Files
wasmtime/tests/host_segfault.rs
Alex Crichton 830885383f Implement inline stack probes for AArch64 (#5353)
* Turn off probestack by default in Cranelift

The probestack feature is not implemented for the aarch64 and s390x
backends and currently the on-by-default status requires the aarch64 and
s390x implementations to be a stub. Turning off probestack by default
allows the s390x and aarch64 backends to panic with an error message to
avoid providing a false sense of security. When the probestack option is
implemented for all backends, however, it may be reasonable to
re-enable.

* aarch64: Improve codegen for AMode fallback

Currently the final fallback for finalizing an `AMode` will generate
both a constant-loading instruction as well as an `add` instruction to
the base register into the same temporary. This commit improves the
codegen by removing the `add` instruction and folding the final add into
the finalized `AMode`. This changes the `extendop` used but both
registers are 64-bit so shouldn't be affected by the extending
operation.

* aarch64: Implement inline stack probes

This commit implements inline stack probes for the aarch64 backend in
Cranelift. The support here is modeled after the x64 support where
unrolled probes are used up to a particular threshold after which a loop
is generated. The instructions here are similar in spirit to x64 except
that unlike x64 the stack pointer isn't modified during the unrolled
loop to avoid needing to re-adjust it back up at the end of the loop.

* Enable inline probestack for AArch64 and Riscv64

This commit enables inline probestacks for the AArch64 and Riscv64
architectures in the same manner that x86_64 has it enabled now. Some
more testing was additionally added since on Unix platforms we should be
guaranteed that Rust's stack overflow message is now printed too.

* Enable probestack for aarch64 in cranelift-fuzzgen

* Address review comments

* Remove implicit stack overflow traps from x64 backend

This commit removes implicit `StackOverflow` traps inserted by the x64
backend for stack-based operations. This was historically required when
stack overflow was detected with page faults but Wasmtime no longer
requires that since it's not suitable for wasm modules which call host
functions. Additionally no other backend implements this form of
implicit trap-code additions so this is intended to synchronize the
behavior of all the backends.

This fixes a test added prior for aarch64 to properly abort the process
instead of accidentally being caught by Wasmtime.

* Fix a style issue
2022-11-30 12:30:00 -06:00

325 lines
10 KiB
Rust

// To handle out-of-bounds reads and writes we use segfaults right now. We only
// want to catch a subset of segfaults, however, rather than all segfaults
// happening everywhere. The purpose of this test is to ensure that we *don't*
// catch segfaults if it happens in a random place in the code, but we instead
// bail out of our segfault handler early.
//
// This is sort of hard to test for but the general idea here is that we confirm
// that execution made it to our `segfault` function by printing something, and
// then we also make sure that stderr is empty to confirm that no weird panics
// happened or anything like that.
use std::env;
use std::future::Future;
use std::io::{self, Write};
use std::pin::Pin;
use std::process::{Command, ExitStatus};
use std::task::{Context, Poll, RawWaker, RawWakerVTable, Waker};
use wasmtime::*;
const VAR_NAME: &str = "__TEST_TO_RUN";
const CONFIRM: &str = "well at least we ran up to the crash";
fn segfault() -> ! {
unsafe {
println!("{}", CONFIRM);
io::stdout().flush().unwrap();
*(0x4 as *mut i32) = 3;
unreachable!()
}
}
fn allocate_stack_space() -> ! {
let _a = [0u8; 1024];
for _ in 0..100000 {
allocate_stack_space();
}
unreachable!()
}
fn overrun_the_stack() -> ! {
println!("{}", CONFIRM);
io::stdout().flush().unwrap();
allocate_stack_space();
}
fn run_future<F: Future>(future: F) -> F::Output {
let mut f = Pin::from(Box::new(future));
let waker = dummy_waker();
let mut cx = Context::from_waker(&waker);
loop {
match f.as_mut().poll(&mut cx) {
Poll::Ready(val) => break val,
Poll::Pending => {}
}
}
}
fn dummy_waker() -> Waker {
return unsafe { Waker::from_raw(clone(5 as *const _)) };
unsafe fn clone(ptr: *const ()) -> RawWaker {
assert_eq!(ptr as usize, 5);
const VTABLE: RawWakerVTable = RawWakerVTable::new(clone, wake, wake_by_ref, drop);
RawWaker::new(ptr, &VTABLE)
}
unsafe fn wake(ptr: *const ()) {
assert_eq!(ptr as usize, 5);
}
unsafe fn wake_by_ref(ptr: *const ()) {
assert_eq!(ptr as usize, 5);
}
unsafe fn drop(ptr: *const ()) {
assert_eq!(ptr as usize, 5);
}
}
fn main() {
// Skip this tests if it looks like we're in a cross-compiled situation and
// we're emulating this test for a different platform. In that scenario
// emulators (like QEMU) tend to not report signals the same way and such.
if std::env::vars()
.filter(|(k, _v)| k.starts_with("CARGO_TARGET") && k.ends_with("RUNNER"))
.count()
> 0
{
return;
}
let tests: &[(&str, fn(), bool)] = &[
("normal segfault", || segfault(), false),
(
"make instance then segfault",
|| {
let engine = Engine::default();
let mut store = Store::new(&engine, ());
let module = Module::new(&engine, "(module)").unwrap();
let _instance = Instance::new(&mut store, &module, &[]).unwrap();
segfault();
},
false,
),
(
"make instance then overrun the stack",
|| {
let engine = Engine::default();
let mut store = Store::new(&engine, ());
let module = Module::new(&engine, "(module)").unwrap();
let _instance = Instance::new(&mut store, &module, &[]).unwrap();
overrun_the_stack();
},
true,
),
(
"segfault in a host function",
|| {
let engine = Engine::default();
let mut store = Store::new(&engine, ());
let module = Module::new(&engine, r#"(import "" "" (func)) (start 0)"#).unwrap();
let segfault = Func::wrap(&mut store, || segfault());
Instance::new(&mut store, &module, &[segfault.into()]).unwrap();
unreachable!();
},
false,
),
(
"hit async stack guard page",
|| {
let mut config = Config::default();
config.async_support(true);
let engine = Engine::new(&config).unwrap();
let mut store = Store::new(&engine, ());
let f = Func::wrap0_async(&mut store, |_| {
Box::new(async {
overrun_the_stack();
})
});
run_future(f.call_async(&mut store, &[], &mut [])).unwrap();
unreachable!();
},
true,
),
(
"overrun 8k with misconfigured host",
|| overrun_with_big_module(8 << 10),
true,
),
(
"overrun 32k with misconfigured host",
|| overrun_with_big_module(32 << 10),
true,
),
#[cfg(not(any(target_arch = "riscv64")))]
// Due to `InstanceAllocationStrategy::pooling()` trying to alloc more than 6000G memory space.
// https://gitlab.com/qemu-project/qemu/-/issues/1214
// https://gitlab.com/qemu-project/qemu/-/issues/290
(
"hit async stack guard page with pooling allocator",
|| {
let mut config = Config::default();
config.async_support(true);
config.allocation_strategy(InstanceAllocationStrategy::pooling());
let engine = Engine::new(&config).unwrap();
let mut store = Store::new(&engine, ());
let f = Func::wrap0_async(&mut store, |_| {
Box::new(async {
overrun_the_stack();
})
});
run_future(f.call_async(&mut store, &[], &mut [])).unwrap();
unreachable!();
},
true,
),
];
match env::var(VAR_NAME) {
Ok(s) => {
let test = tests
.iter()
.find(|p| p.0 == s)
.expect("failed to find test")
.1;
test();
}
Err(_) => {
for (name, _test, stack_overflow) in tests {
println!("running {name}");
run_test(name, *stack_overflow);
}
}
}
}
fn run_test(name: &str, stack_overflow: bool) {
let me = env::current_exe().unwrap();
let mut cmd = Command::new(me);
cmd.env(VAR_NAME, name);
let output = cmd.output().expect("failed to spawn subprocess");
let stdout = String::from_utf8_lossy(&output.stdout);
let stderr = String::from_utf8_lossy(&output.stderr);
let mut desc = format!("got status: {}", output.status);
if !stdout.trim().is_empty() {
desc.push_str("\nstdout: ----\n");
desc.push_str(" ");
desc.push_str(&stdout.replace("\n", "\n "));
}
if !stderr.trim().is_empty() {
desc.push_str("\nstderr: ----\n");
desc.push_str(" ");
desc.push_str(&stderr.replace("\n", "\n "));
}
if stack_overflow {
if is_stack_overflow(&output.status, &stderr) {
assert!(
stdout.trim().ends_with(CONFIRM),
"failed to find confirmation in test `{}`\n{}",
name,
desc
);
} else {
panic!("\n\nexpected a stack overflow on `{}`\n{}\n\n", name, desc);
}
} else {
if is_segfault(&output.status) {
assert!(
stdout.trim().ends_with(CONFIRM) && stderr.is_empty(),
"failed to find confirmation in test `{}`\n{}",
name,
desc
);
} else {
panic!("\n\nexpected a segfault on `{}`\n{}\n\n", name, desc);
}
}
}
#[cfg(unix)]
fn is_segfault(status: &ExitStatus) -> bool {
use std::os::unix::prelude::*;
match status.signal() {
Some(libc::SIGSEGV) => true,
_ => false,
}
}
#[cfg(unix)]
fn is_stack_overflow(status: &ExitStatus, stderr: &str) -> bool {
use std::os::unix::prelude::*;
// The main thread might overflow or it might be from a fiber stack (SIGSEGV/SIGBUS)
stderr.contains("has overflowed its stack")
|| match status.signal() {
Some(libc::SIGSEGV) | Some(libc::SIGBUS) => true,
_ => false,
}
}
#[cfg(windows)]
fn is_segfault(status: &ExitStatus) -> bool {
match status.code().map(|s| s as u32) {
Some(0xc0000005) => true,
_ => false,
}
}
#[cfg(windows)]
fn is_stack_overflow(status: &ExitStatus, _stderr: &str) -> bool {
match status.code().map(|s| s as u32) {
Some(0xc00000fd) => true,
_ => false,
}
}
fn overrun_with_big_module(approx_stack: usize) {
// Each call to `$get` produces ten 8-byte values which need to be saved
// onto the stack, so divide `approx_stack` by 80 to get
// a rough number of calls to consume `approx_stack` stack.
let n = approx_stack / 10 / 8;
let mut s = String::new();
s.push_str("(module\n");
s.push_str("(func $big_stack\n");
for _ in 0..n {
s.push_str("call $get\n");
}
for _ in 0..n {
s.push_str("call $take\n");
}
s.push_str(")\n");
s.push_str("(func $get (result i64 i64 i64 i64 i64 i64 i64 i64 i64 i64) call $big_stack unreachable)\n");
s.push_str("(func $take (param i64 i64 i64 i64 i64 i64 i64 i64 i64 i64) unreachable)\n");
s.push_str("(func (export \"\") call $big_stack)\n");
s.push_str(")\n");
// Give 100MB of stack to wasm, representing a misconfigured host. Run the
// actual module on a 2MB stack in a child thread to guarantee that the
// module here will overrun the stack. This should deterministically hit the
// guard page.
let mut config = Config::default();
config.max_wasm_stack(100 << 20).async_stack_size(100 << 20);
let engine = Engine::new(&config).unwrap();
let module = Module::new(&engine, &s).unwrap();
let mut store = Store::new(&engine, ());
let i = Instance::new(&mut store, &module, &[]).unwrap();
let f = i.get_typed_func::<(), ()>(&mut store, "").unwrap();
std::thread::Builder::new()
.stack_size(2 << 20)
.spawn(move || {
println!("{CONFIRM}");
f.call(&mut store, ()).unwrap();
})
.unwrap()
.join()
.unwrap();
unreachable!();
}