//! A control flow graph represented as mappings of extended basic blocks to their predecessors //! and successors. //! //! Successors are represented as extended basic blocks while predecessors are represented by basic //! blocks. Basic blocks are denoted by tuples of EBB and branch/jump instructions. Each //! predecessor tuple corresponds to the end of a basic block. //! //! ```c //! Ebb0: //! ... ; beginning of basic block //! //! ... //! //! brz vx, Ebb1 ; end of basic block //! //! ... ; beginning of basic block //! //! ... //! //! jmp Ebb2 ; end of basic block //! ``` //! //! Here `Ebb1` and `Ebb2` would each have a single predecessor denoted as `(Ebb0, brz)` //! and `(Ebb0, jmp Ebb2)` respectively. use ir::{Function, Inst, Ebb}; use ir::instructions::BranchInfo; use entity::EntityMap; use std::mem; /// A basic block denoted by its enclosing Ebb and last instruction. pub type BasicBlock = (Ebb, Inst); /// A container for the successors and predecessors of some Ebb. #[derive(Debug, Clone, Default)] pub struct CFGNode { /// EBBs that are the targets of branches and jumps in this EBB. pub successors: Vec, /// Basic blocks that can branch or jump to this EBB. pub predecessors: Vec, } /// The Control Flow Graph maintains a mapping of ebbs to their predecessors /// and successors where predecessors are basic blocks and successors are /// extended basic blocks. #[derive(Debug)] pub struct ControlFlowGraph { data: EntityMap, valid: bool, } impl ControlFlowGraph { /// Allocate a new blank control flow graph. pub fn new() -> ControlFlowGraph { ControlFlowGraph { data: EntityMap::new(), valid: false, } } /// Allocate and compute the control flow graph for `func`. pub fn with_function(func: &Function) -> ControlFlowGraph { let mut cfg = ControlFlowGraph::new(); cfg.compute(func); cfg } /// Compute the control flow graph of `func`. /// /// This will clear and overwrite any information already stored in this data structure. pub fn compute(&mut self, func: &Function) { self.data.clear(); self.data.resize(func.dfg.num_ebbs()); for ebb in &func.layout { self.compute_ebb(func, ebb); } self.valid = true; } fn compute_ebb(&mut self, func: &Function, ebb: Ebb) { for inst in func.layout.ebb_insts(ebb) { match func.dfg[inst].analyze_branch(&func.dfg.value_lists) { BranchInfo::SingleDest(dest, _) => { self.add_edge((ebb, inst), dest); } BranchInfo::Table(jt) => { for (_, dest) in func.jump_tables[jt].entries() { self.add_edge((ebb, inst), dest); } } BranchInfo::NotABranch => {} } } } fn invalidate_ebb_successors(&mut self, ebb: Ebb) { // Temporarily take ownership because we need mutable access to self.data inside the loop. // Unfortunately borrowck cannot see that our mut accesses to predecessors don't alias // our iteration over successors. let mut successors = mem::replace(&mut self.data[ebb].successors, Vec::new()); for suc in successors.iter().cloned() { self.data[suc].predecessors.retain(|&(e, _)| e != ebb); } successors.clear(); self.data[ebb].successors = successors; } /// Recompute the control flow graph of `ebb`. /// /// This is for use after modifying instructions within a specific EBB. It recomputes all edges /// from `ebb` while leaving edges to `ebb` intact. Its functionality a subset of that of the /// more expensive `compute`, and should be used when we know we don't need to recompute the CFG /// from scratch, but rather that our changes have been restricted to specific EBBs. pub fn recompute_ebb(&mut self, func: &Function, ebb: Ebb) { debug_assert!(self.is_valid()); self.invalidate_ebb_successors(ebb); self.compute_ebb(func, ebb); } fn add_edge(&mut self, from: BasicBlock, to: Ebb) { self.data[from.0].successors.push(to); self.data[to].predecessors.push(from); } /// Get the CFG predecessor basic blocks to `ebb`. pub fn get_predecessors(&self, ebb: Ebb) -> &[BasicBlock] { debug_assert!(self.is_valid()); &self.data[ebb].predecessors } /// Get the CFG successors to `ebb`. pub fn get_successors(&self, ebb: Ebb) -> &[Ebb] { debug_assert!(self.is_valid()); &self.data[ebb].successors } /// Check if the CFG is in a valid state. /// /// Note that this doesn't perform any kind of validity checks. It simply checks if the /// `compute()` method has been called since the last `clear()`. It does not check that the /// CFG is consistent with the function. pub fn is_valid(&self) -> bool { self.valid } } #[cfg(test)] mod tests { use super::*; use cursor::{Cursor, FuncCursor}; use ir::{Function, InstBuilder, types}; #[test] fn empty() { let func = Function::new(); ControlFlowGraph::with_function(&func); } #[test] fn no_predecessors() { let mut func = Function::new(); let ebb0 = func.dfg.make_ebb(); let ebb1 = func.dfg.make_ebb(); let ebb2 = func.dfg.make_ebb(); func.layout.append_ebb(ebb0); func.layout.append_ebb(ebb1); func.layout.append_ebb(ebb2); let cfg = ControlFlowGraph::with_function(&func); let mut fun_ebbs = func.layout.ebbs(); for ebb in func.layout.ebbs() { assert_eq!(ebb, fun_ebbs.next().unwrap()); assert_eq!(cfg.get_predecessors(ebb).len(), 0); assert_eq!(cfg.get_successors(ebb).len(), 0); } } #[test] fn branches_and_jumps() { let mut func = Function::new(); let ebb0 = func.dfg.make_ebb(); let cond = func.dfg.append_ebb_param(ebb0, types::I32); let ebb1 = func.dfg.make_ebb(); let ebb2 = func.dfg.make_ebb(); let br_ebb0_ebb2; let br_ebb1_ebb1; let jmp_ebb0_ebb1; let jmp_ebb1_ebb2; { let mut cur = FuncCursor::new(&mut func); cur.insert_ebb(ebb0); br_ebb0_ebb2 = cur.ins().brnz(cond, ebb2, &[]); jmp_ebb0_ebb1 = cur.ins().jump(ebb1, &[]); cur.insert_ebb(ebb1); br_ebb1_ebb1 = cur.ins().brnz(cond, ebb1, &[]); jmp_ebb1_ebb2 = cur.ins().jump(ebb2, &[]); cur.insert_ebb(ebb2); } let mut cfg = ControlFlowGraph::with_function(&func); { let ebb0_predecessors = cfg.get_predecessors(ebb0); let ebb1_predecessors = cfg.get_predecessors(ebb1); let ebb2_predecessors = cfg.get_predecessors(ebb2); let ebb0_successors = cfg.get_successors(ebb0); let ebb1_successors = cfg.get_successors(ebb1); let ebb2_successors = cfg.get_successors(ebb2); assert_eq!(ebb0_predecessors.len(), 0); assert_eq!(ebb1_predecessors.len(), 2); assert_eq!(ebb2_predecessors.len(), 2); assert_eq!(ebb1_predecessors.contains(&(ebb0, jmp_ebb0_ebb1)), true); assert_eq!(ebb1_predecessors.contains(&(ebb1, br_ebb1_ebb1)), true); assert_eq!(ebb2_predecessors.contains(&(ebb0, br_ebb0_ebb2)), true); assert_eq!(ebb2_predecessors.contains(&(ebb1, jmp_ebb1_ebb2)), true); assert_eq!(ebb0_successors.len(), 2); assert_eq!(ebb1_successors.len(), 2); assert_eq!(ebb2_successors.len(), 0); assert_eq!(ebb0_successors.contains(&ebb1), true); assert_eq!(ebb0_successors.contains(&ebb2), true); assert_eq!(ebb1_successors.contains(&ebb1), true); assert_eq!(ebb1_successors.contains(&ebb2), true); } // Change some instructions and recompute ebb0 func.dfg.replace(br_ebb0_ebb2).brnz(cond, ebb1, &[]); func.dfg.replace(jmp_ebb0_ebb1).return_(&[]); cfg.recompute_ebb(&mut func, ebb0); let br_ebb0_ebb1 = br_ebb0_ebb2; { let ebb0_predecessors = cfg.get_predecessors(ebb0); let ebb1_predecessors = cfg.get_predecessors(ebb1); let ebb2_predecessors = cfg.get_predecessors(ebb2); let ebb0_successors = cfg.get_successors(ebb0); let ebb1_successors = cfg.get_successors(ebb1); let ebb2_successors = cfg.get_successors(ebb2); assert_eq!(ebb0_predecessors.len(), 0); assert_eq!(ebb1_predecessors.len(), 2); assert_eq!(ebb2_predecessors.len(), 1); assert_eq!(ebb1_predecessors.contains(&(ebb0, br_ebb0_ebb1)), true); assert_eq!(ebb1_predecessors.contains(&(ebb1, br_ebb1_ebb1)), true); assert_eq!(ebb2_predecessors.contains(&(ebb0, br_ebb0_ebb2)), false); assert_eq!(ebb2_predecessors.contains(&(ebb1, jmp_ebb1_ebb2)), true); assert_eq!(ebb0_successors.len(), 1); assert_eq!(ebb1_successors.len(), 2); assert_eq!(ebb2_successors.len(), 0); assert_eq!(ebb0_successors.contains(&ebb1), true); assert_eq!(ebb0_successors.contains(&ebb2), false); assert_eq!(ebb1_successors.contains(&ebb1), true); assert_eq!(ebb1_successors.contains(&ebb2), true); } } }