Files
wasmtime/lib/cretonne/src/ir/dfg.rs
Jakob Stoklund Olesen 00ee850e33 Stop linking result values together.
Since results are in a value list, they don't need to form a linked
list any longer.

- Simplify make_inst_results() to create values in the natural order.
- Eliminate the last use of next_secondary_value().
- Delete unused result manipulation methods.
2017-04-12 14:32:13 -07:00

859 lines
31 KiB
Rust

//! Data flow graph tracking Instructions, Values, and EBBs.
use ir::{Ebb, Inst, Value, Type, SigRef, Signature, FuncRef, ValueList, ValueListPool};
use ir::entities::ExpandedValue;
use ir::instructions::{Opcode, InstructionData, CallInfo};
use ir::extfunc::ExtFuncData;
use entity_map::{EntityMap, PrimaryEntityData};
use ir::builder::{InsertBuilder, ReplaceBuilder};
use ir::layout::Cursor;
use write::write_operands;
use std::fmt;
use std::ops::{Index, IndexMut};
use std::u16;
/// A data flow graph defines all instructions and extended basic blocks in a function as well as
/// the data flow dependencies between them. The DFG also tracks values which can be either
/// instruction results or EBB arguments.
///
/// The layout of EBBs in the function and of instructions in each EBB is recorded by the
/// `FunctionLayout` data structure which form the other half of the function representation.
///
#[derive(Clone)]
pub struct DataFlowGraph {
/// Data about all of the instructions in the function, including opcodes and operands.
/// The instructions in this map are not in program order. That is tracked by `Layout`, along
/// with the EBB containing each instruction.
insts: EntityMap<Inst, InstructionData>,
/// List of result values for each instruction.
///
/// This map gets resized automatically by `make_inst()` so it is always in sync with the
/// primary `insts` map.
results: EntityMap<Inst, ValueList>,
/// Extended basic blocks in the function and their arguments.
/// This map is not in program order. That is handled by `Layout`, and so is the sequence of
/// instructions contained in each EBB.
ebbs: EntityMap<Ebb, EbbData>,
/// Memory pool of value lists.
///
/// The `ValueList` references into this pool appear in many places:
///
/// - Instructions in `insts` that don't have room for their entire argument list inline.
/// - Instruction result values in `results`.
/// - EBB arguments in `ebbs`.
pub value_lists: ValueListPool,
/// Extended value table. Most `Value` references refer directly to their defining instruction.
/// Others index into this table.
///
/// This is implemented directly with a `Vec` rather than an `EntityMap<Value, ...>` because
/// the Value entity references can refer to two things -- an instruction or an extended value.
extended_values: Vec<ValueData>,
/// Function signature table. These signatures are referenced by indirect call instructions as
/// well as the external function references.
pub signatures: EntityMap<SigRef, Signature>,
/// External function references. These are functions that can be called directly.
pub ext_funcs: EntityMap<FuncRef, ExtFuncData>,
}
impl PrimaryEntityData for InstructionData {}
impl PrimaryEntityData for EbbData {}
impl PrimaryEntityData for Signature {}
impl PrimaryEntityData for ExtFuncData {}
impl DataFlowGraph {
/// Create a new empty `DataFlowGraph`.
pub fn new() -> DataFlowGraph {
DataFlowGraph {
insts: EntityMap::new(),
results: EntityMap::new(),
ebbs: EntityMap::new(),
value_lists: ValueListPool::new(),
extended_values: Vec::new(),
signatures: EntityMap::new(),
ext_funcs: EntityMap::new(),
}
}
/// Get the total number of instructions created in this function, whether they are currently
/// inserted in the layout or not.
///
/// This is intended for use with `EntityMap::with_capacity`.
pub fn num_insts(&self) -> usize {
self.insts.len()
}
/// Returns `true` if the given instruction reference is valid.
pub fn inst_is_valid(&self, inst: Inst) -> bool {
self.insts.is_valid(inst)
}
/// Get the total number of extended basic blocks created in this function, whether they are
/// currently inserted in the layout or not.
///
/// This is intended for use with `EntityMap::with_capacity`.
pub fn num_ebbs(&self) -> usize {
self.ebbs.len()
}
/// Returns `true` if the given ebb reference is valid.
pub fn ebb_is_valid(&self, ebb: Ebb) -> bool {
self.ebbs.is_valid(ebb)
}
}
/// Handling values.
///
/// Values are either EBB arguments or instruction results.
impl DataFlowGraph {
// Allocate an extended value entry.
fn make_value(&mut self, data: ValueData) -> Value {
let vref = Value::new_table(self.extended_values.len());
self.extended_values.push(data);
vref
}
/// Check if a value reference is valid.
pub fn value_is_valid(&self, v: Value) -> bool {
match v.expand() {
ExpandedValue::Direct(inst) => self.insts.is_valid(inst),
ExpandedValue::Table(index) => index < self.extended_values.len(),
}
}
/// Get the type of a value.
pub fn value_type(&self, v: Value) -> Type {
use ir::entities::ExpandedValue::*;
match v.expand() {
Direct(i) => self.insts[i].first_type(),
Table(i) => {
match self.extended_values[i] {
ValueData::Inst { ty, .. } => ty,
ValueData::Arg { ty, .. } => ty,
ValueData::Alias { ty, .. } => ty,
}
}
}
}
/// Get the definition of a value.
///
/// This is either the instruction that defined it or the Ebb that has the value as an
/// argument.
pub fn value_def(&self, v: Value) -> ValueDef {
use ir::entities::ExpandedValue::*;
match v.expand() {
Direct(inst) => ValueDef::Res(inst, 0),
Table(idx) => {
match self.extended_values[idx] {
ValueData::Inst { inst, num, .. } => {
assert_eq!(Some(v),
self.results[inst].get(num as usize, &self.value_lists),
"Dangling result value {}: {}",
v,
self.display_inst(inst));
ValueDef::Res(inst, num as usize)
}
ValueData::Arg { ebb, num, .. } => {
assert_eq!(Some(v),
self.ebbs[ebb].args.get(num as usize, &self.value_lists),
"Dangling EBB argument value");
ValueDef::Arg(ebb, num as usize)
}
ValueData::Alias { original, .. } => {
// Make sure we only recurse one level. `resolve_aliases` has safeguards to
// detect alias loops without overrunning the stack.
self.value_def(self.resolve_aliases(original))
}
}
}
}
}
/// Resolve value aliases.
///
/// Find the original SSA value that `value` aliases.
pub fn resolve_aliases(&self, value: Value) -> Value {
use ir::entities::ExpandedValue::Table;
let mut v = value;
// Note that extended_values may be empty here.
for _ in 0..1 + self.extended_values.len() {
v = match v.expand() {
Table(idx) => {
match self.extended_values[idx] {
ValueData::Alias { original, .. } => {
// Follow alias values.
original
}
_ => return v,
}
}
_ => return v,
};
}
panic!("Value alias loop detected for {}", value);
}
/// Resolve value copies.
///
/// Find the original definition of a value, looking through value aliases as well as
/// copy/spill/fill instructions.
pub fn resolve_copies(&self, value: Value) -> Value {
let mut v = value;
for _ in 0..self.insts.len() {
v = self.resolve_aliases(v);
v = match self.value_def(v) {
ValueDef::Res(inst, 0) => {
match self[inst] {
InstructionData::Unary { opcode, arg, .. } => {
match opcode {
Opcode::Copy | Opcode::Spill | Opcode::Fill => arg,
_ => return v,
}
}
_ => return v,
}
}
_ => return v,
};
}
panic!("Copy loop detected for {}", value);
}
/// Turn a value into an alias of another.
///
/// Change the `dest` value to behave as an alias of `src`. This means that all uses of `dest`
/// will behave as if they used that value `src`.
///
/// The `dest` value cannot be a direct value defined as the first result of an instruction. To
/// replace a direct value with `src`, its defining instruction should be replaced with a
/// `copy src` instruction. See `replace()`.
pub fn change_to_alias(&mut self, dest: Value, src: Value) {
use ir::entities::ExpandedValue::Table;
// Try to create short alias chains by finding the original source value.
// This also avoids the creation of loops.
let original = self.resolve_aliases(src);
assert!(dest != original,
"Aliasing {} to {} would create a loop",
dest,
src);
let ty = self.value_type(original);
assert_eq!(self.value_type(dest),
ty,
"Aliasing {} to {} would change its type {} to {}",
dest,
src,
self.value_type(dest),
ty);
if let Table(idx) = dest.expand() {
self.extended_values[idx] = ValueData::Alias {
ty: ty,
original: original,
};
} else {
panic!("Cannot change direct value {} into an alias", dest);
}
}
/// Create a new value alias.
///
/// Note that this function should only be called by the parser.
pub fn make_value_alias(&mut self, src: Value) -> Value {
let ty = self.value_type(src);
let data = ValueData::Alias {
ty: ty,
original: src,
};
self.make_value(data)
}
}
/// Where did a value come from?
#[derive(Debug, PartialEq, Eq)]
pub enum ValueDef {
/// Value is the n'th result of an instruction.
Res(Inst, usize),
/// Value is the n'th argument to an EBB.
Arg(Ebb, usize),
}
// Internal table storage for extended values.
#[derive(Clone, Debug)]
enum ValueData {
// Value is defined by an instruction.
Inst { ty: Type, num: u16, inst: Inst },
// Value is an EBB argument.
Arg { ty: Type, num: u16, ebb: Ebb },
// Value is an alias of another value.
// An alias value can't be linked as an instruction result or EBB argument. It is used as a
// placeholder when the original instruction or EBB has been rewritten or modified.
Alias { ty: Type, original: Value },
}
/// Instructions.
///
impl DataFlowGraph {
/// Create a new instruction.
///
/// The type of the first result is indicated by `data.ty`. If the instruction produces
/// multiple results, also call `make_inst_results` to allocate value table entries.
pub fn make_inst(&mut self, data: InstructionData) -> Inst {
let n = self.num_insts() + 1;
self.results.resize(n);
self.insts.push(data)
}
/// Get the instruction reference that will be assigned to the next instruction created by
/// `make_inst`.
///
/// This is only really useful to the parser.
pub fn next_inst(&self) -> Inst {
self.insts.next_key()
}
/// Returns an object that displays `inst`.
pub fn display_inst(&self, inst: Inst) -> DisplayInst {
DisplayInst(self, inst)
}
/// Get all value arguments on `inst` as a slice.
pub fn inst_args(&self, inst: Inst) -> &[Value] {
self.insts[inst].arguments(&self.value_lists)
}
/// Get all value arguments on `inst` as a mutable slice.
pub fn inst_args_mut(&mut self, inst: Inst) -> &mut [Value] {
self.insts[inst].arguments_mut(&mut self.value_lists)
}
/// Get the fixed value arguments on `inst` as a slice.
pub fn inst_fixed_args(&self, inst: Inst) -> &[Value] {
let fixed_args = self[inst]
.opcode()
.constraints()
.fixed_value_arguments();
&self.inst_args(inst)[..fixed_args]
}
/// Get the fixed value arguments on `inst` as a mutable slice.
pub fn inst_fixed_args_mut(&mut self, inst: Inst) -> &mut [Value] {
let fixed_args = self[inst]
.opcode()
.constraints()
.fixed_value_arguments();
&mut self.inst_args_mut(inst)[..fixed_args]
}
/// Get the variable value arguments on `inst` as a slice.
pub fn inst_variable_args(&self, inst: Inst) -> &[Value] {
let fixed_args = self[inst]
.opcode()
.constraints()
.fixed_value_arguments();
&self.inst_args(inst)[fixed_args..]
}
/// Get the variable value arguments on `inst` as a mutable slice.
pub fn inst_variable_args_mut(&mut self, inst: Inst) -> &mut [Value] {
let fixed_args = self[inst]
.opcode()
.constraints()
.fixed_value_arguments();
&mut self.inst_args_mut(inst)[fixed_args..]
}
/// Create result values for an instruction that produces multiple results.
///
/// Instructions that produce no result values only need to be created with `make_inst`,
/// otherwise call `make_inst_results` to allocate value table entries for the results.
///
/// The result value types are determined from the instruction's value type constraints and the
/// provided `ctrl_typevar` type for polymorphic instructions. For non-polymorphic
/// instructions, `ctrl_typevar` is ignored, and `VOID` can be used.
///
/// The type of the first result value is also set, even if it was already set in the
/// `InstructionData` passed to `make_inst`. If this function is called with a single-result
/// instruction, that is the only effect.
pub fn make_inst_results(&mut self, inst: Inst, ctrl_typevar: Type) -> usize {
let constraints = self.insts[inst].opcode().constraints();
let fixed_results = constraints.fixed_results();
let mut total_results = fixed_results;
self.results[inst].clear(&mut self.value_lists);
// The fixed results will appear at the front of the list.
for res_idx in 0..fixed_results {
self.append_result(inst, constraints.result_type(res_idx, ctrl_typevar));
}
// Get the call signature if this is a function call.
if let Some(sig) = self.call_signature(inst) {
// Create result values corresponding to the call return types.
let var_results = self.signatures[sig].return_types.len();
total_results += var_results;
for res_idx in 0..var_results {
let ty = self.signatures[sig].return_types[res_idx].value_type;
self.append_result(inst, ty);
}
}
if let Some(v) = self.results[inst].first(&mut self.value_lists) {
let ty = self.value_type(v);
*self[inst].first_type_mut() = ty;
}
total_results
}
/// Create an `InsertBuilder` that will insert an instruction at the cursor's current position.
pub fn ins<'c, 'fc: 'c, 'fd>(&'fd mut self,
at: &'c mut Cursor<'fc>)
-> InsertBuilder<'c, 'fc, 'fd> {
InsertBuilder::new(self, at)
}
/// Create a `ReplaceBuilder` that will replace `inst` with a new instruction in place.
pub fn replace(&mut self, inst: Inst) -> ReplaceBuilder {
ReplaceBuilder::new(self, inst)
}
/// Detach secondary instruction results.
///
/// If `inst` produces two or more results, detach these secondary result values from `inst`.
/// The first result value cannot be detached.
///
/// Use this method to detach secondary values before using `replace(inst)` to provide an
/// alternate instruction for computing the primary result value.
pub fn detach_secondary_results(&mut self, inst: Inst) {
if let Some(first) = self.results[inst].first(&mut self.value_lists) {
self.results[inst].clear(&mut self.value_lists);
self.results[inst].push(first, &mut self.value_lists);
}
}
/// Detach the list of result values from `inst` and return it.
///
/// This leaves `inst` without any result values. New result values can be created by calling
/// `make_inst_results` or by using a `replace(inst)` builder.
pub fn detach_results(&mut self, inst: Inst) -> ValueList {
self.results[inst].take()
}
/// Attach an existing value to the result value list for `inst`.
///
/// The `res` value is appended to the end of the result list.
///
/// This is a very low-level operation. Usually, instruction results with the correct types are
/// created automatically. The `res` value must not be attached to anything else.
pub fn attach_result(&mut self, inst: Inst, res: Value) {
let num = self.results[inst].push(res, &mut self.value_lists);
assert!(num <= u16::MAX as usize, "Too many result values");
let ty = self.value_type(res);
if let ExpandedValue::Table(idx) = res.expand() {
self.extended_values[idx] = ValueData::Inst {
ty: ty,
num: num as u16,
inst: inst,
};
} else {
panic!("Unexpected direct value");
}
}
/// Append a new instruction result value to `inst`.
pub fn append_result(&mut self, inst: Inst, ty: Type) -> Value {
let res = self.make_value(ValueData::Inst {
ty: ty,
inst: inst,
num: 0,
});
self.attach_result(inst, res);
res
}
/// Get the first result of an instruction.
///
/// This function panics if the instruction doesn't have any result.
pub fn first_result(&self, inst: Inst) -> Value {
self.results[inst]
.first(&self.value_lists)
.expect("Instruction has no results")
}
/// Test if `inst` has any result values currently.
pub fn has_results(&self, inst: Inst) -> bool {
!self.results[inst].is_empty()
}
/// Return all the results of an instruction.
pub fn inst_results(&self, inst: Inst) -> &[Value] {
self.results[inst].as_slice(&self.value_lists)
}
/// Get the call signature of a direct or indirect call instruction.
/// Returns `None` if `inst` is not a call instruction.
pub fn call_signature(&self, inst: Inst) -> Option<SigRef> {
match self.insts[inst].analyze_call(&self.value_lists) {
CallInfo::NotACall => None,
CallInfo::Direct(f, _) => Some(self.ext_funcs[f].signature),
CallInfo::Indirect(s, _) => Some(s),
}
}
/// Compute the type of an instruction result from opcode constraints and call signatures.
///
/// This computes the same sequence of result types that `make_inst_results()` above would
/// assign to the created result values, but it does not depend on `make_inst_results()` being
/// called first.
///
/// Returns `None` if asked about a result index that is too large.
pub fn compute_result_type(&self,
inst: Inst,
result_idx: usize,
ctrl_typevar: Type)
-> Option<Type> {
let constraints = self.insts[inst].opcode().constraints();
let fixed_results = constraints.fixed_results();
if result_idx < fixed_results {
return Some(constraints.result_type(result_idx, ctrl_typevar));
}
// Not a fixed result, try to extract a return type from the call signature.
self.call_signature(inst)
.and_then(|sigref| {
self.signatures[sigref]
.return_types
.get(result_idx - fixed_results)
.map(|&arg| arg.value_type)
})
}
}
/// Allow immutable access to instructions via indexing.
impl Index<Inst> for DataFlowGraph {
type Output = InstructionData;
fn index<'a>(&'a self, inst: Inst) -> &'a InstructionData {
&self.insts[inst]
}
}
/// Allow mutable access to instructions via indexing.
impl IndexMut<Inst> for DataFlowGraph {
fn index_mut<'a>(&'a mut self, inst: Inst) -> &'a mut InstructionData {
&mut self.insts[inst]
}
}
/// Extended basic blocks.
impl DataFlowGraph {
/// Create a new basic block.
pub fn make_ebb(&mut self) -> Ebb {
self.ebbs.push(EbbData::new())
}
/// Get the number of arguments on `ebb`.
pub fn num_ebb_args(&self, ebb: Ebb) -> usize {
self.ebbs[ebb].args.len(&self.value_lists)
}
/// Append an argument with type `ty` to `ebb`.
pub fn append_ebb_arg(&mut self, ebb: Ebb, ty: Type) -> Value {
let val = self.make_value(ValueData::Arg {
ty: ty,
ebb: ebb,
num: 0,
});
self.attach_ebb_arg(ebb, val);
val
}
/// Get the arguments to an EBB.
pub fn ebb_args(&self, ebb: Ebb) -> &[Value] {
self.ebbs[ebb].args.as_slice(&self.value_lists)
}
/// Replace an EBB argument with a new value of type `ty`.
///
/// The `old_value` must be an attached EBB argument. It is removed from its place in the list
/// of arguments and replaced by a new value of type `new_type`. The new value gets the same
/// position in the list, and other arguments are not disturbed.
///
/// The old value is left detached, so it should probably be changed into something else.
///
/// Returns the new value.
pub fn replace_ebb_arg(&mut self, old_arg: Value, new_type: Type) -> Value {
let old_data = if let ExpandedValue::Table(index) = old_arg.expand() {
self.extended_values[index].clone()
} else {
panic!("old_arg: {} must be an EBB argument", old_arg);
};
// Create new value identical to the old one except for the type.
let (ebb, num) = if let ValueData::Arg { num, ebb, .. } = old_data {
(ebb, num)
} else {
panic!("old_arg: {} must be an EBB argument: {:?}",
old_arg,
old_data);
};
let new_arg = self.make_value(ValueData::Arg {
ty: new_type,
num: num,
ebb: ebb,
});
self.ebbs[ebb].args.as_mut_slice(&mut self.value_lists)[num as usize] = new_arg;
new_arg
}
/// Detach all the arguments from `ebb` and return them as a `ValueList`.
///
/// This is a quite low-level operation. Sensible things to do with the detached EBB arguments
/// is to put them back on the same EBB with `attach_ebb_arg()` or change them into aliases
/// with `change_to_alias()`.
pub fn detach_ebb_args(&mut self, ebb: Ebb) -> ValueList {
self.ebbs[ebb].args.take()
}
/// Append an existing argument value to `ebb`.
///
/// The appended value should already be an EBB argument belonging to `ebb`, but it can't be
/// attached. In practice, this means that it should be one of the values returned from
/// `detach_ebb_args()`.
///
/// In almost all cases, you should be using `append_ebb_arg()` instead of this method.
pub fn attach_ebb_arg(&mut self, ebb: Ebb, arg: Value) {
let arg_num = self.ebbs[ebb].args.push(arg, &mut self.value_lists);
assert!(arg_num <= u16::MAX as usize, "Too many arguments to EBB");
// Now update `arg` itself.
let arg_ebb = ebb;
if let ExpandedValue::Table(idx) = arg.expand() {
if let ValueData::Arg { ref mut num, ebb, .. } = self.extended_values[idx] {
*num = arg_num as u16;
assert_eq!(arg_ebb, ebb, "{} should already belong to EBB", arg);
return;
}
}
panic!("{} must be an EBB argument value", arg);
}
}
// Contents of an extended basic block.
//
// Arguments for an extended basic block are values that dominate everything in the EBB. All
// branches to this EBB must provide matching arguments, and the arguments to the entry EBB must
// match the function arguments.
#[derive(Clone)]
struct EbbData {
// List of arguments to this EBB.
args: ValueList,
}
impl EbbData {
fn new() -> EbbData {
EbbData { args: ValueList::new() }
}
}
/// Object that can display an instruction.
pub struct DisplayInst<'a>(&'a DataFlowGraph, Inst);
impl<'a> fmt::Display for DisplayInst<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let dfg = self.0;
let inst = &dfg[self.1];
if let Some((first, rest)) = dfg.inst_results(self.1).split_first() {
write!(f, "{}", first)?;
for v in rest {
write!(f, ", {}", v)?;
}
write!(f, " = ")?;
}
let typevar = inst.ctrl_typevar(dfg);
if typevar.is_void() {
write!(f, "{}", inst.opcode())?;
} else {
write!(f, "{}.{}", inst.opcode(), typevar)?;
}
write_operands(f, dfg, self.1)
}
}
#[cfg(test)]
mod tests {
use super::*;
use ir::types;
use ir::{Function, Cursor, Opcode, InstructionData};
#[test]
fn make_inst() {
let mut dfg = DataFlowGraph::new();
let idata = InstructionData::Nullary {
opcode: Opcode::Iconst,
ty: types::VOID,
};
let inst = dfg.make_inst(idata);
dfg.make_inst_results(inst, types::I32);
assert_eq!(inst.to_string(), "inst0");
assert_eq!(dfg.display_inst(inst).to_string(), "vx0 = iconst.i32");
// Immutable reference resolution.
{
let immdfg = &dfg;
let ins = &immdfg[inst];
assert_eq!(ins.opcode(), Opcode::Iconst);
assert_eq!(ins.first_type(), types::I32);
}
// Results.
let val = dfg.first_result(inst);
assert_eq!(dfg.inst_results(inst), &[val]);
assert_eq!(dfg.value_def(val), ValueDef::Res(inst, 0));
assert_eq!(dfg.value_type(val), types::I32);
}
#[test]
fn no_results() {
let mut dfg = DataFlowGraph::new();
let idata = InstructionData::Nullary {
opcode: Opcode::Trap,
ty: types::VOID,
};
let inst = dfg.make_inst(idata);
assert_eq!(dfg.display_inst(inst).to_string(), "trap");
// Result slice should be empty.
assert_eq!(dfg.inst_results(inst), &[]);
}
#[test]
fn ebb() {
let mut dfg = DataFlowGraph::new();
let ebb = dfg.make_ebb();
assert_eq!(ebb.to_string(), "ebb0");
assert_eq!(dfg.num_ebb_args(ebb), 0);
assert_eq!(dfg.ebb_args(ebb), &[]);
assert!(dfg.detach_ebb_args(ebb).is_empty());
assert_eq!(dfg.num_ebb_args(ebb), 0);
assert_eq!(dfg.ebb_args(ebb), &[]);
let arg1 = dfg.append_ebb_arg(ebb, types::F32);
assert_eq!(arg1.to_string(), "vx0");
assert_eq!(dfg.num_ebb_args(ebb), 1);
assert_eq!(dfg.ebb_args(ebb), &[arg1]);
let arg2 = dfg.append_ebb_arg(ebb, types::I16);
assert_eq!(arg2.to_string(), "vx1");
assert_eq!(dfg.num_ebb_args(ebb), 2);
assert_eq!(dfg.ebb_args(ebb), &[arg1, arg2]);
assert_eq!(dfg.value_def(arg1), ValueDef::Arg(ebb, 0));
assert_eq!(dfg.value_def(arg2), ValueDef::Arg(ebb, 1));
assert_eq!(dfg.value_type(arg1), types::F32);
assert_eq!(dfg.value_type(arg2), types::I16);
// Swap the two EBB arguments.
let vlist = dfg.detach_ebb_args(ebb);
assert_eq!(dfg.num_ebb_args(ebb), 0);
assert_eq!(dfg.ebb_args(ebb), &[]);
assert_eq!(vlist.as_slice(&dfg.value_lists), &[arg1, arg2]);
dfg.attach_ebb_arg(ebb, arg2);
let arg3 = dfg.append_ebb_arg(ebb, types::I32);
dfg.attach_ebb_arg(ebb, arg1);
assert_eq!(dfg.ebb_args(ebb), &[arg2, arg3, arg1]);
}
#[test]
fn replace_ebb_arguments() {
let mut dfg = DataFlowGraph::new();
let ebb = dfg.make_ebb();
let arg1 = dfg.append_ebb_arg(ebb, types::F32);
let new1 = dfg.replace_ebb_arg(arg1, types::I64);
assert_eq!(dfg.value_type(arg1), types::F32);
assert_eq!(dfg.value_type(new1), types::I64);
assert_eq!(dfg.ebb_args(ebb), &[new1]);
dfg.attach_ebb_arg(ebb, arg1);
assert_eq!(dfg.ebb_args(ebb), &[new1, arg1]);
let new2 = dfg.replace_ebb_arg(arg1, types::I8);
assert_eq!(dfg.value_type(arg1), types::F32);
assert_eq!(dfg.value_type(new2), types::I8);
assert_eq!(dfg.ebb_args(ebb), &[new1, new2]);
dfg.attach_ebb_arg(ebb, arg1);
assert_eq!(dfg.ebb_args(ebb), &[new1, new2, arg1]);
let new3 = dfg.replace_ebb_arg(new2, types::I16);
assert_eq!(dfg.value_type(new1), types::I64);
assert_eq!(dfg.value_type(new2), types::I8);
assert_eq!(dfg.value_type(new3), types::I16);
assert_eq!(dfg.ebb_args(ebb), &[new1, new3, arg1]);
}
#[test]
fn aliases() {
use ir::InstBuilder;
use ir::condcodes::IntCC;
let mut func = Function::new();
let dfg = &mut func.dfg;
let ebb0 = dfg.make_ebb();
let pos = &mut Cursor::new(&mut func.layout);
pos.insert_ebb(ebb0);
// Build a little test program.
let v1 = dfg.ins(pos).iconst(types::I32, 42);
// Make sure we can resolve value aliases even when extended_values is empty.
assert_eq!(dfg.resolve_aliases(v1), v1);
let arg0 = dfg.append_ebb_arg(ebb0, types::I32);
let (s, c) = dfg.ins(pos).iadd_cout(v1, arg0);
let iadd = match dfg.value_def(s) {
ValueDef::Res(i, 0) => i,
_ => panic!(),
};
// Replace `iadd_cout` with a normal `iadd` and an `icmp`.
dfg.replace(iadd).iadd(v1, arg0);
let c2 = dfg.ins(pos).icmp(IntCC::UnsignedLessThan, s, v1);
dfg.change_to_alias(c, c2);
assert_eq!(dfg.resolve_aliases(c2), c2);
assert_eq!(dfg.resolve_aliases(c), c2);
// Make a copy of the alias.
let c3 = dfg.ins(pos).copy(c);
// This does not see through copies.
assert_eq!(dfg.resolve_aliases(c3), c3);
// But this goes through both copies and aliases.
assert_eq!(dfg.resolve_copies(c3), c2);
}
}