#![allow(non_snake_case)] use cranelift_codegen_shared::condcodes::IntCC; use std::collections::HashMap; use crate::cdsl::encodings::{Encoding, EncodingBuilder}; use crate::cdsl::instructions::{ vector, Bindable, Immediate, InstSpec, Instruction, InstructionGroup, InstructionPredicate, InstructionPredicateNode, InstructionPredicateRegistry, }; use crate::cdsl::recipes::{EncodingRecipe, EncodingRecipeNumber, Recipes}; use crate::cdsl::settings::{SettingGroup, SettingPredicateNumber}; use crate::cdsl::types::{LaneType, ValueType}; use crate::shared::types::Bool::{B1, B16, B32, B64, B8}; use crate::shared::types::Float::{F32, F64}; use crate::shared::types::Int::{I16, I32, I64, I8}; use crate::shared::types::Reference::{R32, R64}; use crate::shared::Definitions as SharedDefinitions; use crate::isa::x86::opcodes::*; use super::recipes::{RecipeGroup, Template}; use crate::cdsl::instructions::BindParameter::Any; pub(crate) struct PerCpuModeEncodings { pub enc32: Vec, pub enc64: Vec, pub recipes: Recipes, recipes_by_name: HashMap, pub inst_pred_reg: InstructionPredicateRegistry, } impl PerCpuModeEncodings { fn new() -> Self { Self { enc32: Vec::new(), enc64: Vec::new(), recipes: Recipes::new(), recipes_by_name: HashMap::new(), inst_pred_reg: InstructionPredicateRegistry::new(), } } fn add_recipe(&mut self, recipe: EncodingRecipe) -> EncodingRecipeNumber { if let Some(found_index) = self.recipes_by_name.get(&recipe.name) { assert!( self.recipes[*found_index] == recipe, format!( "trying to insert different recipes with a same name ({})", recipe.name ) ); *found_index } else { let recipe_name = recipe.name.clone(); let index = self.recipes.push(recipe); self.recipes_by_name.insert(recipe_name, index); index } } fn make_encoding( &mut self, inst: InstSpec, template: Template, builder_closure: T, ) -> Encoding where T: FnOnce(EncodingBuilder) -> EncodingBuilder, { let (recipe, bits) = template.build(); let recipe_number = self.add_recipe(recipe); let builder = EncodingBuilder::new(inst, recipe_number, bits); builder_closure(builder).build(&self.recipes, &mut self.inst_pred_reg) } fn enc32_func(&mut self, inst: impl Into, template: Template, builder_closure: T) where T: FnOnce(EncodingBuilder) -> EncodingBuilder, { let encoding = self.make_encoding(inst.into(), template, builder_closure); self.enc32.push(encoding); } fn enc32(&mut self, inst: impl Into, template: Template) { self.enc32_func(inst, template, |x| x); } fn enc32_isap( &mut self, inst: impl Into, template: Template, isap: SettingPredicateNumber, ) { self.enc32_func(inst, template, |encoding| encoding.isa_predicate(isap)); } fn enc32_instp( &mut self, inst: impl Into, template: Template, instp: InstructionPredicateNode, ) { self.enc32_func(inst, template, |encoding| encoding.inst_predicate(instp)); } fn enc32_rec(&mut self, inst: impl Into, recipe: &EncodingRecipe, bits: u16) { let recipe_number = self.add_recipe(recipe.clone()); let builder = EncodingBuilder::new(inst.into(), recipe_number, bits); let encoding = builder.build(&self.recipes, &mut self.inst_pred_reg); self.enc32.push(encoding); } fn enc64_func(&mut self, inst: impl Into, template: Template, builder_closure: T) where T: FnOnce(EncodingBuilder) -> EncodingBuilder, { let encoding = self.make_encoding(inst.into(), template, builder_closure); self.enc64.push(encoding); } fn enc64(&mut self, inst: impl Into, template: Template) { self.enc64_func(inst, template, |x| x); } fn enc64_isap( &mut self, inst: impl Into, template: Template, isap: SettingPredicateNumber, ) { self.enc64_func(inst, template, |encoding| encoding.isa_predicate(isap)); } fn enc64_instp( &mut self, inst: impl Into, template: Template, instp: InstructionPredicateNode, ) { self.enc64_func(inst, template, |encoding| encoding.inst_predicate(instp)); } fn enc64_rec(&mut self, inst: impl Into, recipe: &EncodingRecipe, bits: u16) { let recipe_number = self.add_recipe(recipe.clone()); let builder = EncodingBuilder::new(inst.into(), recipe_number, bits); let encoding = builder.build(&self.recipes, &mut self.inst_pred_reg); self.enc64.push(encoding); } /// Adds I32/I64 encodings as appropriate for a typed instruction. /// The REX prefix is always inferred at runtime. /// /// Add encodings for `inst.i32` to X86_32. /// Add encodings for `inst.i32` to X86_64 with optional, inferred REX. /// Add encodings for `inst.i64` to X86_64 with a REX.W prefix. fn enc_i32_i64(&mut self, inst: impl Into, template: Template) { let inst: InstSpec = inst.into(); // I32 on x86: no REX prefix. self.enc32(inst.bind(I32), template.infer_rex()); // I32 on x86_64: REX.W unset; REX.RXB determined at runtime from registers. self.enc64(inst.bind(I32), template.infer_rex()); // I64 on x86_64: REX.W set; REX.RXB determined at runtime from registers. self.enc64(inst.bind(I64), template.rex().w()); } /// Adds I32/I64 encodings as appropriate for a typed instruction. /// All variants of REX prefix are explicitly emitted, not inferred. /// /// Add encodings for `inst.i32` to X86_32. /// Add encodings for `inst.i32` to X86_64 with and without REX. /// Add encodings for `inst.i64` to X86_64 with and without REX. fn enc_i32_i64_explicit_rex(&mut self, inst: impl Into, template: Template) { let inst: InstSpec = inst.into(); self.enc32(inst.bind(I32), template.nonrex()); // REX-less encoding must come after REX encoding so we don't use it by default. // Otherwise reg-alloc would never use r8 and up. self.enc64(inst.bind(I32), template.rex()); self.enc64(inst.bind(I32), template.nonrex()); self.enc64(inst.bind(I64), template.rex().w()); } /// Adds B32/B64 encodings as appropriate for a typed instruction. /// The REX prefix is always inferred at runtime. /// /// Adds encoding for `inst.b32` to X86_32. /// Adds encoding for `inst.b32` to X86_64 with optional, inferred REX. /// Adds encoding for `inst.b64` to X86_64 with a REX.W prefix. fn enc_b32_b64(&mut self, inst: impl Into, template: Template) { let inst: InstSpec = inst.into(); // B32 on x86: no REX prefix. self.enc32(inst.bind(B32), template.infer_rex()); // B32 on x86_64: REX.W unset; REX.RXB determined at runtime from registers. self.enc64(inst.bind(B32), template.infer_rex()); // B64 on x86_64: REX.W set; REX.RXB determined at runtime from registers. self.enc64(inst.bind(B64), template.rex().w()); } /// Add encodings for `inst.i32` to X86_32. /// Add encodings for `inst.i32` to X86_64 with a REX prefix. /// Add encodings for `inst.i64` to X86_64 with a REX.W prefix. fn enc_i32_i64_rex_only(&mut self, inst: impl Into, template: Template) { let inst: InstSpec = inst.into(); self.enc32(inst.bind(I32), template.nonrex()); self.enc64(inst.bind(I32), template.rex()); self.enc64(inst.bind(I64), template.rex().w()); } /// Add encodings for `inst.i32` to X86_32. /// Add encodings for `inst.i32` to X86_64 with and without REX. /// Add encodings for `inst.i64` to X86_64 with a REX.W prefix. fn enc_i32_i64_instp( &mut self, inst: &Instruction, template: Template, instp: InstructionPredicateNode, ) { self.enc32_func(inst.bind(I32), template.nonrex(), |builder| { builder.inst_predicate(instp.clone()) }); // REX-less encoding must come after REX encoding so we don't use it by default. Otherwise // reg-alloc would never use r8 and up. self.enc64_func(inst.bind(I32), template.rex(), |builder| { builder.inst_predicate(instp.clone()) }); self.enc64_func(inst.bind(I32), template.nonrex(), |builder| { builder.inst_predicate(instp.clone()) }); self.enc64_func(inst.bind(I64), template.rex().w(), |builder| { builder.inst_predicate(instp) }); } /// Add encodings for `inst.r32` to X86_32. /// Add encodings for `inst.r64` to X86_64 with a REX.W prefix. fn enc_r32_r64_rex_only(&mut self, inst: impl Into, template: Template) { let inst: InstSpec = inst.into(); self.enc32(inst.bind(R32), template.nonrex()); self.enc64(inst.bind(R64), template.rex().w()); } fn enc_r32_r64_ld_st(&mut self, inst: &Instruction, w_bit: bool, template: Template) { self.enc32(inst.clone().bind(R32).bind(Any), template.clone()); // REX-less encoding must come after REX encoding so we don't use it by // default. Otherwise reg-alloc would never use r8 and up. self.enc64(inst.clone().bind(R32).bind(Any), template.clone().rex()); self.enc64(inst.clone().bind(R32).bind(Any), template.clone()); if w_bit { self.enc64(inst.clone().bind(R64).bind(Any), template.rex().w()); } else { self.enc64(inst.clone().bind(R64).bind(Any), template.clone().rex()); self.enc64(inst.clone().bind(R64).bind(Any), template); } } /// Add encodings for `inst` to X86_64 with and without a REX prefix. fn enc_x86_64(&mut self, inst: impl Into + Clone, template: Template) { // See above comment about the ordering of rex vs non-rex encodings. self.enc64(inst.clone(), template.rex()); self.enc64(inst, template); } /// Add encodings for `inst` to X86_64 with and without a REX prefix. fn enc_x86_64_instp( &mut self, inst: impl Clone + Into, template: Template, instp: InstructionPredicateNode, ) { // See above comment about the ordering of rex vs non-rex encodings. self.enc64_func(inst.clone(), template.rex(), |builder| { builder.inst_predicate(instp.clone()) }); self.enc64_func(inst, template, |builder| builder.inst_predicate(instp)); } fn enc_x86_64_isap( &mut self, inst: impl Clone + Into, template: Template, isap: SettingPredicateNumber, ) { // See above comment about the ordering of rex vs non-rex encodings. self.enc64_isap(inst.clone(), template.rex(), isap); self.enc64_isap(inst, template, isap); } /// Add all three encodings for `inst`: /// - X86_32 /// - X86_64 with and without the REX prefix. fn enc_both(&mut self, inst: impl Clone + Into, template: Template) { self.enc32(inst.clone(), template.clone()); self.enc_x86_64(inst, template); } fn enc_both_isap( &mut self, inst: impl Clone + Into, template: Template, isap: SettingPredicateNumber, ) { self.enc32_isap(inst.clone(), template.clone(), isap); self.enc_x86_64_isap(inst, template, isap); } fn enc_both_instp( &mut self, inst: impl Clone + Into, template: Template, instp: InstructionPredicateNode, ) { self.enc32_instp(inst.clone(), template.clone(), instp.clone()); self.enc_x86_64_instp(inst, template, instp); } /// Add two encodings for `inst`: /// - X86_32, no REX prefix, since this is not valid in 32-bit mode. /// - X86_64, dynamically infer the REX prefix. fn enc_both_inferred(&mut self, inst: impl Clone + Into, template: Template) { self.enc32(inst.clone(), template.clone()); self.enc64(inst, template.infer_rex()); } fn enc_both_inferred_maybe_isap( &mut self, inst: impl Clone + Into, template: Template, isap: Option, ) { self.enc32_maybe_isap(inst.clone(), template.clone(), isap); self.enc64_maybe_isap(inst, template.infer_rex(), isap); } /// Add two encodings for `inst`: /// - X86_32 /// - X86_64 with the REX prefix. fn enc_both_rex_only(&mut self, inst: impl Clone + Into, template: Template) { self.enc32(inst.clone(), template.clone()); self.enc64(inst, template.rex()); } /// Add encodings for `inst.i32` to X86_32. /// Add encodings for `inst.i32` to X86_64 with and without REX. /// Add encodings for `inst.i64` to X86_64 with a REX prefix, using the `w_bit` /// argument to determine whether or not to set the REX.W bit. fn enc_i32_i64_ld_st(&mut self, inst: &Instruction, w_bit: bool, template: Template) { self.enc32(inst.clone().bind(I32).bind(Any), template.clone()); // REX-less encoding must come after REX encoding so we don't use it by // default. Otherwise reg-alloc would never use r8 and up. self.enc64(inst.clone().bind(I32).bind(Any), template.clone().rex()); self.enc64(inst.clone().bind(I32).bind(Any), template.clone()); if w_bit { self.enc64(inst.clone().bind(I64).bind(Any), template.rex().w()); } else { self.enc64(inst.clone().bind(I64).bind(Any), template.clone().rex()); self.enc64(inst.clone().bind(I64).bind(Any), template); } } /// Add the same encoding/recipe pairing to both X86_32 and X86_64 fn enc_32_64_rec( &mut self, inst: impl Clone + Into, recipe: &EncodingRecipe, bits: u16, ) { self.enc32_rec(inst.clone(), recipe, bits); self.enc64_rec(inst, recipe, bits); } /// Add the same encoding to both X86_32 and X86_64; assumes configuration (e.g. REX, operand binding) has already happened fn enc_32_64_func( &mut self, inst: impl Clone + Into, template: Template, builder_closure: T, ) where T: FnOnce(EncodingBuilder) -> EncodingBuilder, { let encoding = self.make_encoding(inst.into(), template, builder_closure); self.enc32.push(encoding.clone()); self.enc64.push(encoding); } /// Add the same encoding to both X86_32 and X86_64; assumes configuration (e.g. REX, operand /// binding) has already happened. fn enc_32_64_maybe_isap( &mut self, inst: impl Clone + Into, template: Template, isap: Option, ) { self.enc32_maybe_isap(inst.clone(), template.clone(), isap); self.enc64_maybe_isap(inst, template, isap); } fn enc32_maybe_isap( &mut self, inst: impl Into, template: Template, isap: Option, ) { match isap { None => self.enc32(inst, template), Some(isap) => self.enc32_isap(inst, template, isap), } } fn enc64_maybe_isap( &mut self, inst: impl Into, template: Template, isap: Option, ) { match isap { None => self.enc64(inst, template), Some(isap) => self.enc64_isap(inst, template, isap), } } } // Definitions. #[inline(never)] fn define_moves(e: &mut PerCpuModeEncodings, shared_defs: &SharedDefinitions, r: &RecipeGroup) { let shared = &shared_defs.instructions; let formats = &shared_defs.formats; // Shorthands for instructions. let bconst = shared.by_name("bconst"); let bint = shared.by_name("bint"); let copy = shared.by_name("copy"); let copy_special = shared.by_name("copy_special"); let copy_to_ssa = shared.by_name("copy_to_ssa"); let get_pinned_reg = shared.by_name("get_pinned_reg"); let iconst = shared.by_name("iconst"); let ireduce = shared.by_name("ireduce"); let regmove = shared.by_name("regmove"); let sextend = shared.by_name("sextend"); let set_pinned_reg = shared.by_name("set_pinned_reg"); let uextend = shared.by_name("uextend"); // Shorthands for recipes. let rec_copysp = r.template("copysp"); let rec_furm_reg_to_ssa = r.template("furm_reg_to_ssa"); let rec_get_pinned_reg = r.recipe("get_pinned_reg"); let rec_null = r.recipe("null"); let rec_pu_id = r.template("pu_id"); let rec_pu_id_bool = r.template("pu_id_bool"); let rec_pu_iq = r.template("pu_iq"); let rec_rmov = r.template("rmov"); let rec_set_pinned_reg = r.template("set_pinned_reg"); let rec_u_id = r.template("u_id"); let rec_u_id_z = r.template("u_id_z"); let rec_umr = r.template("umr"); let rec_umr_reg_to_ssa = r.template("umr_reg_to_ssa"); let rec_urm_noflags = r.template("urm_noflags"); let rec_urm_noflags_abcd = r.template("urm_noflags_abcd"); // The pinned reg is fixed to a certain value entirely user-controlled, so it generates nothing! e.enc64_rec(get_pinned_reg.bind(I64), rec_get_pinned_reg, 0); e.enc_x86_64( set_pinned_reg.bind(I64), rec_set_pinned_reg.opcodes(&MOV_STORE).rex().w(), ); e.enc_i32_i64(copy, rec_umr.opcodes(&MOV_STORE)); e.enc_r32_r64_rex_only(copy, rec_umr.opcodes(&MOV_STORE)); e.enc_both(copy.bind(B1), rec_umr.opcodes(&MOV_STORE)); e.enc_both(copy.bind(I8), rec_umr.opcodes(&MOV_STORE)); e.enc_both(copy.bind(I16), rec_umr.opcodes(&MOV_STORE)); // TODO For x86-64, only define REX forms for now, since we can't describe the // special regunit immediate operands with the current constraint language. for &ty in &[I8, I16, I32] { e.enc32(regmove.bind(ty), rec_rmov.opcodes(&MOV_STORE)); e.enc64(regmove.bind(ty), rec_rmov.opcodes(&MOV_STORE).rex()); } for &ty in &[B8, B16, B32] { e.enc32(regmove.bind(ty), rec_rmov.opcodes(&MOV_STORE)); e.enc64(regmove.bind(ty), rec_rmov.opcodes(&MOV_STORE).rex()); } e.enc64(regmove.bind(I64), rec_rmov.opcodes(&MOV_STORE).rex().w()); e.enc_both(regmove.bind(B1), rec_rmov.opcodes(&MOV_STORE)); e.enc_both(regmove.bind(I8), rec_rmov.opcodes(&MOV_STORE)); e.enc32(regmove.bind(R32), rec_rmov.opcodes(&MOV_STORE)); e.enc64(regmove.bind(R32), rec_rmov.opcodes(&MOV_STORE).rex()); e.enc64(regmove.bind(R64), rec_rmov.opcodes(&MOV_STORE).rex().w()); // Immediate constants. e.enc32(iconst.bind(I32), rec_pu_id.opcodes(&MOV_IMM)); e.enc64(iconst.bind(I32), rec_pu_id.rex().opcodes(&MOV_IMM)); e.enc64(iconst.bind(I32), rec_pu_id.opcodes(&MOV_IMM)); // The 32-bit immediate movl also zero-extends to 64 bits. let is_unsigned_int32 = InstructionPredicate::new_is_unsigned_int(&*formats.unary_imm, "imm", 32, 0); e.enc64_func( iconst.bind(I64), rec_pu_id.opcodes(&MOV_IMM).rex(), |encoding| encoding.inst_predicate(is_unsigned_int32.clone()), ); e.enc64_func(iconst.bind(I64), rec_pu_id.opcodes(&MOV_IMM), |encoding| { encoding.inst_predicate(is_unsigned_int32) }); // Sign-extended 32-bit immediate. e.enc64( iconst.bind(I64), rec_u_id.rex().opcodes(&MOV_IMM_SIGNEXTEND).rrr(0).w(), ); // Finally, the MOV_IMM opcode takes an 8-byte immediate with a REX.W prefix. e.enc64(iconst.bind(I64), rec_pu_iq.opcodes(&MOV_IMM).rex().w()); // Bool constants (uses MOV) for &ty in &[B1, B8, B16, B32] { e.enc_both(bconst.bind(ty), rec_pu_id_bool.opcodes(&MOV_IMM)); } e.enc64(bconst.bind(B64), rec_pu_id_bool.opcodes(&MOV_IMM).rex()); let is_zero_int = InstructionPredicate::new_is_zero_int(&formats.unary_imm, "imm"); e.enc_both_instp( iconst.bind(I8), rec_u_id_z.opcodes(&XORB), is_zero_int.clone(), ); // You may expect that i16 encodings would have an 0x66 prefix on the opcode to indicate that // encodings should be on 16-bit operands (f.ex, "xor %ax, %ax"). Cranelift currently does not // know that it can drop the 0x66 prefix and clear the upper half of a 32-bit register in these // scenarios, so we explicitly select a wider but permissible opcode. // // This effectively formalizes the i16->i32 widening that Cranelift performs when there isn't // an appropriate i16 encoding available. e.enc_both_instp( iconst.bind(I16), rec_u_id_z.opcodes(&XOR), is_zero_int.clone(), ); e.enc_both_instp( iconst.bind(I32), rec_u_id_z.opcodes(&XOR), is_zero_int.clone(), ); e.enc_x86_64_instp(iconst.bind(I64), rec_u_id_z.opcodes(&XOR), is_zero_int); // Numerical conversions. // Reducing an integer is a no-op. e.enc32_rec(ireduce.bind(I8).bind(I16), rec_null, 0); e.enc32_rec(ireduce.bind(I8).bind(I32), rec_null, 0); e.enc32_rec(ireduce.bind(I16).bind(I32), rec_null, 0); e.enc64_rec(ireduce.bind(I8).bind(I16), rec_null, 0); e.enc64_rec(ireduce.bind(I8).bind(I32), rec_null, 0); e.enc64_rec(ireduce.bind(I16).bind(I32), rec_null, 0); e.enc64_rec(ireduce.bind(I8).bind(I64), rec_null, 0); e.enc64_rec(ireduce.bind(I16).bind(I64), rec_null, 0); e.enc64_rec(ireduce.bind(I32).bind(I64), rec_null, 0); // TODO: Add encodings for cbw, cwde, cdqe, which are sign-extending // instructions for %al/%ax/%eax to %ax/%eax/%rax. // movsbl e.enc32( sextend.bind(I32).bind(I8), rec_urm_noflags_abcd.opcodes(&MOVSX_BYTE), ); e.enc64( sextend.bind(I32).bind(I8), rec_urm_noflags.opcodes(&MOVSX_BYTE).rex(), ); e.enc64( sextend.bind(I32).bind(I8), rec_urm_noflags_abcd.opcodes(&MOVSX_BYTE), ); // movswl e.enc32( sextend.bind(I32).bind(I16), rec_urm_noflags.opcodes(&MOVSX_WORD), ); e.enc64( sextend.bind(I32).bind(I16), rec_urm_noflags.opcodes(&MOVSX_WORD).rex(), ); e.enc64( sextend.bind(I32).bind(I16), rec_urm_noflags.opcodes(&MOVSX_WORD), ); // movsbq e.enc64( sextend.bind(I64).bind(I8), rec_urm_noflags.opcodes(&MOVSX_BYTE).rex().w(), ); // movswq e.enc64( sextend.bind(I64).bind(I16), rec_urm_noflags.opcodes(&MOVSX_WORD).rex().w(), ); // movslq e.enc64( sextend.bind(I64).bind(I32), rec_urm_noflags.opcodes(&MOVSXD).rex().w(), ); // movzbl e.enc32( uextend.bind(I32).bind(I8), rec_urm_noflags_abcd.opcodes(&MOVZX_BYTE), ); e.enc64( uextend.bind(I32).bind(I8), rec_urm_noflags.opcodes(&MOVZX_BYTE).rex(), ); e.enc64( uextend.bind(I32).bind(I8), rec_urm_noflags_abcd.opcodes(&MOVZX_BYTE), ); // movzwl e.enc32( uextend.bind(I32).bind(I16), rec_urm_noflags.opcodes(&MOVZX_WORD), ); e.enc64( uextend.bind(I32).bind(I16), rec_urm_noflags.opcodes(&MOVZX_WORD).rex(), ); e.enc64( uextend.bind(I32).bind(I16), rec_urm_noflags.opcodes(&MOVZX_WORD), ); // movzbq, encoded as movzbl because it's equivalent and shorter. e.enc64( uextend.bind(I64).bind(I8), rec_urm_noflags.opcodes(&MOVZX_BYTE).rex(), ); e.enc64( uextend.bind(I64).bind(I8), rec_urm_noflags_abcd.opcodes(&MOVZX_BYTE), ); // movzwq, encoded as movzwl because it's equivalent and shorter e.enc64( uextend.bind(I64).bind(I16), rec_urm_noflags.opcodes(&MOVZX_WORD).rex(), ); e.enc64( uextend.bind(I64).bind(I16), rec_urm_noflags.opcodes(&MOVZX_WORD), ); // A 32-bit register copy clears the high 32 bits. e.enc64( uextend.bind(I64).bind(I32), rec_umr.opcodes(&MOV_STORE).rex(), ); e.enc64(uextend.bind(I64).bind(I32), rec_umr.opcodes(&MOV_STORE)); // Convert bool to int. // // This assumes that b1 is represented as an 8-bit low register with the value 0 // or 1. // // Encode movzbq as movzbl, because it's equivalent and shorter. for &to in &[I8, I16, I32, I64] { for &from in &[B1, B8] { e.enc64( bint.bind(to).bind(from), rec_urm_noflags.opcodes(&MOVZX_BYTE).rex(), ); e.enc64( bint.bind(to).bind(from), rec_urm_noflags_abcd.opcodes(&MOVZX_BYTE), ); if to != I64 { e.enc32( bint.bind(to).bind(from), rec_urm_noflags_abcd.opcodes(&MOVZX_BYTE), ); } } } // Copy Special // For x86-64, only define REX forms for now, since we can't describe the // special regunit immediate operands with the current constraint language. e.enc64(copy_special, rec_copysp.opcodes(&MOV_STORE).rex().w()); e.enc32(copy_special, rec_copysp.opcodes(&MOV_STORE)); // Copy to SSA. These have to be done with special _rex_only encoders, because the standard // machinery for deciding whether a REX.{RXB} prefix is needed doesn't take into account // the source register, which is specified directly in the instruction. e.enc_i32_i64_rex_only(copy_to_ssa, rec_umr_reg_to_ssa.opcodes(&MOV_STORE)); e.enc_r32_r64_rex_only(copy_to_ssa, rec_umr_reg_to_ssa.opcodes(&MOV_STORE)); e.enc_both_rex_only(copy_to_ssa.bind(B1), rec_umr_reg_to_ssa.opcodes(&MOV_STORE)); e.enc_both_rex_only(copy_to_ssa.bind(I8), rec_umr_reg_to_ssa.opcodes(&MOV_STORE)); e.enc_both_rex_only( copy_to_ssa.bind(I16), rec_umr_reg_to_ssa.opcodes(&MOV_STORE), ); e.enc_both_rex_only( copy_to_ssa.bind(F64), rec_furm_reg_to_ssa.opcodes(&MOVSD_LOAD), ); e.enc_both_rex_only( copy_to_ssa.bind(F32), rec_furm_reg_to_ssa.opcodes(&MOVSS_LOAD), ); } #[inline(never)] fn define_memory( e: &mut PerCpuModeEncodings, shared_defs: &SharedDefinitions, x86: &InstructionGroup, r: &RecipeGroup, ) { let shared = &shared_defs.instructions; let formats = &shared_defs.formats; // Shorthands for instructions. let adjust_sp_down = shared.by_name("adjust_sp_down"); let adjust_sp_down_imm = shared.by_name("adjust_sp_down_imm"); let adjust_sp_up_imm = shared.by_name("adjust_sp_up_imm"); let copy_nop = shared.by_name("copy_nop"); let fill = shared.by_name("fill"); let fill_nop = shared.by_name("fill_nop"); let istore16 = shared.by_name("istore16"); let istore16_complex = shared.by_name("istore16_complex"); let istore32 = shared.by_name("istore32"); let istore32_complex = shared.by_name("istore32_complex"); let istore8 = shared.by_name("istore8"); let istore8_complex = shared.by_name("istore8_complex"); let load = shared.by_name("load"); let load_complex = shared.by_name("load_complex"); let regfill = shared.by_name("regfill"); let regspill = shared.by_name("regspill"); let sload16 = shared.by_name("sload16"); let sload16_complex = shared.by_name("sload16_complex"); let sload32 = shared.by_name("sload32"); let sload32_complex = shared.by_name("sload32_complex"); let sload8 = shared.by_name("sload8"); let sload8_complex = shared.by_name("sload8_complex"); let spill = shared.by_name("spill"); let store = shared.by_name("store"); let store_complex = shared.by_name("store_complex"); let uload16 = shared.by_name("uload16"); let uload16_complex = shared.by_name("uload16_complex"); let uload32 = shared.by_name("uload32"); let uload32_complex = shared.by_name("uload32_complex"); let uload8 = shared.by_name("uload8"); let uload8_complex = shared.by_name("uload8_complex"); let x86_pop = x86.by_name("x86_pop"); let x86_push = x86.by_name("x86_push"); // Shorthands for recipes. let rec_adjustsp = r.template("adjustsp"); let rec_adjustsp_ib = r.template("adjustsp_ib"); let rec_adjustsp_id = r.template("adjustsp_id"); let rec_ffillnull = r.recipe("ffillnull"); let rec_fillnull = r.recipe("fillnull"); let rec_fillSib32 = r.template("fillSib32"); let rec_ld = r.template("ld"); let rec_ldDisp32 = r.template("ldDisp32"); let rec_ldDisp8 = r.template("ldDisp8"); let rec_ldWithIndex = r.template("ldWithIndex"); let rec_ldWithIndexDisp32 = r.template("ldWithIndexDisp32"); let rec_ldWithIndexDisp8 = r.template("ldWithIndexDisp8"); let rec_popq = r.template("popq"); let rec_pushq = r.template("pushq"); let rec_regfill32 = r.template("regfill32"); let rec_regspill32 = r.template("regspill32"); let rec_spillSib32 = r.template("spillSib32"); let rec_st = r.template("st"); let rec_stacknull = r.recipe("stacknull"); let rec_stDisp32 = r.template("stDisp32"); let rec_stDisp32_abcd = r.template("stDisp32_abcd"); let rec_stDisp8 = r.template("stDisp8"); let rec_stDisp8_abcd = r.template("stDisp8_abcd"); let rec_stWithIndex = r.template("stWithIndex"); let rec_stWithIndexDisp32 = r.template("stWithIndexDisp32"); let rec_stWithIndexDisp32_abcd = r.template("stWithIndexDisp32_abcd"); let rec_stWithIndexDisp8 = r.template("stWithIndexDisp8"); let rec_stWithIndexDisp8_abcd = r.template("stWithIndexDisp8_abcd"); let rec_stWithIndex_abcd = r.template("stWithIndex_abcd"); let rec_st_abcd = r.template("st_abcd"); // Loads and stores. let is_load_complex_length_two = InstructionPredicate::new_length_equals(&*formats.load_complex, 2); for recipe in &[rec_ldWithIndex, rec_ldWithIndexDisp8, rec_ldWithIndexDisp32] { e.enc_i32_i64_instp( load_complex, recipe.opcodes(&MOV_LOAD), is_load_complex_length_two.clone(), ); e.enc_x86_64_instp( uload32_complex, recipe.opcodes(&MOV_LOAD), is_load_complex_length_two.clone(), ); e.enc64_instp( sload32_complex, recipe.opcodes(&MOVSXD).rex().w(), is_load_complex_length_two.clone(), ); e.enc_i32_i64_instp( uload16_complex, recipe.opcodes(&MOVZX_WORD), is_load_complex_length_two.clone(), ); e.enc_i32_i64_instp( sload16_complex, recipe.opcodes(&MOVSX_WORD), is_load_complex_length_two.clone(), ); e.enc_i32_i64_instp( uload8_complex, recipe.opcodes(&MOVZX_BYTE), is_load_complex_length_two.clone(), ); e.enc_i32_i64_instp( sload8_complex, recipe.opcodes(&MOVSX_BYTE), is_load_complex_length_two.clone(), ); } let is_store_complex_length_three = InstructionPredicate::new_length_equals(&*formats.store_complex, 3); for recipe in &[rec_stWithIndex, rec_stWithIndexDisp8, rec_stWithIndexDisp32] { e.enc_i32_i64_instp( store_complex, recipe.opcodes(&MOV_STORE), is_store_complex_length_three.clone(), ); e.enc_x86_64_instp( istore32_complex, recipe.opcodes(&MOV_STORE), is_store_complex_length_three.clone(), ); e.enc_both_instp( istore16_complex.bind(I32), recipe.opcodes(&MOV_STORE_16), is_store_complex_length_three.clone(), ); e.enc_x86_64_instp( istore16_complex.bind(I64), recipe.opcodes(&MOV_STORE_16), is_store_complex_length_three.clone(), ); } for recipe in &[ rec_stWithIndex_abcd, rec_stWithIndexDisp8_abcd, rec_stWithIndexDisp32_abcd, ] { e.enc_both_instp( istore8_complex.bind(I32), recipe.opcodes(&MOV_BYTE_STORE), is_store_complex_length_three.clone(), ); e.enc_x86_64_instp( istore8_complex.bind(I64), recipe.opcodes(&MOV_BYTE_STORE), is_store_complex_length_three.clone(), ); } for recipe in &[rec_st, rec_stDisp8, rec_stDisp32] { e.enc_i32_i64_ld_st(store, true, recipe.opcodes(&MOV_STORE)); e.enc_r32_r64_ld_st(store, true, recipe.opcodes(&MOV_STORE)); e.enc_x86_64(istore32.bind(I64).bind(Any), recipe.opcodes(&MOV_STORE)); e.enc_i32_i64_ld_st(istore16, false, recipe.opcodes(&MOV_STORE_16)); } // Byte stores are more complicated because the registers they can address // depends of the presence of a REX prefix. The st*_abcd recipes fall back to // the corresponding st* recipes when a REX prefix is applied. for recipe in &[rec_st_abcd, rec_stDisp8_abcd, rec_stDisp32_abcd] { e.enc_both(istore8.bind(I32).bind(Any), recipe.opcodes(&MOV_BYTE_STORE)); e.enc_x86_64(istore8.bind(I64).bind(Any), recipe.opcodes(&MOV_BYTE_STORE)); } e.enc_i32_i64_explicit_rex(spill, rec_spillSib32.opcodes(&MOV_STORE)); e.enc_i32_i64_explicit_rex(regspill, rec_regspill32.opcodes(&MOV_STORE)); e.enc_r32_r64_rex_only(spill, rec_spillSib32.opcodes(&MOV_STORE)); e.enc_r32_r64_rex_only(regspill, rec_regspill32.opcodes(&MOV_STORE)); // Use a 32-bit write for spilling `b1`, `i8` and `i16` to avoid // constraining the permitted registers. // See MIN_SPILL_SLOT_SIZE which makes this safe. e.enc_both(spill.bind(B1), rec_spillSib32.opcodes(&MOV_STORE)); e.enc_both(regspill.bind(B1), rec_regspill32.opcodes(&MOV_STORE)); for &ty in &[I8, I16] { e.enc_both(spill.bind(ty), rec_spillSib32.opcodes(&MOV_STORE)); e.enc_both(regspill.bind(ty), rec_regspill32.opcodes(&MOV_STORE)); } for recipe in &[rec_ld, rec_ldDisp8, rec_ldDisp32] { e.enc_i32_i64_ld_st(load, true, recipe.opcodes(&MOV_LOAD)); e.enc_r32_r64_ld_st(load, true, recipe.opcodes(&MOV_LOAD)); e.enc_x86_64(uload32.bind(I64), recipe.opcodes(&MOV_LOAD)); e.enc64(sload32.bind(I64), recipe.opcodes(&MOVSXD).rex().w()); e.enc_i32_i64_ld_st(uload16, true, recipe.opcodes(&MOVZX_WORD)); e.enc_i32_i64_ld_st(sload16, true, recipe.opcodes(&MOVSX_WORD)); e.enc_i32_i64_ld_st(uload8, true, recipe.opcodes(&MOVZX_BYTE)); e.enc_i32_i64_ld_st(sload8, true, recipe.opcodes(&MOVSX_BYTE)); } e.enc_i32_i64_explicit_rex(fill, rec_fillSib32.opcodes(&MOV_LOAD)); e.enc_i32_i64_explicit_rex(regfill, rec_regfill32.opcodes(&MOV_LOAD)); e.enc_r32_r64_rex_only(fill, rec_fillSib32.opcodes(&MOV_LOAD)); e.enc_r32_r64_rex_only(regfill, rec_regfill32.opcodes(&MOV_LOAD)); // No-op fills, created by late-stage redundant-fill removal. for &ty in &[I64, I32, I16, I8] { e.enc64_rec(fill_nop.bind(ty), rec_fillnull, 0); e.enc32_rec(fill_nop.bind(ty), rec_fillnull, 0); } e.enc64_rec(fill_nop.bind(B1), rec_fillnull, 0); e.enc32_rec(fill_nop.bind(B1), rec_fillnull, 0); for &ty in &[F64, F32] { e.enc64_rec(fill_nop.bind(ty), rec_ffillnull, 0); e.enc32_rec(fill_nop.bind(ty), rec_ffillnull, 0); } // Load 32 bits from `b1`, `i8` and `i16` spill slots. See `spill.b1` above. e.enc_both(fill.bind(B1), rec_fillSib32.opcodes(&MOV_LOAD)); e.enc_both(regfill.bind(B1), rec_regfill32.opcodes(&MOV_LOAD)); for &ty in &[I8, I16] { e.enc_both(fill.bind(ty), rec_fillSib32.opcodes(&MOV_LOAD)); e.enc_both(regfill.bind(ty), rec_regfill32.opcodes(&MOV_LOAD)); } // Push and Pop. e.enc32(x86_push.bind(I32), rec_pushq.opcodes(&PUSH_REG)); e.enc_x86_64(x86_push.bind(I64), rec_pushq.opcodes(&PUSH_REG)); e.enc32(x86_pop.bind(I32), rec_popq.opcodes(&POP_REG)); e.enc_x86_64(x86_pop.bind(I64), rec_popq.opcodes(&POP_REG)); // Stack-slot-to-the-same-stack-slot copy, which is guaranteed to turn // into a no-op. // The same encoding is generated for both the 64- and 32-bit architectures. for &ty in &[I64, I32, I16, I8] { e.enc64_rec(copy_nop.bind(ty), rec_stacknull, 0); e.enc32_rec(copy_nop.bind(ty), rec_stacknull, 0); } for &ty in &[F64, F32] { e.enc64_rec(copy_nop.bind(ty), rec_stacknull, 0); e.enc32_rec(copy_nop.bind(ty), rec_stacknull, 0); } // Adjust SP down by a dynamic value (or up, with a negative operand). e.enc32(adjust_sp_down.bind(I32), rec_adjustsp.opcodes(&SUB)); e.enc64( adjust_sp_down.bind(I64), rec_adjustsp.opcodes(&SUB).rex().w(), ); // Adjust SP up by an immediate (or down, with a negative immediate). e.enc32(adjust_sp_up_imm, rec_adjustsp_ib.opcodes(&CMP_IMM8)); e.enc32(adjust_sp_up_imm, rec_adjustsp_id.opcodes(&CMP_IMM)); e.enc64( adjust_sp_up_imm, rec_adjustsp_ib.opcodes(&CMP_IMM8).rex().w(), ); e.enc64( adjust_sp_up_imm, rec_adjustsp_id.opcodes(&CMP_IMM).rex().w(), ); // Adjust SP down by an immediate (or up, with a negative immediate). e.enc32( adjust_sp_down_imm, rec_adjustsp_ib.opcodes(&CMP_IMM8).rrr(5), ); e.enc32(adjust_sp_down_imm, rec_adjustsp_id.opcodes(&CMP_IMM).rrr(5)); e.enc64( adjust_sp_down_imm, rec_adjustsp_ib.opcodes(&CMP_IMM8).rrr(5).rex().w(), ); e.enc64( adjust_sp_down_imm, rec_adjustsp_id.opcodes(&CMP_IMM).rrr(5).rex().w(), ); } #[inline(never)] fn define_fpu_moves(e: &mut PerCpuModeEncodings, shared_defs: &SharedDefinitions, r: &RecipeGroup) { let shared = &shared_defs.instructions; // Shorthands for instructions. let bitcast = shared.by_name("bitcast"); let copy = shared.by_name("copy"); let regmove = shared.by_name("regmove"); // Shorthands for recipes. let rec_frmov = r.template("frmov"); let rec_frurm = r.template("frurm"); let rec_furm = r.template("furm"); let rec_rfumr = r.template("rfumr"); // Floating-point moves. // movd e.enc_both( bitcast.bind(F32).bind(I32), rec_frurm.opcodes(&MOVD_LOAD_XMM), ); e.enc_both( bitcast.bind(I32).bind(F32), rec_rfumr.opcodes(&MOVD_STORE_XMM), ); // movq e.enc64( bitcast.bind(F64).bind(I64), rec_frurm.opcodes(&MOVD_LOAD_XMM).rex().w(), ); e.enc64( bitcast.bind(I64).bind(F64), rec_rfumr.opcodes(&MOVD_STORE_XMM).rex().w(), ); // movaps e.enc_both(copy.bind(F32), rec_furm.opcodes(&MOVAPS_LOAD)); e.enc_both(copy.bind(F64), rec_furm.opcodes(&MOVAPS_LOAD)); // TODO For x86-64, only define REX forms for now, since we can't describe the special regunit // immediate operands with the current constraint language. e.enc32(regmove.bind(F32), rec_frmov.opcodes(&MOVAPS_LOAD)); e.enc64(regmove.bind(F32), rec_frmov.opcodes(&MOVAPS_LOAD).rex()); // TODO For x86-64, only define REX forms for now, since we can't describe the special regunit // immediate operands with the current constraint language. e.enc32(regmove.bind(F64), rec_frmov.opcodes(&MOVAPS_LOAD)); e.enc64(regmove.bind(F64), rec_frmov.opcodes(&MOVAPS_LOAD).rex()); } #[inline(never)] fn define_fpu_memory( e: &mut PerCpuModeEncodings, shared_defs: &SharedDefinitions, r: &RecipeGroup, ) { let shared = &shared_defs.instructions; // Shorthands for instructions. let fill = shared.by_name("fill"); let load = shared.by_name("load"); let load_complex = shared.by_name("load_complex"); let regfill = shared.by_name("regfill"); let regspill = shared.by_name("regspill"); let spill = shared.by_name("spill"); let store = shared.by_name("store"); let store_complex = shared.by_name("store_complex"); // Shorthands for recipes. let rec_ffillSib32 = r.template("ffillSib32"); let rec_fld = r.template("fld"); let rec_fldDisp32 = r.template("fldDisp32"); let rec_fldDisp8 = r.template("fldDisp8"); let rec_fldWithIndex = r.template("fldWithIndex"); let rec_fldWithIndexDisp32 = r.template("fldWithIndexDisp32"); let rec_fldWithIndexDisp8 = r.template("fldWithIndexDisp8"); let rec_fregfill32 = r.template("fregfill32"); let rec_fregspill32 = r.template("fregspill32"); let rec_fspillSib32 = r.template("fspillSib32"); let rec_fst = r.template("fst"); let rec_fstDisp32 = r.template("fstDisp32"); let rec_fstDisp8 = r.template("fstDisp8"); let rec_fstWithIndex = r.template("fstWithIndex"); let rec_fstWithIndexDisp32 = r.template("fstWithIndexDisp32"); let rec_fstWithIndexDisp8 = r.template("fstWithIndexDisp8"); // Float loads and stores. e.enc_both(load.bind(F32).bind(Any), rec_fld.opcodes(&MOVSS_LOAD)); e.enc_both(load.bind(F32).bind(Any), rec_fldDisp8.opcodes(&MOVSS_LOAD)); e.enc_both(load.bind(F32).bind(Any), rec_fldDisp32.opcodes(&MOVSS_LOAD)); e.enc_both( load_complex.bind(F32), rec_fldWithIndex.opcodes(&MOVSS_LOAD), ); e.enc_both( load_complex.bind(F32), rec_fldWithIndexDisp8.opcodes(&MOVSS_LOAD), ); e.enc_both( load_complex.bind(F32), rec_fldWithIndexDisp32.opcodes(&MOVSS_LOAD), ); e.enc_both(load.bind(F64).bind(Any), rec_fld.opcodes(&MOVSD_LOAD)); e.enc_both(load.bind(F64).bind(Any), rec_fldDisp8.opcodes(&MOVSD_LOAD)); e.enc_both(load.bind(F64).bind(Any), rec_fldDisp32.opcodes(&MOVSD_LOAD)); e.enc_both( load_complex.bind(F64), rec_fldWithIndex.opcodes(&MOVSD_LOAD), ); e.enc_both( load_complex.bind(F64), rec_fldWithIndexDisp8.opcodes(&MOVSD_LOAD), ); e.enc_both( load_complex.bind(F64), rec_fldWithIndexDisp32.opcodes(&MOVSD_LOAD), ); e.enc_both(store.bind(F32).bind(Any), rec_fst.opcodes(&MOVSS_STORE)); e.enc_both( store.bind(F32).bind(Any), rec_fstDisp8.opcodes(&MOVSS_STORE), ); e.enc_both( store.bind(F32).bind(Any), rec_fstDisp32.opcodes(&MOVSS_STORE), ); e.enc_both( store_complex.bind(F32), rec_fstWithIndex.opcodes(&MOVSS_STORE), ); e.enc_both( store_complex.bind(F32), rec_fstWithIndexDisp8.opcodes(&MOVSS_STORE), ); e.enc_both( store_complex.bind(F32), rec_fstWithIndexDisp32.opcodes(&MOVSS_STORE), ); e.enc_both(store.bind(F64).bind(Any), rec_fst.opcodes(&MOVSD_STORE)); e.enc_both( store.bind(F64).bind(Any), rec_fstDisp8.opcodes(&MOVSD_STORE), ); e.enc_both( store.bind(F64).bind(Any), rec_fstDisp32.opcodes(&MOVSD_STORE), ); e.enc_both( store_complex.bind(F64), rec_fstWithIndex.opcodes(&MOVSD_STORE), ); e.enc_both( store_complex.bind(F64), rec_fstWithIndexDisp8.opcodes(&MOVSD_STORE), ); e.enc_both( store_complex.bind(F64), rec_fstWithIndexDisp32.opcodes(&MOVSD_STORE), ); e.enc_both(fill.bind(F32), rec_ffillSib32.opcodes(&MOVSS_LOAD)); e.enc_both(regfill.bind(F32), rec_fregfill32.opcodes(&MOVSS_LOAD)); e.enc_both(fill.bind(F64), rec_ffillSib32.opcodes(&MOVSD_LOAD)); e.enc_both(regfill.bind(F64), rec_fregfill32.opcodes(&MOVSD_LOAD)); e.enc_both(spill.bind(F32), rec_fspillSib32.opcodes(&MOVSS_STORE)); e.enc_both(regspill.bind(F32), rec_fregspill32.opcodes(&MOVSS_STORE)); e.enc_both(spill.bind(F64), rec_fspillSib32.opcodes(&MOVSD_STORE)); e.enc_both(regspill.bind(F64), rec_fregspill32.opcodes(&MOVSD_STORE)); } #[inline(never)] fn define_fpu_ops( e: &mut PerCpuModeEncodings, shared_defs: &SharedDefinitions, settings: &SettingGroup, x86: &InstructionGroup, r: &RecipeGroup, ) { let shared = &shared_defs.instructions; let formats = &shared_defs.formats; // Shorthands for instructions. let ceil = shared.by_name("ceil"); let f32const = shared.by_name("f32const"); let f64const = shared.by_name("f64const"); let fadd = shared.by_name("fadd"); let fcmp = shared.by_name("fcmp"); let fcvt_from_sint = shared.by_name("fcvt_from_sint"); let fdemote = shared.by_name("fdemote"); let fdiv = shared.by_name("fdiv"); let ffcmp = shared.by_name("ffcmp"); let floor = shared.by_name("floor"); let fmul = shared.by_name("fmul"); let fpromote = shared.by_name("fpromote"); let fsub = shared.by_name("fsub"); let nearest = shared.by_name("nearest"); let sqrt = shared.by_name("sqrt"); let trunc = shared.by_name("trunc"); let x86_cvtt2si = x86.by_name("x86_cvtt2si"); let x86_fmax = x86.by_name("x86_fmax"); let x86_fmin = x86.by_name("x86_fmin"); // Shorthands for recipes. let rec_f32imm_z = r.template("f32imm_z"); let rec_f64imm_z = r.template("f64imm_z"); let rec_fa = r.template("fa"); let rec_fcmp = r.template("fcmp"); let rec_fcscc = r.template("fcscc"); let rec_frurm = r.template("frurm"); let rec_furm = r.template("furm"); let rec_furmi_rnd = r.template("furmi_rnd"); let rec_rfurm = r.template("rfurm"); // Predicates shorthands. let use_sse41 = settings.predicate_by_name("use_sse41"); // Floating-point constants equal to 0.0 can be encoded using either `xorps` or `xorpd`, for // 32-bit and 64-bit floats respectively. let is_zero_32_bit_float = InstructionPredicate::new_is_zero_32bit_float(&*formats.unary_ieee32, "imm"); e.enc32_instp( f32const, rec_f32imm_z.opcodes(&XORPS), is_zero_32_bit_float.clone(), ); let is_zero_64_bit_float = InstructionPredicate::new_is_zero_64bit_float(&*formats.unary_ieee64, "imm"); e.enc32_instp( f64const, rec_f64imm_z.opcodes(&XORPD), is_zero_64_bit_float.clone(), ); e.enc_x86_64_instp(f32const, rec_f32imm_z.opcodes(&XORPS), is_zero_32_bit_float); e.enc_x86_64_instp(f64const, rec_f64imm_z.opcodes(&XORPD), is_zero_64_bit_float); // cvtsi2ss e.enc_i32_i64(fcvt_from_sint.bind(F32), rec_frurm.opcodes(&CVTSI2SS)); // cvtsi2sd e.enc_i32_i64(fcvt_from_sint.bind(F64), rec_frurm.opcodes(&CVTSI2SD)); // cvtss2sd e.enc_both(fpromote.bind(F64).bind(F32), rec_furm.opcodes(&CVTSS2SD)); // cvtsd2ss e.enc_both(fdemote.bind(F32).bind(F64), rec_furm.opcodes(&CVTSD2SS)); // cvttss2si e.enc_both( x86_cvtt2si.bind(I32).bind(F32), rec_rfurm.opcodes(&CVTTSS2SI), ); e.enc64( x86_cvtt2si.bind(I64).bind(F32), rec_rfurm.opcodes(&CVTTSS2SI).rex().w(), ); // cvttsd2si e.enc_both( x86_cvtt2si.bind(I32).bind(F64), rec_rfurm.opcodes(&CVTTSD2SI), ); e.enc64( x86_cvtt2si.bind(I64).bind(F64), rec_rfurm.opcodes(&CVTTSD2SI).rex().w(), ); // Exact square roots. e.enc_both(sqrt.bind(F32), rec_furm.opcodes(&SQRTSS)); e.enc_both(sqrt.bind(F64), rec_furm.opcodes(&SQRTSD)); // Rounding. The recipe looks at the opcode to pick an immediate. for inst in &[nearest, floor, ceil, trunc] { e.enc_both_isap(inst.bind(F32), rec_furmi_rnd.opcodes(&ROUNDSS), use_sse41); e.enc_both_isap(inst.bind(F64), rec_furmi_rnd.opcodes(&ROUNDSD), use_sse41); } // Binary arithmetic ops. e.enc_both(fadd.bind(F32), rec_fa.opcodes(&ADDSS)); e.enc_both(fadd.bind(F64), rec_fa.opcodes(&ADDSD)); e.enc_both(fsub.bind(F32), rec_fa.opcodes(&SUBSS)); e.enc_both(fsub.bind(F64), rec_fa.opcodes(&SUBSD)); e.enc_both(fmul.bind(F32), rec_fa.opcodes(&MULSS)); e.enc_both(fmul.bind(F64), rec_fa.opcodes(&MULSD)); e.enc_both(fdiv.bind(F32), rec_fa.opcodes(&DIVSS)); e.enc_both(fdiv.bind(F64), rec_fa.opcodes(&DIVSD)); e.enc_both(x86_fmin.bind(F32), rec_fa.opcodes(&MINSS)); e.enc_both(x86_fmin.bind(F64), rec_fa.opcodes(&MINSD)); e.enc_both(x86_fmax.bind(F32), rec_fa.opcodes(&MAXSS)); e.enc_both(x86_fmax.bind(F64), rec_fa.opcodes(&MAXSD)); // Comparisons. // // This only covers the condition codes in `supported_floatccs`, the rest are // handled by legalization patterns. e.enc_both(fcmp.bind(F32), rec_fcscc.opcodes(&UCOMISS)); e.enc_both(fcmp.bind(F64), rec_fcscc.opcodes(&UCOMISD)); e.enc_both(ffcmp.bind(F32), rec_fcmp.opcodes(&UCOMISS)); e.enc_both(ffcmp.bind(F64), rec_fcmp.opcodes(&UCOMISD)); } #[inline(never)] fn define_alu( e: &mut PerCpuModeEncodings, shared_defs: &SharedDefinitions, settings: &SettingGroup, x86: &InstructionGroup, r: &RecipeGroup, ) { let shared = &shared_defs.instructions; // Shorthands for instructions. let clz = shared.by_name("clz"); let ctz = shared.by_name("ctz"); let icmp = shared.by_name("icmp"); let icmp_imm = shared.by_name("icmp_imm"); let ifcmp = shared.by_name("ifcmp"); let ifcmp_imm = shared.by_name("ifcmp_imm"); let ifcmp_sp = shared.by_name("ifcmp_sp"); let ishl = shared.by_name("ishl"); let ishl_imm = shared.by_name("ishl_imm"); let popcnt = shared.by_name("popcnt"); let rotl = shared.by_name("rotl"); let rotl_imm = shared.by_name("rotl_imm"); let rotr = shared.by_name("rotr"); let rotr_imm = shared.by_name("rotr_imm"); let selectif = shared.by_name("selectif"); let sshr = shared.by_name("sshr"); let sshr_imm = shared.by_name("sshr_imm"); let trueff = shared.by_name("trueff"); let trueif = shared.by_name("trueif"); let ushr = shared.by_name("ushr"); let ushr_imm = shared.by_name("ushr_imm"); let x86_bsf = x86.by_name("x86_bsf"); let x86_bsr = x86.by_name("x86_bsr"); // Shorthands for recipes. let rec_bsf_and_bsr = r.template("bsf_and_bsr"); let rec_cmov = r.template("cmov"); let rec_icscc = r.template("icscc"); let rec_icscc_ib = r.template("icscc_ib"); let rec_icscc_id = r.template("icscc_id"); let rec_rcmp = r.template("rcmp"); let rec_rcmp_ib = r.template("rcmp_ib"); let rec_rcmp_id = r.template("rcmp_id"); let rec_rcmp_sp = r.template("rcmp_sp"); let rec_rc = r.template("rc"); let rec_setf_abcd = r.template("setf_abcd"); let rec_seti_abcd = r.template("seti_abcd"); let rec_urm = r.template("urm"); // Predicates shorthands. let use_popcnt = settings.predicate_by_name("use_popcnt"); let use_lzcnt = settings.predicate_by_name("use_lzcnt"); let use_bmi1 = settings.predicate_by_name("use_bmi1"); let band = shared.by_name("band"); let band_imm = shared.by_name("band_imm"); let band_not = shared.by_name("band_not"); let bnot = shared.by_name("bnot"); let bor = shared.by_name("bor"); let bor_imm = shared.by_name("bor_imm"); let bxor = shared.by_name("bxor"); let bxor_imm = shared.by_name("bxor_imm"); let iadd = shared.by_name("iadd"); let iadd_ifcarry = shared.by_name("iadd_ifcarry"); let iadd_ifcin = shared.by_name("iadd_ifcin"); let iadd_ifcout = shared.by_name("iadd_ifcout"); let iadd_imm = shared.by_name("iadd_imm"); let imul = shared.by_name("imul"); let isub = shared.by_name("isub"); let isub_ifbin = shared.by_name("isub_ifbin"); let isub_ifborrow = shared.by_name("isub_ifborrow"); let isub_ifbout = shared.by_name("isub_ifbout"); let x86_sdivmodx = x86.by_name("x86_sdivmodx"); let x86_smulx = x86.by_name("x86_smulx"); let x86_udivmodx = x86.by_name("x86_udivmodx"); let x86_umulx = x86.by_name("x86_umulx"); let rec_div = r.template("div"); let rec_fa = r.template("fa"); let rec_fax = r.template("fax"); let rec_mulx = r.template("mulx"); let rec_r_ib = r.template("r_ib"); let rec_r_id = r.template("r_id"); let rec_rin = r.template("rin"); let rec_rio = r.template("rio"); let rec_rout = r.template("rout"); let rec_rr = r.template("rr"); let rec_rrx = r.template("rrx"); let rec_ur = r.template("ur"); e.enc_i32_i64(iadd, rec_rr.opcodes(&ADD)); e.enc_i32_i64(iadd_ifcout, rec_rout.opcodes(&ADD)); e.enc_i32_i64(iadd_ifcin, rec_rin.opcodes(&ADC)); e.enc_i32_i64(iadd_ifcarry, rec_rio.opcodes(&ADC)); e.enc_i32_i64(iadd_imm, rec_r_ib.opcodes(&ADD_IMM8_SIGN_EXTEND).rrr(0)); e.enc_i32_i64(iadd_imm, rec_r_id.opcodes(&ADD_IMM).rrr(0)); e.enc_i32_i64(isub, rec_rr.opcodes(&SUB)); e.enc_i32_i64(isub_ifbout, rec_rout.opcodes(&SUB)); e.enc_i32_i64(isub_ifbin, rec_rin.opcodes(&SBB)); e.enc_i32_i64(isub_ifborrow, rec_rio.opcodes(&SBB)); e.enc_i32_i64(band, rec_rr.opcodes(&AND)); e.enc_b32_b64(band, rec_rr.opcodes(&AND)); // TODO: band_imm.i64 with an unsigned 32-bit immediate can be encoded as band_imm.i32. Can // even use the single-byte immediate for 0xffff_ffXX masks. e.enc_i32_i64(band_imm, rec_r_ib.opcodes(&AND_IMM8_SIGN_EXTEND).rrr(4)); e.enc_i32_i64(band_imm, rec_r_id.opcodes(&AND_IMM).rrr(4)); e.enc_i32_i64(bor, rec_rr.opcodes(&OR)); e.enc_b32_b64(bor, rec_rr.opcodes(&OR)); e.enc_i32_i64(bor_imm, rec_r_ib.opcodes(&OR_IMM8_SIGN_EXTEND).rrr(1)); e.enc_i32_i64(bor_imm, rec_r_id.opcodes(&OR_IMM).rrr(1)); e.enc_i32_i64(bxor, rec_rr.opcodes(&XOR)); e.enc_b32_b64(bxor, rec_rr.opcodes(&XOR)); e.enc_i32_i64(bxor_imm, rec_r_ib.opcodes(&XOR_IMM8_SIGN_EXTEND).rrr(6)); e.enc_i32_i64(bxor_imm, rec_r_id.opcodes(&XOR_IMM).rrr(6)); // x86 has a bitwise not instruction NOT. e.enc_i32_i64(bnot, rec_ur.opcodes(&NOT).rrr(2)); e.enc_b32_b64(bnot, rec_ur.opcodes(&NOT).rrr(2)); // Also add a `b1` encodings for the logic instructions. // TODO: Should this be done with 8-bit instructions? It would improve partial register // dependencies. e.enc_both(band.bind(B1), rec_rr.opcodes(&AND)); e.enc_both(bor.bind(B1), rec_rr.opcodes(&OR)); e.enc_both(bxor.bind(B1), rec_rr.opcodes(&XOR)); e.enc_i32_i64(imul, rec_rrx.opcodes(&IMUL)); e.enc_i32_i64(x86_sdivmodx, rec_div.opcodes(&IDIV).rrr(7)); e.enc_i32_i64(x86_udivmodx, rec_div.opcodes(&DIV).rrr(6)); e.enc_i32_i64(x86_smulx, rec_mulx.opcodes(&IMUL_RDX_RAX).rrr(5)); e.enc_i32_i64(x86_umulx, rec_mulx.opcodes(&MUL).rrr(4)); // Binary bitwise ops. // // The F64 version is intentionally encoded using the single-precision opcode: // the operation is identical and the encoding is one byte shorter. e.enc_both(band.bind(F32), rec_fa.opcodes(&ANDPS)); e.enc_both(band.bind(F64), rec_fa.opcodes(&ANDPS)); e.enc_both(bor.bind(F32), rec_fa.opcodes(&ORPS)); e.enc_both(bor.bind(F64), rec_fa.opcodes(&ORPS)); e.enc_both(bxor.bind(F32), rec_fa.opcodes(&XORPS)); e.enc_both(bxor.bind(F64), rec_fa.opcodes(&XORPS)); // The `andnps(x,y)` instruction computes `~x&y`, while band_not(x,y)` is `x&~y. e.enc_both(band_not.bind(F32), rec_fax.opcodes(&ANDNPS)); e.enc_both(band_not.bind(F64), rec_fax.opcodes(&ANDNPS)); // Shifts and rotates. // Note that the dynamic shift amount is only masked by 5 or 6 bits; the 8-bit // and 16-bit shifts would need explicit masking. for &(inst, rrr) in &[(rotl, 0), (rotr, 1), (ishl, 4), (ushr, 5), (sshr, 7)] { // Cannot use enc_i32_i64 for this pattern because instructions require // to bind any. e.enc32( inst.bind(I32).bind(Any), rec_rc.opcodes(&ROTATE_CL).rrr(rrr), ); e.enc64( inst.bind(I64).bind(Any), rec_rc.opcodes(&ROTATE_CL).rrr(rrr).rex().w(), ); e.enc64( inst.bind(I32).bind(Any), rec_rc.opcodes(&ROTATE_CL).rrr(rrr).rex(), ); e.enc64( inst.bind(I32).bind(Any), rec_rc.opcodes(&ROTATE_CL).rrr(rrr), ); } e.enc_i32_i64(rotl_imm, rec_r_ib.opcodes(&ROTATE_IMM8).rrr(0)); e.enc_i32_i64(rotr_imm, rec_r_ib.opcodes(&ROTATE_IMM8).rrr(1)); e.enc_i32_i64(ishl_imm, rec_r_ib.opcodes(&ROTATE_IMM8).rrr(4)); e.enc_i32_i64(ushr_imm, rec_r_ib.opcodes(&ROTATE_IMM8).rrr(5)); e.enc_i32_i64(sshr_imm, rec_r_ib.opcodes(&ROTATE_IMM8).rrr(7)); // Population count. e.enc32_isap(popcnt.bind(I32), rec_urm.opcodes(&POPCNT), use_popcnt); e.enc64_isap( popcnt.bind(I64), rec_urm.opcodes(&POPCNT).rex().w(), use_popcnt, ); e.enc64_isap(popcnt.bind(I32), rec_urm.opcodes(&POPCNT).rex(), use_popcnt); e.enc64_isap(popcnt.bind(I32), rec_urm.opcodes(&POPCNT), use_popcnt); // Count leading zero bits. e.enc32_isap(clz.bind(I32), rec_urm.opcodes(&LZCNT), use_lzcnt); e.enc64_isap(clz.bind(I64), rec_urm.opcodes(&LZCNT).rex().w(), use_lzcnt); e.enc64_isap(clz.bind(I32), rec_urm.opcodes(&LZCNT).rex(), use_lzcnt); e.enc64_isap(clz.bind(I32), rec_urm.opcodes(&LZCNT), use_lzcnt); // Count trailing zero bits. e.enc32_isap(ctz.bind(I32), rec_urm.opcodes(&TZCNT), use_bmi1); e.enc64_isap(ctz.bind(I64), rec_urm.opcodes(&TZCNT).rex().w(), use_bmi1); e.enc64_isap(ctz.bind(I32), rec_urm.opcodes(&TZCNT).rex(), use_bmi1); e.enc64_isap(ctz.bind(I32), rec_urm.opcodes(&TZCNT), use_bmi1); // Bit scan forwards and reverse e.enc_i32_i64(x86_bsf, rec_bsf_and_bsr.opcodes(&BIT_SCAN_FORWARD)); e.enc_i32_i64(x86_bsr, rec_bsf_and_bsr.opcodes(&BIT_SCAN_REVERSE)); // Comparisons e.enc_i32_i64(icmp, rec_icscc.opcodes(&CMP_REG)); e.enc_i32_i64(icmp_imm, rec_icscc_ib.opcodes(&CMP_IMM8).rrr(7)); e.enc_i32_i64(icmp_imm, rec_icscc_id.opcodes(&CMP_IMM).rrr(7)); e.enc_i32_i64(ifcmp, rec_rcmp.opcodes(&CMP_REG)); e.enc_i32_i64(ifcmp_imm, rec_rcmp_ib.opcodes(&CMP_IMM8).rrr(7)); e.enc_i32_i64(ifcmp_imm, rec_rcmp_id.opcodes(&CMP_IMM).rrr(7)); // TODO: We could special-case ifcmp_imm(x, 0) to TEST(x, x). e.enc32(ifcmp_sp.bind(I32), rec_rcmp_sp.opcodes(&CMP_REG)); e.enc64(ifcmp_sp.bind(I64), rec_rcmp_sp.opcodes(&CMP_REG).rex().w()); // Convert flags to bool. // This encodes `b1` as an 8-bit low register with the value 0 or 1. e.enc_both(trueif, rec_seti_abcd.opcodes(&SET_BYTE_IF_OVERFLOW)); e.enc_both(trueff, rec_setf_abcd.opcodes(&SET_BYTE_IF_OVERFLOW)); // Conditional move (a.k.a integer select). e.enc_i32_i64(selectif, rec_cmov.opcodes(&CMOV_OVERFLOW)); } #[inline(never)] #[allow(clippy::cognitive_complexity)] fn define_simd( e: &mut PerCpuModeEncodings, shared_defs: &SharedDefinitions, settings: &SettingGroup, x86: &InstructionGroup, r: &RecipeGroup, ) { let shared = &shared_defs.instructions; let formats = &shared_defs.formats; // Shorthands for instructions. let avg_round = shared.by_name("avg_round"); let bitcast = shared.by_name("bitcast"); let bor = shared.by_name("bor"); let bxor = shared.by_name("bxor"); let copy = shared.by_name("copy"); let copy_nop = shared.by_name("copy_nop"); let copy_to_ssa = shared.by_name("copy_to_ssa"); let fadd = shared.by_name("fadd"); let fcmp = shared.by_name("fcmp"); let fcvt_from_sint = shared.by_name("fcvt_from_sint"); let fdiv = shared.by_name("fdiv"); let fill = shared.by_name("fill"); let fill_nop = shared.by_name("fill_nop"); let fmax = shared.by_name("fmax"); let fmin = shared.by_name("fmin"); let fmul = shared.by_name("fmul"); let fsub = shared.by_name("fsub"); let iadd = shared.by_name("iadd"); let icmp = shared.by_name("icmp"); let imul = shared.by_name("imul"); let ishl_imm = shared.by_name("ishl_imm"); let load = shared.by_name("load"); let load_complex = shared.by_name("load_complex"); let raw_bitcast = shared.by_name("raw_bitcast"); let regfill = shared.by_name("regfill"); let regmove = shared.by_name("regmove"); let regspill = shared.by_name("regspill"); let sadd_sat = shared.by_name("sadd_sat"); let scalar_to_vector = shared.by_name("scalar_to_vector"); let sload8x8 = shared.by_name("sload8x8"); let sload16x4 = shared.by_name("sload16x4"); let sload32x2 = shared.by_name("sload32x2"); let spill = shared.by_name("spill"); let sqrt = shared.by_name("sqrt"); let sshr_imm = shared.by_name("sshr_imm"); let ssub_sat = shared.by_name("ssub_sat"); let store = shared.by_name("store"); let store_complex = shared.by_name("store_complex"); let uadd_sat = shared.by_name("uadd_sat"); let uload8x8 = shared.by_name("uload8x8"); let uload16x4 = shared.by_name("uload16x4"); let uload32x2 = shared.by_name("uload32x2"); let ushr_imm = shared.by_name("ushr_imm"); let usub_sat = shared.by_name("usub_sat"); let vconst = shared.by_name("vconst"); let x86_insertps = x86.by_name("x86_insertps"); let x86_movlhps = x86.by_name("x86_movlhps"); let x86_movsd = x86.by_name("x86_movsd"); let x86_packss = x86.by_name("x86_packss"); let x86_pextr = x86.by_name("x86_pextr"); let x86_pinsr = x86.by_name("x86_pinsr"); let x86_pmaxs = x86.by_name("x86_pmaxs"); let x86_pmaxu = x86.by_name("x86_pmaxu"); let x86_pmins = x86.by_name("x86_pmins"); let x86_pminu = x86.by_name("x86_pminu"); let x86_pshufb = x86.by_name("x86_pshufb"); let x86_pshufd = x86.by_name("x86_pshufd"); let x86_psll = x86.by_name("x86_psll"); let x86_psra = x86.by_name("x86_psra"); let x86_psrl = x86.by_name("x86_psrl"); let x86_ptest = x86.by_name("x86_ptest"); let x86_punpckh = x86.by_name("x86_punpckh"); let x86_punpckl = x86.by_name("x86_punpckl"); // Shorthands for recipes. let rec_evex_reg_vvvv_rm_128 = r.template("evex_reg_vvvv_rm_128"); let rec_f_ib = r.template("f_ib"); let rec_fa = r.template("fa"); let rec_fa_ib = r.template("fa_ib"); let rec_fax = r.template("fax"); let rec_fcmp = r.template("fcmp"); let rec_ffillSib32 = r.template("ffillSib32"); let rec_ffillnull = r.recipe("ffillnull"); let rec_fld = r.template("fld"); let rec_fldDisp32 = r.template("fldDisp32"); let rec_fldDisp8 = r.template("fldDisp8"); let rec_fldWithIndex = r.template("fldWithIndex"); let rec_fldWithIndexDisp32 = r.template("fldWithIndexDisp32"); let rec_fldWithIndexDisp8 = r.template("fldWithIndexDisp8"); let rec_fregfill32 = r.template("fregfill32"); let rec_fregspill32 = r.template("fregspill32"); let rec_frmov = r.template("frmov"); let rec_frurm = r.template("frurm"); let rec_fspillSib32 = r.template("fspillSib32"); let rec_fst = r.template("fst"); let rec_fstDisp32 = r.template("fstDisp32"); let rec_fstDisp8 = r.template("fstDisp8"); let rec_fstWithIndex = r.template("fstWithIndex"); let rec_fstWithIndexDisp32 = r.template("fstWithIndexDisp32"); let rec_fstWithIndexDisp8 = r.template("fstWithIndexDisp8"); let rec_furm = r.template("furm"); let rec_furm_reg_to_ssa = r.template("furm_reg_to_ssa"); let rec_icscc_fpr = r.template("icscc_fpr"); let rec_null_fpr = r.recipe("null_fpr"); let rec_pfcmp = r.template("pfcmp"); let rec_r_ib_unsigned_fpr = r.template("r_ib_unsigned_fpr"); let rec_r_ib_unsigned_gpr = r.template("r_ib_unsigned_gpr"); let rec_r_ib_unsigned_r = r.template("r_ib_unsigned_r"); let rec_stacknull = r.recipe("stacknull"); let rec_vconst = r.template("vconst"); let rec_vconst_optimized = r.template("vconst_optimized"); // Predicates shorthands. settings.predicate_by_name("all_ones_funcaddrs_and_not_is_pic"); settings.predicate_by_name("not_all_ones_funcaddrs_and_not_is_pic"); let use_ssse3_simd = settings.predicate_by_name("use_ssse3_simd"); let use_sse41_simd = settings.predicate_by_name("use_sse41_simd"); let use_sse42_simd = settings.predicate_by_name("use_sse42_simd"); let use_avx512dq_simd = settings.predicate_by_name("use_avx512dq_simd"); // SIMD vector size: eventually multiple vector sizes may be supported but for now only // SSE-sized vectors are available. let sse_vector_size: u64 = 128; // SIMD splat: before x86 can use vector data, it must be moved to XMM registers; see // legalize.rs for how this is done; once there, x86_pshuf* (below) is used for broadcasting the // value across the register. let allowed_simd_type = |t: &LaneType| t.lane_bits() >= 8 && t.lane_bits() < 128; // PSHUFB, 8-bit shuffle using two XMM registers. for ty in ValueType::all_lane_types().filter(allowed_simd_type) { let instruction = x86_pshufb.bind(vector(ty, sse_vector_size)); let template = rec_fa.opcodes(&PSHUFB); e.enc_both_inferred_maybe_isap(instruction.clone(), template.clone(), Some(use_ssse3_simd)); } // PSHUFD, 32-bit shuffle using one XMM register and a u8 immediate. for ty in ValueType::all_lane_types().filter(|t| t.lane_bits() == 32) { let instruction = x86_pshufd.bind(vector(ty, sse_vector_size)); let template = rec_r_ib_unsigned_fpr.opcodes(&PSHUFD); e.enc_both_inferred(instruction, template); } // SIMD scalar_to_vector; this uses MOV to copy the scalar value to an XMM register; according // to the Intel manual: "When the destination operand is an XMM register, the source operand is // written to the low doubleword of the register and the register is zero-extended to 128 bits." for ty in ValueType::all_lane_types().filter(allowed_simd_type) { let instruction = scalar_to_vector.bind(vector(ty, sse_vector_size)); if ty.is_float() { // No need to move floats--they already live in XMM registers. e.enc_32_64_rec(instruction, rec_null_fpr, 0); } else { let template = rec_frurm.opcodes(&MOVD_LOAD_XMM); if ty.lane_bits() < 64 { e.enc_both_inferred(instruction, template); } else { // No 32-bit encodings for 64-bit widths. assert_eq!(ty.lane_bits(), 64); e.enc64(instruction, template.rex().w()); } } } // SIMD insertlane for ty in ValueType::all_lane_types().filter(allowed_simd_type) { let (opcode, isap): (&[_], _) = match ty.lane_bits() { 8 => (&PINSRB, Some(use_sse41_simd)), 16 => (&PINSRW, None), 32 | 64 => (&PINSR, Some(use_sse41_simd)), _ => panic!("invalid size for SIMD insertlane"), }; let instruction = x86_pinsr.bind(vector(ty, sse_vector_size)); let template = rec_r_ib_unsigned_r.opcodes(opcode); if ty.lane_bits() < 64 { e.enc_both_inferred_maybe_isap(instruction, template, isap); } else { // It turns out the 64-bit widths have REX/W encodings and only are available on // x86_64. e.enc64_maybe_isap(instruction, template.rex().w(), isap); } } // For legalizing insertlane with floats, INSERTPS from SSE4.1. { let instruction = x86_insertps.bind(vector(F32, sse_vector_size)); let template = rec_fa_ib.opcodes(&INSERTPS); e.enc_both_inferred_maybe_isap(instruction, template, Some(use_sse41_simd)); } // For legalizing insertlane with floats, MOVSD from SSE2. { let instruction = x86_movsd.bind(vector(F64, sse_vector_size)); let template = rec_fa.opcodes(&MOVSD_LOAD); e.enc_both_inferred(instruction, template); // from SSE2 } // For legalizing insertlane with floats, MOVLHPS from SSE. { let instruction = x86_movlhps.bind(vector(F64, sse_vector_size)); let template = rec_fa.opcodes(&MOVLHPS); e.enc_both_inferred(instruction, template); // from SSE } // SIMD extractlane for ty in ValueType::all_lane_types().filter(allowed_simd_type) { let opcode = match ty.lane_bits() { 8 => &PEXTRB, 16 => &PEXTRW, 32 | 64 => &PEXTR, _ => panic!("invalid size for SIMD extractlane"), }; let instruction = x86_pextr.bind(vector(ty, sse_vector_size)); let template = rec_r_ib_unsigned_gpr.opcodes(opcode); if ty.lane_bits() < 64 { e.enc_both_inferred_maybe_isap(instruction, template, Some(use_sse41_simd)); } else { // It turns out the 64-bit widths have REX/W encodings and only are available on // x86_64. e.enc64_maybe_isap(instruction, template.rex().w(), Some(use_sse41_simd)); } } // SIMD packing/unpacking for ty in ValueType::all_lane_types().filter(allowed_simd_type) { let (high, low) = match ty.lane_bits() { 8 => (&PUNPCKHBW, &PUNPCKLBW), 16 => (&PUNPCKHWD, &PUNPCKLWD), 32 => (&PUNPCKHDQ, &PUNPCKLDQ), 64 => (&PUNPCKHQDQ, &PUNPCKLQDQ), _ => panic!("invalid size for SIMD packing/unpacking"), }; e.enc_both_inferred( x86_punpckh.bind(vector(ty, sse_vector_size)), rec_fa.opcodes(high), ); e.enc_both_inferred( x86_punpckl.bind(vector(ty, sse_vector_size)), rec_fa.opcodes(low), ); } for (ty, opcodes) in &[(I16, &PACKSSWB), (I32, &PACKSSDW)] { let x86_packss = x86_packss.bind(vector(*ty, sse_vector_size)); e.enc_both_inferred(x86_packss, rec_fa.opcodes(*opcodes)); } // SIMD bitcast all 128-bit vectors to each other (for legalizing splat.x16x8). for from_type in ValueType::all_lane_types().filter(allowed_simd_type) { for to_type in ValueType::all_lane_types().filter(|t| allowed_simd_type(t) && *t != from_type) { let instruction = raw_bitcast .bind(vector(to_type, sse_vector_size)) .bind(vector(from_type, sse_vector_size)); e.enc_32_64_rec(instruction, rec_null_fpr, 0); } } // SIMD raw bitcast floats to vector (and back); assumes that floats are already stored in an // XMM register. for float_type in &[F32, F64] { for lane_type in ValueType::all_lane_types().filter(allowed_simd_type) { e.enc_32_64_rec( raw_bitcast .bind(vector(lane_type, sse_vector_size)) .bind(*float_type), rec_null_fpr, 0, ); e.enc_32_64_rec( raw_bitcast .bind(*float_type) .bind(vector(lane_type, sse_vector_size)), rec_null_fpr, 0, ); } } // SIMD conversions { let fcvt_from_sint_32 = fcvt_from_sint .bind(vector(F32, sse_vector_size)) .bind(vector(I32, sse_vector_size)); e.enc_both(fcvt_from_sint_32, rec_furm.opcodes(&CVTDQ2PS)); } // SIMD vconst for special cases (all zeroes, all ones) // this must be encoded prior to the MOVUPS implementation (below) so the compiler sees this // encoding first for ty in ValueType::all_lane_types().filter(allowed_simd_type) { let instruction = vconst.bind(vector(ty, sse_vector_size)); let is_zero_128bit = InstructionPredicate::new_is_all_zeroes(&*formats.unary_const, "constant_handle"); let template = rec_vconst_optimized.opcodes(&PXOR).infer_rex(); e.enc_32_64_func(instruction.clone(), template, |builder| { builder.inst_predicate(is_zero_128bit) }); let is_ones_128bit = InstructionPredicate::new_is_all_ones(&*formats.unary_const, "constant_handle"); let template = rec_vconst_optimized.opcodes(&PCMPEQB).infer_rex(); e.enc_32_64_func(instruction, template, |builder| { builder.inst_predicate(is_ones_128bit) }); } // SIMD vconst using MOVUPS // TODO it would be ideal if eventually this became the more efficient MOVAPS but we would have // to guarantee that the constants are aligned when emitted and there is currently no mechanism // for that; alternately, constants could be loaded into XMM registers using a sequence like: // MOVQ + MOVHPD + MOVQ + MOVLPD (this allows the constants to be immediates instead of stored // in memory) but some performance measurements are needed. for ty in ValueType::all_lane_types().filter(allowed_simd_type) { let instruction = vconst.bind(vector(ty, sse_vector_size)); let template = rec_vconst.opcodes(&MOVUPS_LOAD); e.enc_both_inferred(instruction, template); // from SSE } // SIMD register movement: store, load, spill, fill, regmove, etc. All of these use encodings of // MOVUPS and MOVAPS from SSE (TODO ideally all of these would either use MOVAPS when we have // alignment or type-specific encodings, see https://github.com/bytecodealliance/wasmtime/issues/1124). // Also, it would be ideal to infer REX prefixes for all of these instructions but for the // time being only instructions with common recipes have `infer_rex()` support. for ty in ValueType::all_lane_types().filter(allowed_simd_type) { // Store let bound_store = store.bind(vector(ty, sse_vector_size)).bind(Any); e.enc_both_inferred(bound_store.clone(), rec_fst.opcodes(&MOVUPS_STORE)); e.enc_both_inferred(bound_store.clone(), rec_fstDisp8.opcodes(&MOVUPS_STORE)); e.enc_both_inferred(bound_store, rec_fstDisp32.opcodes(&MOVUPS_STORE)); // Store complex let bound_store_complex = store_complex.bind(vector(ty, sse_vector_size)); e.enc_both( bound_store_complex.clone(), rec_fstWithIndex.opcodes(&MOVUPS_STORE), ); e.enc_both( bound_store_complex.clone(), rec_fstWithIndexDisp8.opcodes(&MOVUPS_STORE), ); e.enc_both( bound_store_complex, rec_fstWithIndexDisp32.opcodes(&MOVUPS_STORE), ); // Load let bound_load = load.bind(vector(ty, sse_vector_size)).bind(Any); e.enc_both_inferred(bound_load.clone(), rec_fld.opcodes(&MOVUPS_LOAD)); e.enc_both_inferred(bound_load.clone(), rec_fldDisp8.opcodes(&MOVUPS_LOAD)); e.enc_both_inferred(bound_load, rec_fldDisp32.opcodes(&MOVUPS_LOAD)); // Load complex let bound_load_complex = load_complex.bind(vector(ty, sse_vector_size)); e.enc_both( bound_load_complex.clone(), rec_fldWithIndex.opcodes(&MOVUPS_LOAD), ); e.enc_both( bound_load_complex.clone(), rec_fldWithIndexDisp8.opcodes(&MOVUPS_LOAD), ); e.enc_both( bound_load_complex, rec_fldWithIndexDisp32.opcodes(&MOVUPS_LOAD), ); // Spill let bound_spill = spill.bind(vector(ty, sse_vector_size)); e.enc_both(bound_spill, rec_fspillSib32.opcodes(&MOVUPS_STORE)); let bound_regspill = regspill.bind(vector(ty, sse_vector_size)); e.enc_both(bound_regspill, rec_fregspill32.opcodes(&MOVUPS_STORE)); // Fill let bound_fill = fill.bind(vector(ty, sse_vector_size)); e.enc_both(bound_fill, rec_ffillSib32.opcodes(&MOVUPS_LOAD)); let bound_regfill = regfill.bind(vector(ty, sse_vector_size)); e.enc_both(bound_regfill, rec_fregfill32.opcodes(&MOVUPS_LOAD)); let bound_fill_nop = fill_nop.bind(vector(ty, sse_vector_size)); e.enc_32_64_rec(bound_fill_nop, rec_ffillnull, 0); // Regmove let bound_regmove = regmove.bind(vector(ty, sse_vector_size)); e.enc_both(bound_regmove, rec_frmov.opcodes(&MOVAPS_LOAD)); // Copy let bound_copy = copy.bind(vector(ty, sse_vector_size)); e.enc_both(bound_copy, rec_furm.opcodes(&MOVAPS_LOAD)); let bound_copy_to_ssa = copy_to_ssa.bind(vector(ty, sse_vector_size)); e.enc_both(bound_copy_to_ssa, rec_furm_reg_to_ssa.opcodes(&MOVAPS_LOAD)); let bound_copy_nop = copy_nop.bind(vector(ty, sse_vector_size)); e.enc_32_64_rec(bound_copy_nop, rec_stacknull, 0); } // SIMD load extend for (inst, opcodes) in &[ (uload8x8, &PMOVZXBW), (uload16x4, &PMOVZXWD), (uload32x2, &PMOVZXDQ), (sload8x8, &PMOVSXBW), (sload16x4, &PMOVSXWD), (sload32x2, &PMOVSXDQ), ] { let isap = Some(use_sse41_simd); for recipe in &[rec_fld, rec_fldDisp8, rec_fldDisp32] { let inst = *inst; let template = recipe.opcodes(*opcodes); e.enc_both_inferred_maybe_isap(inst.clone().bind(I32), template.clone(), isap); e.enc64_maybe_isap(inst.bind(I64), template.infer_rex(), isap); } } // SIMD integer addition for (ty, opcodes) in &[(I8, &PADDB), (I16, &PADDW), (I32, &PADDD), (I64, &PADDQ)] { let iadd = iadd.bind(vector(*ty, sse_vector_size)); e.enc_both_inferred(iadd, rec_fa.opcodes(*opcodes)); } // SIMD integer saturating addition e.enc_both_inferred( sadd_sat.bind(vector(I8, sse_vector_size)), rec_fa.opcodes(&PADDSB), ); e.enc_both_inferred( sadd_sat.bind(vector(I16, sse_vector_size)), rec_fa.opcodes(&PADDSW), ); e.enc_both_inferred( uadd_sat.bind(vector(I8, sse_vector_size)), rec_fa.opcodes(&PADDUSB), ); e.enc_both_inferred( uadd_sat.bind(vector(I16, sse_vector_size)), rec_fa.opcodes(&PADDUSW), ); // SIMD integer subtraction let isub = shared.by_name("isub"); for (ty, opcodes) in &[(I8, &PSUBB), (I16, &PSUBW), (I32, &PSUBD), (I64, &PSUBQ)] { let isub = isub.bind(vector(*ty, sse_vector_size)); e.enc_both_inferred(isub, rec_fa.opcodes(*opcodes)); } // SIMD integer saturating subtraction e.enc_both_inferred( ssub_sat.bind(vector(I8, sse_vector_size)), rec_fa.opcodes(&PSUBSB), ); e.enc_both_inferred( ssub_sat.bind(vector(I16, sse_vector_size)), rec_fa.opcodes(&PSUBSW), ); e.enc_both_inferred( usub_sat.bind(vector(I8, sse_vector_size)), rec_fa.opcodes(&PSUBUSB), ); e.enc_both_inferred( usub_sat.bind(vector(I16, sse_vector_size)), rec_fa.opcodes(&PSUBUSW), ); // SIMD integer multiplication: the x86 ISA does not have instructions for multiplying I8x16 // and I64x2 and these are (at the time of writing) not necessary for WASM SIMD. for (ty, opcodes, isap) in &[ (I16, &PMULLW[..], None), (I32, &PMULLD[..], Some(use_sse41_simd)), ] { let imul = imul.bind(vector(*ty, sse_vector_size)); e.enc_both_inferred_maybe_isap(imul, rec_fa.opcodes(opcodes), *isap); } // SIMD integer multiplication for I64x2 using a AVX512. { let imul = imul.bind(vector(I64, sse_vector_size)); e.enc_32_64_maybe_isap( imul, rec_evex_reg_vvvv_rm_128.opcodes(&PMULLQ).w(), Some(use_avx512dq_simd), // TODO need an OR predicate to join with AVX512VL ); } // SIMD integer average with rounding. for (ty, opcodes) in &[(I8, &PAVGB[..]), (I16, &PAVGW[..])] { let avgr = avg_round.bind(vector(*ty, sse_vector_size)); e.enc_both_inferred(avgr, rec_fa.opcodes(opcodes)); } // SIMD logical operations let band = shared.by_name("band"); let band_not = shared.by_name("band_not"); for ty in ValueType::all_lane_types().filter(allowed_simd_type) { // and let band = band.bind(vector(ty, sse_vector_size)); e.enc_both_inferred(band, rec_fa.opcodes(&PAND)); // and not (note flipped recipe operands to match band_not order) let band_not = band_not.bind(vector(ty, sse_vector_size)); e.enc_both_inferred(band_not, rec_fax.opcodes(&PANDN)); // or let bor = bor.bind(vector(ty, sse_vector_size)); e.enc_both_inferred(bor, rec_fa.opcodes(&POR)); // xor let bxor = bxor.bind(vector(ty, sse_vector_size)); e.enc_both_inferred(bxor, rec_fa.opcodes(&PXOR)); // ptest let x86_ptest = x86_ptest.bind(vector(ty, sse_vector_size)); e.enc_both_inferred_maybe_isap(x86_ptest, rec_fcmp.opcodes(&PTEST), Some(use_sse41_simd)); } // SIMD bitcast from I32/I64 to the low bits of a vector (e.g. I64x2); this register movement // allows SIMD shifts to be legalized more easily. TODO ideally this would be typed as an // I128x1 but restrictions on the type builder prevent this; the general idea here is that // the upper bits are all zeroed and do not form parts of any separate lane. See // https://github.com/bytecodealliance/wasmtime/issues/1140. e.enc_both_inferred( bitcast.bind(vector(I64, sse_vector_size)).bind(I32), rec_frurm.opcodes(&MOVD_LOAD_XMM), ); e.enc64( bitcast.bind(vector(I64, sse_vector_size)).bind(I64), rec_frurm.opcodes(&MOVD_LOAD_XMM).rex().w(), ); // SIMD shift left for (ty, opcodes) in &[(I16, &PSLLW), (I32, &PSLLD), (I64, &PSLLQ)] { let x86_psll = x86_psll.bind(vector(*ty, sse_vector_size)); e.enc_both_inferred(x86_psll, rec_fa.opcodes(*opcodes)); } // SIMD shift right (logical) for (ty, opcodes) in &[(I16, &PSRLW), (I32, &PSRLD), (I64, &PSRLQ)] { let x86_psrl = x86_psrl.bind(vector(*ty, sse_vector_size)); e.enc_both_inferred(x86_psrl, rec_fa.opcodes(*opcodes)); } // SIMD shift right (arithmetic) for (ty, opcodes) in &[(I16, &PSRAW), (I32, &PSRAD)] { let x86_psra = x86_psra.bind(vector(*ty, sse_vector_size)); e.enc_both_inferred(x86_psra, rec_fa.opcodes(*opcodes)); } // SIMD immediate shift for (ty, opcodes) in &[(I16, &PS_W_IMM), (I32, &PS_D_IMM), (I64, &PS_Q_IMM)] { let ishl_imm = ishl_imm.bind(vector(*ty, sse_vector_size)); e.enc_both_inferred(ishl_imm, rec_f_ib.opcodes(*opcodes).rrr(6)); let ushr_imm = ushr_imm.bind(vector(*ty, sse_vector_size)); e.enc_both_inferred(ushr_imm, rec_f_ib.opcodes(*opcodes).rrr(2)); let sshr_imm = sshr_imm.bind(vector(*ty, sse_vector_size)); e.enc_both_inferred(sshr_imm, rec_f_ib.opcodes(*opcodes).rrr(4)); } // SIMD integer comparisons { use IntCC::*; for (ty, cc, opcodes, isa_predicate) in &[ (I8, Equal, &PCMPEQB[..], None), (I16, Equal, &PCMPEQW[..], None), (I32, Equal, &PCMPEQD[..], None), (I64, Equal, &PCMPEQQ[..], Some(use_sse41_simd)), (I8, SignedGreaterThan, &PCMPGTB[..], None), (I16, SignedGreaterThan, &PCMPGTW[..], None), (I32, SignedGreaterThan, &PCMPGTD[..], None), (I64, SignedGreaterThan, &PCMPGTQ, Some(use_sse42_simd)), ] { let instruction = icmp .bind(Immediate::IntCC(*cc)) .bind(vector(*ty, sse_vector_size)); let template = rec_icscc_fpr.opcodes(opcodes); e.enc_both_inferred_maybe_isap(instruction, template, *isa_predicate); } } // SIMD min/max for (ty, inst, opcodes, isa_predicate) in &[ (I8, x86_pmaxs, &PMAXSB[..], Some(use_sse41_simd)), (I16, x86_pmaxs, &PMAXSW[..], None), (I32, x86_pmaxs, &PMAXSD[..], Some(use_sse41_simd)), (I8, x86_pmaxu, &PMAXUB[..], None), (I16, x86_pmaxu, &PMAXUW[..], Some(use_sse41_simd)), (I32, x86_pmaxu, &PMAXUD[..], Some(use_sse41_simd)), (I8, x86_pmins, &PMINSB[..], Some(use_sse41_simd)), (I16, x86_pmins, &PMINSW[..], None), (I32, x86_pmins, &PMINSD[..], Some(use_sse41_simd)), (I8, x86_pminu, &PMINUB[..], None), (I16, x86_pminu, &PMINUW[..], Some(use_sse41_simd)), (I32, x86_pminu, &PMINUD[..], Some(use_sse41_simd)), ] { let inst = inst.bind(vector(*ty, sse_vector_size)); e.enc_both_inferred_maybe_isap(inst, rec_fa.opcodes(opcodes), *isa_predicate); } // SIMD float comparisons e.enc_both_inferred( fcmp.bind(vector(F32, sse_vector_size)), rec_pfcmp.opcodes(&CMPPS), ); e.enc_both_inferred( fcmp.bind(vector(F64, sse_vector_size)), rec_pfcmp.opcodes(&CMPPD), ); // SIMD float arithmetic for (ty, inst, opcodes) in &[ (F32, fadd, &ADDPS[..]), (F64, fadd, &ADDPD[..]), (F32, fsub, &SUBPS[..]), (F64, fsub, &SUBPD[..]), (F32, fmul, &MULPS[..]), (F64, fmul, &MULPD[..]), (F32, fdiv, &DIVPS[..]), (F64, fdiv, &DIVPD[..]), (F32, fmin, &MINPS[..]), (F64, fmin, &MINPD[..]), (F32, fmax, &MAXPS[..]), (F64, fmax, &MAXPD[..]), ] { let inst = inst.bind(vector(*ty, sse_vector_size)); e.enc_both_inferred(inst, rec_fa.opcodes(opcodes)); } for (ty, inst, opcodes) in &[(F32, sqrt, &SQRTPS[..]), (F64, sqrt, &SQRTPD[..])] { let inst = inst.bind(vector(*ty, sse_vector_size)); e.enc_both_inferred(inst, rec_furm.opcodes(opcodes)); } } #[inline(never)] fn define_entity_ref( e: &mut PerCpuModeEncodings, shared_defs: &SharedDefinitions, settings: &SettingGroup, r: &RecipeGroup, ) { let shared = &shared_defs.instructions; let formats = &shared_defs.formats; // Shorthands for instructions. let const_addr = shared.by_name("const_addr"); let func_addr = shared.by_name("func_addr"); let stack_addr = shared.by_name("stack_addr"); let symbol_value = shared.by_name("symbol_value"); // Shorthands for recipes. let rec_allones_fnaddr4 = r.template("allones_fnaddr4"); let rec_allones_fnaddr8 = r.template("allones_fnaddr8"); let rec_fnaddr4 = r.template("fnaddr4"); let rec_fnaddr8 = r.template("fnaddr8"); let rec_const_addr = r.template("const_addr"); let rec_got_fnaddr8 = r.template("got_fnaddr8"); let rec_got_gvaddr8 = r.template("got_gvaddr8"); let rec_gvaddr4 = r.template("gvaddr4"); let rec_gvaddr8 = r.template("gvaddr8"); let rec_pcrel_fnaddr8 = r.template("pcrel_fnaddr8"); let rec_pcrel_gvaddr8 = r.template("pcrel_gvaddr8"); let rec_spaddr4_id = r.template("spaddr4_id"); let rec_spaddr8_id = r.template("spaddr8_id"); // Predicates shorthands. let all_ones_funcaddrs_and_not_is_pic = settings.predicate_by_name("all_ones_funcaddrs_and_not_is_pic"); let is_pic = settings.predicate_by_name("is_pic"); let not_all_ones_funcaddrs_and_not_is_pic = settings.predicate_by_name("not_all_ones_funcaddrs_and_not_is_pic"); let not_is_pic = settings.predicate_by_name("not_is_pic"); // Function addresses. // Non-PIC, all-ones funcaddresses. e.enc32_isap( func_addr.bind(I32), rec_fnaddr4.opcodes(&MOV_IMM), not_all_ones_funcaddrs_and_not_is_pic, ); e.enc64_isap( func_addr.bind(I64), rec_fnaddr8.opcodes(&MOV_IMM).rex().w(), not_all_ones_funcaddrs_and_not_is_pic, ); // Non-PIC, all-zeros funcaddresses. e.enc32_isap( func_addr.bind(I32), rec_allones_fnaddr4.opcodes(&MOV_IMM), all_ones_funcaddrs_and_not_is_pic, ); e.enc64_isap( func_addr.bind(I64), rec_allones_fnaddr8.opcodes(&MOV_IMM).rex().w(), all_ones_funcaddrs_and_not_is_pic, ); // 64-bit, colocated, both PIC and non-PIC. Use the lea instruction's pc-relative field. let is_colocated_func = InstructionPredicate::new_is_colocated_func(&*formats.func_addr, "func_ref"); e.enc64_instp( func_addr.bind(I64), rec_pcrel_fnaddr8.opcodes(&LEA).rex().w(), is_colocated_func, ); // 64-bit, non-colocated, PIC. e.enc64_isap( func_addr.bind(I64), rec_got_fnaddr8.opcodes(&MOV_LOAD).rex().w(), is_pic, ); // Global addresses. // Non-PIC. e.enc32_isap( symbol_value.bind(I32), rec_gvaddr4.opcodes(&MOV_IMM), not_is_pic, ); e.enc64_isap( symbol_value.bind(I64), rec_gvaddr8.opcodes(&MOV_IMM).rex().w(), not_is_pic, ); // PIC, colocated. e.enc64_func( symbol_value.bind(I64), rec_pcrel_gvaddr8.opcodes(&LEA).rex().w(), |encoding| { encoding .isa_predicate(is_pic) .inst_predicate(InstructionPredicate::new_is_colocated_data(formats)) }, ); // PIC, non-colocated. e.enc64_isap( symbol_value.bind(I64), rec_got_gvaddr8.opcodes(&MOV_LOAD).rex().w(), is_pic, ); // Stack addresses. // // TODO: Add encoding rules for stack_load and stack_store, so that they // don't get legalized to stack_addr + load/store. e.enc32(stack_addr.bind(I32), rec_spaddr4_id.opcodes(&LEA)); e.enc64(stack_addr.bind(I64), rec_spaddr8_id.opcodes(&LEA).rex().w()); // Constant addresses (PIC). e.enc64(const_addr.bind(I64), rec_const_addr.opcodes(&LEA).rex().w()); e.enc32(const_addr.bind(I32), rec_const_addr.opcodes(&LEA)); } /// Control flow opcodes. #[inline(never)] fn define_control_flow( e: &mut PerCpuModeEncodings, shared_defs: &SharedDefinitions, settings: &SettingGroup, r: &RecipeGroup, ) { let shared = &shared_defs.instructions; let formats = &shared_defs.formats; // Shorthands for instructions. let brff = shared.by_name("brff"); let brif = shared.by_name("brif"); let brnz = shared.by_name("brnz"); let brz = shared.by_name("brz"); let call = shared.by_name("call"); let call_indirect = shared.by_name("call_indirect"); let debugtrap = shared.by_name("debugtrap"); let indirect_jump_table_br = shared.by_name("indirect_jump_table_br"); let jump = shared.by_name("jump"); let jump_table_base = shared.by_name("jump_table_base"); let jump_table_entry = shared.by_name("jump_table_entry"); let return_ = shared.by_name("return"); let trap = shared.by_name("trap"); let trapff = shared.by_name("trapff"); let trapif = shared.by_name("trapif"); let resumable_trap = shared.by_name("resumable_trap"); // Shorthands for recipes. let rec_brfb = r.template("brfb"); let rec_brfd = r.template("brfd"); let rec_brib = r.template("brib"); let rec_brid = r.template("brid"); let rec_call_id = r.template("call_id"); let rec_call_plt_id = r.template("call_plt_id"); let rec_call_r = r.template("call_r"); let rec_debugtrap = r.recipe("debugtrap"); let rec_indirect_jmp = r.template("indirect_jmp"); let rec_jmpb = r.template("jmpb"); let rec_jmpd = r.template("jmpd"); let rec_jt_base = r.template("jt_base"); let rec_jt_entry = r.template("jt_entry"); let rec_ret = r.template("ret"); let rec_t8jccb_abcd = r.template("t8jccb_abcd"); let rec_t8jccd_abcd = r.template("t8jccd_abcd"); let rec_t8jccd_long = r.template("t8jccd_long"); let rec_tjccb = r.template("tjccb"); let rec_tjccd = r.template("tjccd"); let rec_trap = r.template("trap"); let rec_trapif = r.recipe("trapif"); let rec_trapff = r.recipe("trapff"); // Predicates shorthands. let is_pic = settings.predicate_by_name("is_pic"); // Call/return // 32-bit, both PIC and non-PIC. e.enc32(call, rec_call_id.opcodes(&CALL_RELATIVE)); // 64-bit, colocated, both PIC and non-PIC. Use the call instruction's pc-relative field. let is_colocated_func = InstructionPredicate::new_is_colocated_func(&*formats.call, "func_ref"); e.enc64_instp(call, rec_call_id.opcodes(&CALL_RELATIVE), is_colocated_func); // 64-bit, non-colocated, PIC. There is no 64-bit non-colocated non-PIC version, since non-PIC // is currently using the large model, which requires calls be lowered to // func_addr+call_indirect. e.enc64_isap(call, rec_call_plt_id.opcodes(&CALL_RELATIVE), is_pic); e.enc32( call_indirect.bind(I32), rec_call_r.opcodes(&JUMP_ABSOLUTE).rrr(2), ); e.enc64( call_indirect.bind(I64), rec_call_r.opcodes(&JUMP_ABSOLUTE).rrr(2).rex(), ); e.enc64( call_indirect.bind(I64), rec_call_r.opcodes(&JUMP_ABSOLUTE).rrr(2), ); e.enc32(return_, rec_ret.opcodes(&RET_NEAR)); e.enc64(return_, rec_ret.opcodes(&RET_NEAR)); // Branches. e.enc32(jump, rec_jmpb.opcodes(&JUMP_SHORT)); e.enc64(jump, rec_jmpb.opcodes(&JUMP_SHORT)); e.enc32(jump, rec_jmpd.opcodes(&JUMP_NEAR_RELATIVE)); e.enc64(jump, rec_jmpd.opcodes(&JUMP_NEAR_RELATIVE)); e.enc_both(brif, rec_brib.opcodes(&JUMP_SHORT_IF_OVERFLOW)); e.enc_both(brif, rec_brid.opcodes(&JUMP_NEAR_IF_OVERFLOW)); // Not all float condition codes are legal, see `supported_floatccs`. e.enc_both(brff, rec_brfb.opcodes(&JUMP_SHORT_IF_OVERFLOW)); e.enc_both(brff, rec_brfd.opcodes(&JUMP_NEAR_IF_OVERFLOW)); // Note that the tjccd opcode will be prefixed with 0x0f. e.enc_i32_i64_explicit_rex(brz, rec_tjccb.opcodes(&JUMP_SHORT_IF_EQUAL)); e.enc_i32_i64_explicit_rex(brz, rec_tjccd.opcodes(&TEST_BYTE_REG)); e.enc_i32_i64_explicit_rex(brnz, rec_tjccb.opcodes(&JUMP_SHORT_IF_NOT_EQUAL)); e.enc_i32_i64_explicit_rex(brnz, rec_tjccd.opcodes(&TEST_REG)); // Branch on a b1 value in a register only looks at the low 8 bits. See also // bint encodings below. // // Start with the worst-case encoding for X86_32 only. The register allocator // can't handle a branch with an ABCD-constrained operand. e.enc32(brz.bind(B1), rec_t8jccd_long.opcodes(&TEST_BYTE_REG)); e.enc32(brnz.bind(B1), rec_t8jccd_long.opcodes(&TEST_REG)); e.enc_both(brz.bind(B1), rec_t8jccb_abcd.opcodes(&JUMP_SHORT_IF_EQUAL)); e.enc_both(brz.bind(B1), rec_t8jccd_abcd.opcodes(&TEST_BYTE_REG)); e.enc_both( brnz.bind(B1), rec_t8jccb_abcd.opcodes(&JUMP_SHORT_IF_NOT_EQUAL), ); e.enc_both(brnz.bind(B1), rec_t8jccd_abcd.opcodes(&TEST_REG)); // Jump tables. e.enc64( jump_table_entry.bind(I64), rec_jt_entry.opcodes(&MOVSXD).rex().w(), ); e.enc32(jump_table_entry.bind(I32), rec_jt_entry.opcodes(&MOV_LOAD)); e.enc64( jump_table_base.bind(I64), rec_jt_base.opcodes(&LEA).rex().w(), ); e.enc32(jump_table_base.bind(I32), rec_jt_base.opcodes(&LEA)); e.enc_x86_64( indirect_jump_table_br.bind(I64), rec_indirect_jmp.opcodes(&JUMP_ABSOLUTE).rrr(4), ); e.enc32( indirect_jump_table_br.bind(I32), rec_indirect_jmp.opcodes(&JUMP_ABSOLUTE).rrr(4), ); // Trap as ud2 e.enc32(trap, rec_trap.opcodes(&UNDEFINED2)); e.enc64(trap, rec_trap.opcodes(&UNDEFINED2)); e.enc32(resumable_trap, rec_trap.opcodes(&UNDEFINED2)); e.enc64(resumable_trap, rec_trap.opcodes(&UNDEFINED2)); // Debug trap as int3 e.enc32_rec(debugtrap, rec_debugtrap, 0); e.enc64_rec(debugtrap, rec_debugtrap, 0); e.enc32_rec(trapif, rec_trapif, 0); e.enc64_rec(trapif, rec_trapif, 0); e.enc32_rec(trapff, rec_trapff, 0); e.enc64_rec(trapff, rec_trapff, 0); } /// Reference type instructions. #[inline(never)] fn define_reftypes(e: &mut PerCpuModeEncodings, shared_defs: &SharedDefinitions, r: &RecipeGroup) { let shared = &shared_defs.instructions; let is_null = shared.by_name("is_null"); let is_invalid = shared.by_name("is_invalid"); let null = shared.by_name("null"); let safepoint = shared.by_name("safepoint"); let rec_is_zero = r.template("is_zero"); let rec_is_invalid = r.template("is_invalid"); let rec_pu_id_ref = r.template("pu_id_ref"); let rec_safepoint = r.recipe("safepoint"); // Null references implemented as iconst 0. e.enc32(null.bind(R32), rec_pu_id_ref.opcodes(&MOV_IMM)); e.enc64(null.bind(R64), rec_pu_id_ref.rex().opcodes(&MOV_IMM)); e.enc64(null.bind(R64), rec_pu_id_ref.opcodes(&MOV_IMM)); // is_null, implemented by testing whether the value is 0. e.enc_r32_r64_rex_only(is_null, rec_is_zero.opcodes(&TEST_REG)); // is_invalid, implemented by testing whether the value is -1. e.enc_r32_r64_rex_only(is_invalid, rec_is_invalid.opcodes(&CMP_IMM8).rrr(7)); // safepoint instruction calls sink, no actual encoding. e.enc32_rec(safepoint, rec_safepoint, 0); e.enc64_rec(safepoint, rec_safepoint, 0); } #[allow(clippy::cognitive_complexity)] pub(crate) fn define( shared_defs: &SharedDefinitions, settings: &SettingGroup, x86: &InstructionGroup, r: &RecipeGroup, ) -> PerCpuModeEncodings { // Definitions. let mut e = PerCpuModeEncodings::new(); define_moves(&mut e, shared_defs, r); define_memory(&mut e, shared_defs, x86, r); define_fpu_moves(&mut e, shared_defs, r); define_fpu_memory(&mut e, shared_defs, r); define_fpu_ops(&mut e, shared_defs, settings, x86, r); define_alu(&mut e, shared_defs, settings, x86, r); define_simd(&mut e, shared_defs, settings, x86, r); define_entity_ref(&mut e, shared_defs, settings, r); define_control_flow(&mut e, shared_defs, settings, r); define_reftypes(&mut e, shared_defs, r); let x86_elf_tls_get_addr = x86.by_name("x86_elf_tls_get_addr"); let x86_macho_tls_get_addr = x86.by_name("x86_macho_tls_get_addr"); let rec_elf_tls_get_addr = r.recipe("elf_tls_get_addr"); let rec_macho_tls_get_addr = r.recipe("macho_tls_get_addr"); e.enc64_rec(x86_elf_tls_get_addr, rec_elf_tls_get_addr, 0); e.enc64_rec(x86_macho_tls_get_addr, rec_macho_tls_get_addr, 0); e }