref mut num, ebb, .. } = self.extended_values[idx] {
|
|
*num = arg_num as u16;
|
|
assert_eq!(arg_ebb, ebb, "{} should already belong to EBB", arg);
|
|
return;
|
|
}
|
|
}
|
|
panic!("{} must be an EBB argument value", arg);
|
|
}
|
|
}
|
|
|
|
// Contents of an extended basic block.
|
|
//
|
|
// Arguments for an extended basic block are values that dominate everything in the EBB. All
|
|
// branches to this EBB must provide matching arguments, and the arguments to the entry EBB must
|
|
// match the function arguments.
|
|
#[derive(Clone)]
|
|
struct EbbData {
|
|
// List of arguments to this EBB.
|
|
args: ValueList,
|
|
}
|
|
|
|
impl EbbData {
|
|
fn new() -> EbbData {
|
|
EbbData { args: ValueList::new() }
|
|
}
|
|
}
|
|
|
|
/// Object that can display an instruction.
|
|
pub struct DisplayInst<'a>(&'a DataFlowGraph, Inst);
|
|
|
|
impl<'a> fmt::Display for DisplayInst<'a> {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
let dfg = self.0;
|
|
let inst = &dfg[self.1];
|
|
|
|
if let Some((first, rest)) = dfg.inst_results(self.1).split_first() {
|
|
write!(f, "{}", first)?;
|
|
for v in rest {
|
|
write!(f, ", {}", v)?;
|
|
}
|
|
write!(f, " = ")?;
|
|
}
|
|
|
|
|
|
let typevar = inst.ctrl_typevar(dfg);
|
|
if typevar.is_void() {
|
|
write!(f, "{}", inst.opcode())?;
|
|
} else {
|
|
write!(f, "{}.{}", inst.opcode(), typevar)?;
|
|
}
|
|
write_operands(f, dfg, self.1)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use ir::types;
|
|
use ir::{Function, Cursor, Opcode, InstructionData};
|
|
|
|
#[test]
|
|
fn make_inst() {
|
|
let mut dfg = DataFlowGraph::new();
|
|
|
|
let idata = InstructionData::Nullary {
|
|
opcode: Opcode::Iconst,
|
|
ty: types::VOID,
|
|
};
|
|
let inst = dfg.make_inst(idata);
|
|
dfg.make_inst_results(inst, types::I32);
|
|
assert_eq!(inst.to_string(), "inst0");
|
|
assert_eq!(dfg.display_inst(inst).to_string(), "vx0 = iconst.i32");
|
|
|
|
// Immutable reference resolution.
|
|
{
|
|
let immdfg = &dfg;
|
|
let ins = &immdfg[inst];
|
|
assert_eq!(ins.opcode(), Opcode::Iconst);
|
|
assert_eq!(ins.first_type(), types::I32);
|
|
}
|
|
|
|
// Results.
|
|
let val = dfg.first_result(inst);
|
|
assert_eq!(dfg.inst_results(inst), &[val]);
|
|
|
|
assert_eq!(dfg.value_def(val), ValueDef::Res(inst, 0));
|
|
assert_eq!(dfg.value_type(val), types::I32);
|
|
}
|
|
|
|
#[test]
|
|
fn no_results() {
|
|
let mut dfg = DataFlowGraph::new();
|
|
|
|
let idata = InstructionData::Nullary {
|
|
opcode: Opcode::Trap,
|
|
ty: types::VOID,
|
|
};
|
|
let inst = dfg.make_inst(idata);
|
|
assert_eq!(dfg.display_inst(inst).to_string(), "trap");
|
|
|
|
// Result slice should be empty.
|
|
assert_eq!(dfg.inst_results(inst), &[]);
|
|
}
|
|
|
|
#[test]
|
|
fn ebb() {
|
|
let mut dfg = DataFlowGraph::new();
|
|
|
|
let ebb = dfg.make_ebb();
|
|
assert_eq!(ebb.to_string(), "ebb0");
|
|
assert_eq!(dfg.num_ebb_args(ebb), 0);
|
|
assert_eq!(dfg.ebb_args(ebb), &[]);
|
|
assert!(dfg.detach_ebb_args(ebb).is_empty());
|
|
assert_eq!(dfg.num_ebb_args(ebb), 0);
|
|
assert_eq!(dfg.ebb_args(ebb), &[]);
|
|
|
|
let arg1 = dfg.append_ebb_arg(ebb, types::F32);
|
|
assert_eq!(arg1.to_string(), "vx0");
|
|
assert_eq!(dfg.num_ebb_args(ebb), 1);
|
|
assert_eq!(dfg.ebb_args(ebb), &[arg1]);
|
|
|
|
let arg2 = dfg.append_ebb_arg(ebb, types::I16);
|
|
assert_eq!(arg2.to_string(), "vx1");
|
|
assert_eq!(dfg.num_ebb_args(ebb), 2);
|
|
assert_eq!(dfg.ebb_args(ebb), &[arg1, arg2]);
|
|
|
|
assert_eq!(dfg.value_def(arg1), ValueDef::Arg(ebb, 0));
|
|
assert_eq!(dfg.value_def(arg2), ValueDef::Arg(ebb, 1));
|
|
assert_eq!(dfg.value_type(arg1), types::F32);
|
|
assert_eq!(dfg.value_type(arg2), types::I16);
|
|
|
|
// Swap the two EBB arguments.
|
|
let vlist = dfg.detach_ebb_args(ebb);
|
|
assert_eq!(dfg.num_ebb_args(ebb), 0);
|
|
assert_eq!(dfg.ebb_args(ebb), &[]);
|
|
assert_eq!(vlist.as_slice(&dfg.value_lists), &[arg1, arg2]);
|
|
dfg.attach_ebb_arg(ebb, arg2);
|
|
let arg3 = dfg.append_ebb_arg(ebb, types::I32);
|
|
dfg.attach_ebb_arg(ebb, arg1);
|
|
assert_eq!(dfg.ebb_args(ebb), &[arg2, arg3, arg1]);
|
|
}
|
|
|
|
#[test]
|
|
fn replace_ebb_arguments() {
|
|
let mut dfg = DataFlowGraph::new();
|
|
|
|
let ebb = dfg.make_ebb();
|
|
let arg1 = dfg.append_ebb_arg(ebb, types::F32);
|
|
|
|
let new1 = dfg.replace_ebb_arg(arg1, types::I64);
|
|
assert_eq!(dfg.value_type(arg1), types::F32);
|
|
assert_eq!(dfg.value_type(new1), types::I64);
|
|
assert_eq!(dfg.ebb_args(ebb), &[new1]);
|
|
|
|
dfg.attach_ebb_arg(ebb, arg1);
|
|
assert_eq!(dfg.ebb_args(ebb), &[new1, arg1]);
|
|
|
|
let new2 = dfg.replace_ebb_arg(arg1, types::I8);
|
|
assert_eq!(dfg.value_type(arg1), types::F32);
|
|
assert_eq!(dfg.value_type(new2), types::I8);
|
|
assert_eq!(dfg.ebb_args(ebb), &[new1, new2]);
|
|
|
|
dfg.attach_ebb_arg(ebb, arg1);
|
|
assert_eq!(dfg.ebb_args(ebb), &[new1, new2, arg1]);
|
|
|
|
let new3 = dfg.replace_ebb_arg(new2, types::I16);
|
|
assert_eq!(dfg.value_type(new1), types::I64);
|
|
assert_eq!(dfg.value_type(new2), types::I8);
|
|
assert_eq!(dfg.value_type(new3), types::I16);
|
|
assert_eq!(dfg.ebb_args(ebb), &[new1, new3, arg1]);
|
|
}
|
|
|
|
#[test]
|
|
fn aliases() {
|
|
use ir::InstBuilder;
|
|
use ir::condcodes::IntCC;
|
|
|
|
let mut func = Function::new();
|
|
let dfg = &mut func.dfg;
|
|
let ebb0 = dfg.make_ebb();
|
|
let pos = &mut Cursor::new(&mut func.layout);
|
|
pos.insert_ebb(ebb0);
|
|
|
|
// Build a little test program.
|
|
let v1 = dfg.ins(pos).iconst(types::I32, 42);
|
|
|
|
// Make sure we can resolve value aliases even when extended_values is empty.
|
|
assert_eq!(dfg.resolve_aliases(v1), v1);
|
|
|
|
let arg0 = dfg.append_ebb_arg(ebb0, types::I32);
|
|
let (s, c) = dfg.ins(pos).iadd_cout(v1, arg0);
|
|
let iadd = match dfg.value_def(s) {
|
|
ValueDef::Res(i, 0) => i,
|
|
_ => panic!(),
|
|
};
|
|
|
|
// Replace `iadd_cout` with a normal `iadd` and an `icmp`.
|
|
dfg.replace(iadd).iadd(v1, arg0);
|
|
let c2 = dfg.ins(pos).icmp(IntCC::UnsignedLessThan, s, v1);
|
|
dfg.change_to_alias(c, c2);
|
|
|
|
assert_eq!(dfg.resolve_aliases(c2), c2);
|
|
assert_eq!(dfg.resolve_aliases(c), c2);
|
|
|
|
// Make a copy of the alias.
|
|
let c3 = dfg.ins(pos).copy(c);
|
|
// This does not see through copies.
|
|
assert_eq!(dfg.resolve_aliases(c3), c3);
|
|
// But this goes through both copies and aliases.
|
|
assert_eq!(dfg.resolve_copies(c3), c2);
|
|
}
|
|
}
|