Files
wasmtime/tests/all/custom_signal_handler.rs
Alex Crichton 2afaac5181 Return anyhow::Error from host functions instead of Trap, redesign Trap (#5149)
* Return `anyhow::Error` from host functions instead of `Trap`

This commit refactors how errors are modeled when returned from host
functions and additionally refactors how custom errors work with `Trap`.
At a high level functions in Wasmtime that previously worked with
`Result<T, Trap>` now work with `Result<T>` instead where the error is
`anyhow::Error`. This includes functions such as:

* Host-defined functions in a `Linker<T>`
* `TypedFunc::call`
* Host-related callbacks like call hooks

Errors are now modeled primarily as `anyhow::Error` throughout Wasmtime.
This subsequently removes the need for `Trap` to have the ability to
represent all host-defined errors as it previously did. Consequently the
`From` implementations for any error into a `Trap` have been removed
here and the only embedder-defined way to create a `Trap` is to use
`Trap::new` with a custom string.

After this commit the distinction between a `Trap` and a host error is
the wasm backtrace that it contains. Previously all errors in host
functions would flow through a `Trap` and get a wasm backtrace attached
to them, but now this only happens if a `Trap` itself is created meaning
that arbitrary host-defined errors flowing from a host import to the
other side won't get backtraces attached. Some internals of Wasmtime
itself were updated or preserved to use `Trap::new` to capture a
backtrace where it seemed useful, such as when fuel runs out.

The main motivation for this commit is that it now enables hosts to
thread a concrete error type from a host function all the way through to
where a wasm function was invoked. Previously this could not be done
since the host error was wrapped in a `Trap` that didn't provide the
ability to get at the internals.

A consequence of this commit is that when a host error is returned that
isn't a `Trap` we'll capture a backtrace and then won't have a `Trap` to
attach it to. To avoid losing the contextual information this commit
uses the `Error::context` method to attach the backtrace as contextual
information to ensure that the backtrace is itself not lost.

This is a breaking change for likely all users of Wasmtime, but it's
hoped to be a relatively minor change to workaround. Most use cases can
likely change `-> Result<T, Trap>` to `-> Result<T>` and otherwise
explicit creation of a `Trap` is largely no longer necessary.

* Fix some doc links

* add some tests and make a backtrace type public (#55)

* Trap: avoid a trailing newline in the Display impl

which in turn ends up with three newlines between the end of the
backtrace and the `Caused by` in the anyhow Debug impl

* make BacktraceContext pub, and add tests showing downcasting behavior of anyhow::Error to traps or backtraces

* Remove now-unnecesary `Trap` downcasts in `Linker::module`

* Fix test output expectations

* Remove `Trap::i32_exit`

This commit removes special-handling in the `wasmtime::Trap` type for
the i32 exit code required by WASI. This is now instead modeled as a
specific `I32Exit` error type in the `wasmtime-wasi` crate which is
returned by the `proc_exit` hostcall. Embedders which previously tested
for i32 exits now downcast to the `I32Exit` value.

* Remove the `Trap::new` constructor

This commit removes the ability to create a trap with an arbitrary error
message. The purpose of this commit is to continue the prior trend of
leaning into the `anyhow::Error` type instead of trying to recreate it
with `Trap`. A subsequent simplification to `Trap` after this commit is
that `Trap` will simply be an `enum` of trap codes with no extra
information. This commit is doubly-motivated by the desire to always use
the new `BacktraceContext` type instead of sometimes using that and
sometimes using `Trap`.

Most of the changes here were around updating `Trap::new` calls to
`bail!` calls instead. Tests which assert particular error messages
additionally often needed to use the `:?` formatter instead of the `{}`
formatter because the prior formats the whole `anyhow::Error` and the
latter only formats the top-most error, which now contains the
backtrace.

* Merge `Trap` and `TrapCode`

With prior refactorings there's no more need for `Trap` to be opaque or
otherwise contain a backtrace. This commit parse down `Trap` to simply
an `enum` which was the old `TrapCode`. All various tests and such were
updated to handle this.

The main consequence of this commit is that all errors have a
`BacktraceContext` context attached to them. This unfortunately means
that the backtrace is printed first before the error message or trap
code, but given all the prior simplifications that seems worth it at
this time.

* Rename `BacktraceContext` to `WasmBacktrace`

This feels like a better name given how this has turned out, and
additionally this commit removes having both `WasmBacktrace` and
`BacktraceContext`.

* Soup up documentation for errors and traps

* Fix build of the C API

Co-authored-by: Pat Hickey <pat@moreproductive.org>
2022-11-02 16:29:31 +00:00

336 lines
12 KiB
Rust

#[cfg(any(
target_os = "linux",
all(target_os = "macos", feature = "posix-signals-on-macos")
))]
mod tests {
use anyhow::Result;
use rustix::mm::{mprotect, MprotectFlags};
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use wasmtime::unix::StoreExt;
use wasmtime::*;
const WAT1: &str = r#"
(module
(func $hostcall_read (import "" "hostcall_read") (result i32))
(func $read (export "read") (result i32)
(i32.load (i32.const 0))
)
(func $read_out_of_bounds (export "read_out_of_bounds") (result i32)
(i32.load
(i32.mul
;; memory size in Wasm pages
(memory.size)
;; Wasm page size
(i32.const 65536)
)
)
)
(func (export "hostcall_read") (result i32)
call $hostcall_read
)
(func $start
(i32.store (i32.const 0) (i32.const 123))
)
(start $start)
(memory (export "memory") 1 4)
)
"#;
const WAT2: &str = r#"
(module
(import "other_module" "read" (func $other_module.read (result i32)))
(func $run (export "run") (result i32)
call $other_module.read)
)
"#;
fn invoke_export(store: &mut Store<()>, instance: Instance, func_name: &str) -> Result<i32> {
let ret = instance
.get_typed_func::<(), i32, _>(&mut *store, func_name)?
.call(store, ())?;
Ok(ret)
}
// Locate "memory" export, get base address and size and set memory protection to PROT_NONE
fn set_up_memory(store: &mut Store<()>, instance: Instance) -> (usize, usize) {
let mem_export = instance.get_memory(&mut *store, "memory").unwrap();
let base = mem_export.data_ptr(&store);
let length = mem_export.data_size(&store);
// So we can later trigger SIGSEGV by performing a read
unsafe {
mprotect(
base as *mut std::ffi::c_void,
length,
MprotectFlags::empty(),
)
.unwrap();
}
println!("memory: base={:?}, length={}", base, length);
(base as usize, length)
}
fn handle_sigsegv(
base: usize,
length: usize,
signum: libc::c_int,
siginfo: *const libc::siginfo_t,
) -> bool {
println!("Hello from instance signal handler!");
// SIGSEGV on Linux, SIGBUS on Mac
if libc::SIGSEGV == signum || libc::SIGBUS == signum {
let si_addr: *mut libc::c_void = unsafe { (*siginfo).si_addr() };
// Any signal from within module's memory we handle ourselves
let result = (si_addr as u64) < (base as u64) + (length as u64);
// Remove protections so the execution may resume
unsafe {
mprotect(
base as *mut libc::c_void,
length,
MprotectFlags::READ | MprotectFlags::WRITE,
)
.unwrap();
}
println!("signal handled: {}", result);
result
} else {
// Otherwise, we forward to wasmtime's signal handler.
false
}
}
fn make_externs(store: &mut Store<()>, module: &Module) -> Vec<Extern> {
module
.imports()
.map(|import| {
assert_eq!("hostcall_read", import.name());
let func = Func::wrap(&mut *store, {
move |mut caller: Caller<'_, _>| {
let mem = caller.get_export("memory").unwrap().into_memory().unwrap();
let memory = mem.data(&caller);
i32::from_le_bytes(memory[0..4].try_into().unwrap())
}
});
wasmtime::Extern::Func(func)
})
.collect::<Vec<_>>()
}
// This test will only succeed if the SIGSEGV signal originating from the
// hostcall can be handled.
#[test]
fn test_custom_signal_handler_single_instance_hostcall() -> Result<()> {
let engine = Engine::default();
let mut store = Store::new(&engine, ());
let module = Module::new(&engine, WAT1)?;
let externs = make_externs(&mut store, &module);
let instance = Instance::new(&mut store, &module, &externs)?;
let (base, length) = set_up_memory(&mut store, instance);
unsafe {
store.set_signal_handler(move |signum, siginfo, _| {
handle_sigsegv(base, length, signum, siginfo)
});
}
println!("calling hostcall_read...");
let result = invoke_export(&mut store, instance, "hostcall_read").unwrap();
assert_eq!(123, result);
Ok(())
}
#[test]
fn test_custom_signal_handler_single_instance() -> Result<()> {
let engine = Engine::new(&Config::default())?;
let mut store = Store::new(&engine, ());
let module = Module::new(&engine, WAT1)?;
let externs = make_externs(&mut store, &module);
let instance = Instance::new(&mut store, &module, &externs)?;
let (base, length) = set_up_memory(&mut store, instance);
unsafe {
store.set_signal_handler(move |signum, siginfo, _| {
handle_sigsegv(base, length, signum, siginfo)
});
}
// these invoke wasmtime_call_trampoline from action.rs
{
println!("calling read...");
let result = invoke_export(&mut store, instance, "read").expect("read succeeded");
assert_eq!(123, result);
}
{
println!("calling read_out_of_bounds...");
let trap = invoke_export(&mut store, instance, "read_out_of_bounds")
.unwrap_err()
.downcast::<Trap>()?;
assert_eq!(trap, Trap::MemoryOutOfBounds);
}
// these invoke wasmtime_call_trampoline from callable.rs
{
let read_func = instance.get_typed_func::<(), i32, _>(&mut store, "read")?;
println!("calling read...");
let result = read_func
.call(&mut store, ())
.expect("expected function not to trap");
assert_eq!(123i32, result);
}
{
let read_out_of_bounds_func =
instance.get_typed_func::<(), i32, _>(&mut store, "read_out_of_bounds")?;
println!("calling read_out_of_bounds...");
let trap = read_out_of_bounds_func
.call(&mut store, ())
.unwrap_err()
.downcast::<Trap>()?;
assert_eq!(trap, Trap::MemoryOutOfBounds);
}
Ok(())
}
#[test]
fn test_custom_signal_handler_multiple_instances() -> Result<()> {
let engine = Engine::default();
let mut store = Store::new(&engine, ());
let module = Module::new(&engine, WAT1)?;
// Set up multiple instances
let externs = make_externs(&mut store, &module);
let instance1 = Instance::new(&mut store, &module, &externs)?;
let instance1_handler_triggered = Arc::new(AtomicBool::new(false));
unsafe {
let (base1, length1) = set_up_memory(&mut store, instance1);
store.set_signal_handler({
let instance1_handler_triggered = instance1_handler_triggered.clone();
move |_signum, _siginfo, _context| {
// Remove protections so the execution may resume
mprotect(
base1 as *mut libc::c_void,
length1,
MprotectFlags::READ | MprotectFlags::WRITE,
)
.unwrap();
instance1_handler_triggered.store(true, Ordering::SeqCst);
println!(
"Hello from instance1 signal handler! {}",
instance1_handler_triggered.load(Ordering::SeqCst)
);
true
}
});
}
// Invoke both instances and trigger both signal handlers
// First instance1
{
let mut exports1 = instance1.exports(&mut store);
assert!(exports1.next().is_some());
drop(exports1);
println!("calling instance1.read...");
let result = invoke_export(&mut store, instance1, "read").expect("read succeeded");
assert_eq!(123, result);
assert_eq!(
instance1_handler_triggered.load(Ordering::SeqCst),
true,
"instance1 signal handler has been triggered"
);
}
let externs = make_externs(&mut store, &module);
let instance2 =
Instance::new(&mut store, &module, &externs).expect("failed to instantiate module");
let instance2_handler_triggered = Arc::new(AtomicBool::new(false));
unsafe {
let (base2, length2) = set_up_memory(&mut store, instance2);
store.set_signal_handler({
let instance2_handler_triggered = instance2_handler_triggered.clone();
move |_signum, _siginfo, _context| {
// Remove protections so the execution may resume
mprotect(
base2 as *mut libc::c_void,
length2,
MprotectFlags::READ | MprotectFlags::WRITE,
)
.unwrap();
instance2_handler_triggered.store(true, Ordering::SeqCst);
println!(
"Hello from instance2 signal handler! {}",
instance2_handler_triggered.load(Ordering::SeqCst)
);
true
}
});
}
// And then instance2
{
let mut exports2 = instance2.exports(&mut store);
assert!(exports2.next().is_some());
drop(exports2);
println!("calling instance2.read...");
let result = invoke_export(&mut store, instance2, "read").expect("read succeeded");
assert_eq!(123, result);
assert_eq!(
instance2_handler_triggered.load(Ordering::SeqCst),
true,
"instance1 signal handler has been triggered"
);
}
Ok(())
}
#[test]
fn test_custom_signal_handler_instance_calling_another_instance() -> Result<()> {
let engine = Engine::default();
let mut store = Store::new(&engine, ());
// instance1 which defines 'read'
let module1 = Module::new(&engine, WAT1)?;
let externs = make_externs(&mut store, &module1);
let instance1 = Instance::new(&mut store, &module1, &externs)?;
let (base1, length1) = set_up_memory(&mut store, instance1);
unsafe {
store.set_signal_handler(move |signum, siginfo, _| {
println!("instance1");
handle_sigsegv(base1, length1, signum, siginfo)
});
}
let mut instance1_exports = instance1.exports(&mut store);
let instance1_read = instance1_exports.next().unwrap().clone().into_extern();
drop(instance1_exports);
// instance2 which calls 'instance1.read'
let module2 = Module::new(&engine, WAT2)?;
let instance2 = Instance::new(&mut store, &module2, &[instance1_read])?;
// since 'instance2.run' calls 'instance1.read' we need to set up the signal handler to handle
// SIGSEGV originating from within the memory of instance1
unsafe {
store.set_signal_handler(move |signum, siginfo, _| {
handle_sigsegv(base1, length1, signum, siginfo)
});
}
println!("calling instance2.run");
let result = invoke_export(&mut store, instance2, "run")?;
assert_eq!(123, result);
Ok(())
}
}