test interpret test run target x86_64 target aarch64 target s390x function %fmin_f32(f32, f32) -> f32 { block0(v0: f32, v1: f32): v2 = fmin v0, v1 return v2 } ; run: %fmin_f32(0x1.0, 0x2.0) == 0x1.0 ; run: %fmin_f32(0x1.0p10, 0x1.0p11) == 0x1.0p10 ; run: %fmin_f32(0x0.0, -0x0.0) == -0x0.0 ; run: %fmin_f32(-0x0.0, 0x0.0) == -0x0.0 ; run: %fmin_f32(+Inf, 0x0.0) == 0x0.0 ; run: %fmin_f32(0x0.0, +Inf) == 0x0.0 ; run: %fmin_f32(-Inf, 0x0.0) == -Inf ; run: %fmin_f32(0x0.0, -Inf) == -Inf ; run: %fmin_f32(+Inf, -Inf) == -Inf ; F32 Epsilon / Max / Min Positive ; run: %fmin_f32(0x1.000002p-23, 0x1.000000p-23) == 0x1.000000p-23 ; run: %fmin_f32(0x1.fffffcp127, 0x1.fffffep127) == 0x1.fffffcp127 ; run: %fmin_f32(0x1.000000p-126, 0x1.000000p-126) == 0x1.000000p-126 ; F32 Subnormals ; run: %fmin_f32(0x0.800002p-126, 0x0.800000p-126) == 0x0.800000p-126 ; run: %fmin_f32(-0x0.800002p-126, -0x0.800000p-126) == -0x0.800002p-126 ; F32 NaN's ; For NaN's this operation is specified as producing a value that is a NaN ; This behaviour differs from IEEE754's behaviour function %fmin_is_nan_f32(f32, f32) -> i32 { block0(v0: f32, v1: f32): v2 = fmin v0, v1 v3 = fcmp ne v2, v2 v4 = bint.i32 v3 return v4 } ; run: %fmin_is_nan_f32(0x0.0, +NaN) == 1 ; run: %fmin_is_nan_f32(-NaN, 0x0.0) == 1 ; run: %fmin_is_nan_f32(0x0.0, +NaN:0x0) == 1 ; run: %fmin_is_nan_f32(0x0.0, +NaN:0x1) == 1 ; run: %fmin_is_nan_f32(0x0.0, +NaN:0x300001) == 1 ; run: %fmin_is_nan_f32(-NaN:0x0, 0x0.0) == 1 ; run: %fmin_is_nan_f32(-NaN:0x1, 0x0.0) == 1 ; run: %fmin_is_nan_f32(-NaN:0x300001, 0x0.0) == 1 ; run: %fmin_is_nan_f32(0x0.0, +sNaN:0x1) == 1 ; run: %fmin_is_nan_f32(-sNaN:0x1, 0x0.0) == 1 ; run: %fmin_is_nan_f32(0x0.0, +sNaN:0x200001) == 1 ; run: %fmin_is_nan_f32(-sNaN:0x200001, 0x0.0) == 1 function %fmin_f64(f64, f64) -> f64 { block0(v0: f64, v1: f64): v2 = fmin v0, v1 return v2 } ; run: %fmin_f64(0x1.0, 0x2.0) == 0x1.0 ; run: %fmin_f64(0x1.0p10, 0x1.0p11) == 0x1.0p10 ; run: %fmin_f64(0x0.0, -0x0.0) == -0x0.0 ; run: %fmin_f64(-0x0.0, 0x0.0) == -0x0.0 ; run: %fmin_f64(+Inf, 0x0.0) == 0x0.0 ; run: %fmin_f64(0x0.0, +Inf) == 0x0.0 ; run: %fmin_f64(-Inf, 0x0.0) == -Inf ; run: %fmin_f64(0x0.0, -Inf) == -Inf ; run: %fmin_f64(+Inf, -Inf) == -Inf ; F64 Epsilon / Max / Min Positive ; run: %fmin_f64(0x1.0000000000002p-52, 0x1.0000000000000p-52) == 0x1.0000000000000p-52 ; run: %fmin_f64(0x1.ffffffffffffcp1023, 0x1.fffffffffffffp1023) == 0x1.ffffffffffffcp1023 ; run: %fmin_f64(0x1.0000000000000p-1022, 0x1.0000000000000p-1022) == 0x1.0000000000000p-1022 ; F64 Subnormals ; run: %fmin_f64(0x0.8000000000002p-1022, 0x0.8000000000000p-1022) == 0x0.8000000000000p-1022 ; run: %fmin_f64(-0x0.8000000000002p-1022, -0x0.8000000000000p-1022) == -0x0.8000000000002p-1022 ; F64 NaN's ; For NaN's this operation is specified as producing a value that is a NaN ; This behaviour differs from IEEE754's behaviour function %fmin_is_nan_f64(f64, f64) -> i32 { block0(v0: f64, v1: f64): v2 = fmin v0, v1 v3 = fcmp ne v2, v2 v4 = bint.i32 v3 return v4 } ; run: %fmin_is_nan_f64(0x0.0, +NaN) == 1 ; run: %fmin_is_nan_f64(-NaN, 0x0.0) == 1 ; run: %fmin_is_nan_f64(0x0.0, +NaN:0x0) == 1 ; run: %fmin_is_nan_f64(0x0.0, +NaN:0x1) == 1 ; run: %fmin_is_nan_f64(0x0.0, +NaN:0x4000000000001) == 1 ; run: %fmin_is_nan_f64(-NaN:0x0, 0x0.0) == 1 ; run: %fmin_is_nan_f64(-NaN:0x1, 0x0.0) == 1 ; run: %fmin_is_nan_f64(-NaN:0x4000000000001, 0x0.0) == 1 ; run: %fmin_is_nan_f64(0x0.0, +sNaN:0x1) == 1 ; run: %fmin_is_nan_f64(-sNaN:0x1, 0x0.0) == 1 ; run: %fmin_is_nan_f64(0x0.0, +sNaN:0x4000000000001) == 1 ; run: %fmin_is_nan_f64(-sNaN:0x4000000000001, 0x0.0) == 1