//! This module implements lowering (instruction selection) from Cranelift IR //! to machine instructions with virtual registers. This is *almost* the final //! machine code, except for register allocation. use crate::entity::SecondaryMap; use crate::fx::{FxHashMap, FxHashSet}; use crate::inst_predicates::{has_side_effect_or_load, is_constant_64bit}; use crate::ir::instructions::BranchInfo; use crate::ir::types::I64; use crate::ir::{ ArgumentExtension, Block, Constant, ConstantData, ExternalName, Function, GlobalValueData, Inst, InstructionData, MemFlags, Opcode, Signature, SourceLoc, Type, Value, ValueDef, }; use crate::machinst::{ ABIBody, BlockIndex, BlockLoweringOrder, LoweredBlock, MachLabel, VCode, VCodeBuilder, VCodeInst, }; use crate::CodegenResult; use regalloc::{Reg, RegClass, StackmapRequestInfo, VirtualReg, Writable}; use alloc::boxed::Box; use alloc::vec::Vec; use log::debug; use smallvec::SmallVec; /// An "instruction color" partitions CLIF instructions by side-effecting ops. /// All instructions with the same "color" are guaranteed not to be separated by /// any side-effecting op (for this purpose, loads are also considered /// side-effecting, to avoid subtle questions w.r.t. the memory model), and /// furthermore, it is guaranteed that for any two instructions A and B such /// that color(A) == color(B), either A dominates B and B postdominates A, or /// vice-versa. (For now, in practice, only ops in the same basic block can ever /// have the same color, trivially providing the second condition.) Intuitively, /// this means that the ops of the same color must always execute "together", as /// part of one atomic contiguous section of the dynamic execution trace, and /// they can be freely permuted (modulo true dataflow dependencies) without /// affecting program behavior. #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct InstColor(u32); impl InstColor { fn new(n: u32) -> InstColor { InstColor(n) } /// Get an arbitrary index representing this color. The index is unique /// *within a single function compilation*, but indices may be reused across /// functions. pub fn get(self) -> u32 { self.0 } } /// A context that machine-specific lowering code can use to emit lowered /// instructions. This is the view of the machine-independent per-function /// lowering context that is seen by the machine backend. pub trait LowerCtx { /// The instruction type for which this lowering framework is instantiated. type I: VCodeInst; // Function-level queries: /// Get the `ABIBody`. fn abi(&mut self) -> &dyn ABIBody; /// Get the (virtual) register that receives the return value. A return /// instruction should lower into a sequence that fills this register. (Why /// not allow the backend to specify its own result register for the return? /// Because there may be multiple return points.) fn retval(&self, idx: usize) -> Writable; // General instruction queries: /// Get the instdata for a given IR instruction. fn data(&self, ir_inst: Inst) -> &InstructionData; /// Get the controlling type for a polymorphic IR instruction. fn ty(&self, ir_inst: Inst) -> Type; /// Get the target for a call instruction, as an `ExternalName`. Returns a tuple /// providing this name and the "relocation distance", i.e., whether the backend /// can assume the target will be "nearby" (within some small offset) or an /// arbitrary address. (This comes from the `colocated` bit in the CLIF.) fn call_target<'b>(&'b self, ir_inst: Inst) -> Option<(&'b ExternalName, RelocDistance)>; /// Get the signature for a call or call-indirect instruction. fn call_sig<'b>(&'b self, ir_inst: Inst) -> Option<&'b Signature>; /// Get the symbol name, relocation distance estimate, and offset for a /// symbol_value instruction. fn symbol_value<'b>(&'b self, ir_inst: Inst) -> Option<(&'b ExternalName, RelocDistance, i64)>; /// Returns the memory flags of a given memory access. fn memflags(&self, ir_inst: Inst) -> Option; /// Get the source location for a given instruction. fn srcloc(&self, ir_inst: Inst) -> SourceLoc; /// Get the side-effect color of the given instruction (specifically, at the /// program point just prior to the instruction). The "color" changes at /// every side-effecting op; the backend should not try to merge across /// side-effect colors unless the op being merged is known to be pure. fn inst_color(&self, ir_inst: Inst) -> InstColor; // Instruction input/output queries: /// Get the number of inputs to the given IR instruction. fn num_inputs(&self, ir_inst: Inst) -> usize; /// Get the number of outputs to the given IR instruction. fn num_outputs(&self, ir_inst: Inst) -> usize; /// Get the type for an instruction's input. fn input_ty(&self, ir_inst: Inst, idx: usize) -> Type; /// Get the type for an instruction's output. fn output_ty(&self, ir_inst: Inst, idx: usize) -> Type; /// Get the value of a constant instruction (`iconst`, etc.) as a 64-bit /// value, if possible. fn get_constant(&self, ir_inst: Inst) -> Option; /// Get the input in any combination of three forms: /// /// - An instruction, if the same color as this instruction or if the /// producing instruction has no side effects (thus in both cases /// mergeable); /// - A constant, if the value is a constant; /// - A register. /// /// The instruction input may be available in some or all of these /// forms. More than one is possible: e.g., it may be produced by an /// instruction in the same block, but may also have been forced into a /// register already by an earlier op. It will *always* be available /// in a register, at least. /// /// If the backend uses the register, rather than one of the other /// forms (constant or merging of the producing op), it must call /// `use_input_reg()` to ensure the producing inst is actually lowered /// as well. Failing to do so may result in the instruction that generates /// this value never being generated, thus resulting in incorrect execution. /// For correctness, backends should thus wrap `get_input()` and /// `use_input_regs()` with helpers that return a register only after /// ensuring it is marked as used. fn get_input(&self, ir_inst: Inst, idx: usize) -> LowerInput; /// Get the `idx`th output register of the given IR instruction. When /// `backend.lower_inst_to_regs(ctx, inst)` is called, it is expected that /// the backend will write results to these output register(s). This /// register will always be "fresh"; it is guaranteed not to overlap with /// any of the inputs, and can be freely used as a scratch register within /// the lowered instruction sequence, as long as its final value is the /// result of the computation. fn get_output(&self, ir_inst: Inst, idx: usize) -> Writable; // Codegen primitives: allocate temps, emit instructions, set result registers, // ask for an input to be gen'd into a register. /// Get a new temp. fn alloc_tmp(&mut self, rc: RegClass, ty: Type) -> Writable; /// Emit a machine instruction. fn emit(&mut self, mach_inst: Self::I); /// Emit a machine instruction that is a safepoint. fn emit_safepoint(&mut self, mach_inst: Self::I); /// Indicate that the given input uses the register returned by /// `get_input()`. Codegen may not happen otherwise for the producing /// instruction if it has no side effects and no uses. fn use_input_reg(&mut self, input: LowerInput); /// Is the given register output needed after the given instruction? Allows /// instructions with multiple outputs to make fine-grained decisions on /// which outputs to actually generate. fn is_reg_needed(&self, ir_inst: Inst, reg: Reg) -> bool; /// Retrieve constant data given a handle. fn get_constant_data(&self, constant_handle: Constant) -> &ConstantData; } /// A representation of all of the ways in which an instruction input is /// available: as a producing instruction (in the same color-partition), as a /// constant, and/or in an existing register. See [LowerCtx::get_input] for more /// details. #[derive(Clone, Copy, Debug)] pub struct LowerInput { /// The value is live in a register. This option is always available. Call /// [LowerCtx::use_input_reg()] if the register is used. pub reg: Reg, /// An instruction produces this value; the instruction's result index that /// produces this value is given. pub inst: Option<(Inst, usize)>, /// The value is a known constant. pub constant: Option, } /// A machine backend. pub trait LowerBackend { /// The machine instruction type. type MInst: VCodeInst; /// Lower a single instruction. /// /// For a branch, this function should not generate the actual branch /// instruction. However, it must force any values it needs for the branch /// edge (block-param actuals) into registers, because the actual branch /// generation (`lower_branch_group()`) happens *after* any possible merged /// out-edge. fn lower>(&self, ctx: &mut C, inst: Inst) -> CodegenResult<()>; /// Lower a block-terminating group of branches (which together can be seen /// as one N-way branch), given a vcode MachLabel for each target. fn lower_branch_group>( &self, ctx: &mut C, insts: &[Inst], targets: &[MachLabel], fallthrough: Option, ) -> CodegenResult<()>; /// A bit of a hack: give a fixed register that always holds the result of a /// `get_pinned_reg` instruction, if known. This allows elision of moves /// into the associated vreg, instead using the real reg directly. fn maybe_pinned_reg(&self) -> Option { None } } /// A pending instruction to insert and auxiliary information about it: its source location and /// whether it is a safepoint. struct InstTuple { loc: SourceLoc, is_safepoint: bool, inst: I, } /// Machine-independent lowering driver / machine-instruction container. Maintains a correspondence /// from original Inst to MachInsts. pub struct Lower<'func, I: VCodeInst> { /// The function to lower. f: &'func Function, /// Lowered machine instructions. vcode: VCodeBuilder, /// Mapping from `Value` (SSA value in IR) to virtual register. value_regs: SecondaryMap, /// Return-value vregs. retval_regs: Vec<(Reg, ArgumentExtension)>, /// Instruction colors. inst_colors: SecondaryMap, /// Instruction constant values, if known. inst_constants: FxHashMap, /// Instruction has a side-effect and must be codegen'd. inst_needed: SecondaryMap, /// Value (vreg) is needed and producer must be codegen'd. vreg_needed: Vec, /// Next virtual register number to allocate. next_vreg: u32, /// Insts in reverse block order, before final copy to vcode. block_insts: Vec>, /// Ranges in `block_insts` constituting BBs. block_ranges: Vec<(usize, usize)>, /// Instructions collected for the BB in progress, in reverse order, with /// source-locs attached. bb_insts: Vec>, /// Instructions collected for the CLIF inst in progress, in forward order. ir_insts: Vec>, /// The register to use for GetPinnedReg, if any, on this architecture. pinned_reg: Option, } /// Notion of "relocation distance". This gives an estimate of how far away a symbol will be from a /// reference. #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub enum RelocDistance { /// Target of relocation is "nearby". The threshold for this is fuzzy but should be interpreted /// as approximately "within the compiled output of one module"; e.g., within AArch64's +/- /// 128MB offset. If unsure, use `Far` instead. Near, /// Target of relocation could be anywhere in the address space. Far, } fn alloc_vreg( value_regs: &mut SecondaryMap, regclass: RegClass, value: Value, next_vreg: &mut u32, ) -> VirtualReg { if value_regs[value].is_invalid() { // default value in map. let v = *next_vreg; *next_vreg += 1; value_regs[value] = Reg::new_virtual(regclass, v); debug!("value {} gets vreg {:?}", value, v); } value_regs[value].as_virtual_reg().unwrap() } enum GenerateReturn { Yes, No, } impl<'func, I: VCodeInst> Lower<'func, I> { /// Prepare a new lowering context for the given IR function. pub fn new( f: &'func Function, abi: Box>, block_order: BlockLoweringOrder, ) -> CodegenResult> { let mut vcode = VCodeBuilder::new(abi, block_order); let mut next_vreg: u32 = 0; let mut value_regs = SecondaryMap::with_default(Reg::invalid()); // Assign a vreg to each block param and each inst result. for bb in f.layout.blocks() { for ¶m in f.dfg.block_params(bb) { let ty = f.dfg.value_type(param); let vreg = alloc_vreg(&mut value_regs, I::rc_for_type(ty)?, param, &mut next_vreg); vcode.set_vreg_type(vreg, ty); debug!("bb {} param {}: vreg {:?}", bb, param, vreg); } for inst in f.layout.block_insts(bb) { for &result in f.dfg.inst_results(inst) { let ty = f.dfg.value_type(result); let vreg = alloc_vreg(&mut value_regs, I::rc_for_type(ty)?, result, &mut next_vreg); vcode.set_vreg_type(vreg, ty); debug!( "bb {} inst {} ({:?}): result vreg {:?}", bb, inst, f.dfg[inst], vreg ); } } } // Assign a vreg to each return value. let mut retval_regs = vec![]; for ret in &f.signature.returns { let v = next_vreg; next_vreg += 1; let regclass = I::rc_for_type(ret.value_type)?; let vreg = Reg::new_virtual(regclass, v); retval_regs.push((vreg, ret.extension)); vcode.set_vreg_type(vreg.as_virtual_reg().unwrap(), ret.value_type); } // Compute instruction colors, find constant instructions, and find instructions with // side-effects, in one combined pass. let mut cur_color = 0; let mut inst_colors = SecondaryMap::with_default(InstColor::new(0)); let mut inst_constants = FxHashMap::default(); let mut inst_needed = SecondaryMap::with_default(false); for bb in f.layout.blocks() { cur_color += 1; for inst in f.layout.block_insts(bb) { let side_effect = has_side_effect_or_load(f, inst); // Assign colors. A new color is chosen *after* any side-effecting instruction. inst_colors[inst] = InstColor::new(cur_color); debug!("bb {} inst {} has color {}", bb, inst, cur_color); if side_effect { debug!(" -> side-effecting"); inst_needed[inst] = true; cur_color += 1; } // Determine if this is a constant; if so, add to the table. if let Some(c) = is_constant_64bit(f, inst) { debug!(" -> constant: {}", c); inst_constants.insert(inst, c); } } } let vreg_needed = std::iter::repeat(false).take(next_vreg as usize).collect(); Ok(Lower { f, vcode, value_regs, retval_regs, inst_colors, inst_constants, inst_needed, vreg_needed, next_vreg, block_insts: vec![], block_ranges: vec![], bb_insts: vec![], ir_insts: vec![], pinned_reg: None, }) } fn gen_arg_setup(&mut self) { if let Some(entry_bb) = self.f.layout.entry_block() { debug!( "gen_arg_setup: entry BB {} args are:\n{:?}", entry_bb, self.f.dfg.block_params(entry_bb) ); for (i, param) in self.f.dfg.block_params(entry_bb).iter().enumerate() { let reg = Writable::from_reg(self.value_regs[*param]); let insn = self.vcode.abi().gen_copy_arg_to_reg(i, reg); self.emit(insn); } if let Some(insn) = self.vcode.abi().gen_retval_area_setup() { self.emit(insn); } } } fn gen_retval_setup(&mut self, gen_ret_inst: GenerateReturn) { let retval_regs = self.retval_regs.clone(); for (i, (reg, ext)) in retval_regs.into_iter().enumerate() { let reg = Writable::from_reg(reg); let insns = self.vcode.abi().gen_copy_reg_to_retval(i, reg, ext); for insn in insns { self.emit(insn); } } let inst = match gen_ret_inst { GenerateReturn::Yes => self.vcode.abi().gen_ret(), GenerateReturn::No => self.vcode.abi().gen_epilogue_placeholder(), }; self.emit(inst); } fn lower_edge(&mut self, pred: Block, inst: Inst, succ: Block) -> CodegenResult<()> { debug!("lower_edge: pred {} succ {}", pred, succ); let num_args = self.f.dfg.block_params(succ).len(); debug_assert!(num_args == self.f.dfg.inst_variable_args(inst).len()); // Most blocks have no params, so skip all the hoop-jumping below and make an early exit. if num_args == 0 { return Ok(()); } // Make up two vectors of info: // // * one for dsts which are to be assigned constants. We'll deal with those second, so // as to minimise live ranges. // // * one for dsts whose sources are non-constants. let mut const_bundles = SmallVec::<[(Type, Writable, u64); 16]>::new(); let mut var_bundles = SmallVec::<[(Type, Writable, Reg); 16]>::new(); let mut i = 0; for (dst_val, src_val) in self .f .dfg .block_params(succ) .iter() .zip(self.f.dfg.inst_variable_args(inst).iter()) { let src_val = self.f.dfg.resolve_aliases(*src_val); let ty = self.f.dfg.value_type(src_val); debug_assert!(ty == self.f.dfg.value_type(*dst_val)); let dst_reg = self.value_regs[*dst_val]; let input = self.get_input_for_val(inst, src_val); debug!("jump arg {} is {}, reg {:?}", i, src_val, input.reg); i += 1; if let Some(c) = input.constant { const_bundles.push((ty, Writable::from_reg(dst_reg), c)); } else { self.use_input_reg(input); let src_reg = input.reg; // Skip self-assignments. Not only are they pointless, they falsely trigger the // overlap-check below and hence can cause a lot of unnecessary copying through // temporaries. if dst_reg != src_reg { var_bundles.push((ty, Writable::from_reg(dst_reg), src_reg)); } } } // Deal first with the moves whose sources are variables. // FIXME: use regalloc.rs' SparseSetU here. This would avoid all heap allocation // for cases of up to circa 16 args. Currently not possible because regalloc.rs // does not export it. let mut src_reg_set = FxHashSet::::default(); for (_, _, src_reg) in &var_bundles { src_reg_set.insert(*src_reg); } let mut overlaps = false; for (_, dst_reg, _) in &var_bundles { if src_reg_set.contains(&dst_reg.to_reg()) { overlaps = true; break; } } // If, as is mostly the case, the source and destination register sets are non // overlapping, then we can copy directly, so as to save the register allocator work. if !overlaps { for (ty, dst_reg, src_reg) in &var_bundles { self.emit(I::gen_move(*dst_reg, *src_reg, *ty)); } } else { // There's some overlap, so play safe and copy via temps. let mut tmp_regs = SmallVec::<[Writable; 16]>::new(); for (ty, _, _) in &var_bundles { tmp_regs.push(self.alloc_tmp(I::rc_for_type(*ty)?, *ty)); } for ((ty, _, src_reg), tmp_reg) in var_bundles.iter().zip(tmp_regs.iter()) { self.emit(I::gen_move(*tmp_reg, *src_reg, *ty)); } for ((ty, dst_reg, _), tmp_reg) in var_bundles.iter().zip(tmp_regs.iter()) { self.emit(I::gen_move(*dst_reg, (*tmp_reg).to_reg(), *ty)); } } // Now, finally, deal with the moves whose sources are constants. for (ty, dst_reg, const_u64) in &const_bundles { for inst in I::gen_constant(*dst_reg, *const_u64, *ty, |reg_class, ty| { self.alloc_tmp(reg_class, ty) }) .into_iter() { self.emit(inst); } } Ok(()) } fn lower_clif_block>( &mut self, backend: &B, block: Block, ) -> CodegenResult<()> { // Lowering loop: // - For each non-branch instruction, in reverse order: // - If side-effecting (load, store, branch/call/return, possible trap), or if // used outside of this block, or if demanded by another inst, then lower. // // That's it! Lowering of side-effecting ops will force all *needed* // (live) non-side-effecting ops to be lowered at the right places, via // the `use_input_reg()` callback on the `LowerCtx` (that's us). That's // because `use_input_reg()` sets the eager/demand bit for any insts // whose result registers are used. // // We build up the BB in reverse instruction order in `bb_insts`. // Because the machine backend calls `ctx.emit()` in forward order, we // collect per-IR-inst lowered instructions in `ir_insts`, then reverse // these and append to `bb_insts` as we go backward through the block. // `bb_insts` are then reversed again and appended to the VCode at the // end of the BB (in the toplevel driver `lower()`). for inst in self.f.layout.block_insts(block).rev() { let data = &self.f.dfg[inst]; let value_needed = self .f .dfg .inst_results(inst) .iter() .any(|&result| self.vreg_needed[self.value_regs[result].get_index()]); debug!( "lower_clif_block: block {} inst {} ({:?}) is_branch {} inst_needed {} value_needed {}", block, inst, data, data.opcode().is_branch(), self.inst_needed[inst], value_needed, ); if self.f.dfg[inst].opcode().is_branch() { continue; } // Normal instruction: codegen if eager bit is set. (Other instructions may also be // codegened if not eager when they are used by another instruction.) if self.inst_needed[inst] || value_needed { debug!("lowering: inst {}: {:?}", inst, self.f.dfg[inst]); backend.lower(self, inst)?; } if data.opcode().is_return() { // Return: handle specially, using ABI-appropriate sequence. let gen_ret = if data.opcode() == Opcode::Return { GenerateReturn::Yes } else { debug_assert!(data.opcode() == Opcode::FallthroughReturn); GenerateReturn::No }; self.gen_retval_setup(gen_ret); } let loc = self.srcloc(inst); self.finish_ir_inst(loc); } Ok(()) } fn finish_ir_inst(&mut self, loc: SourceLoc) { // `bb_insts` is kept in reverse order, so emit the instructions in // reverse order. for mut tuple in self.ir_insts.drain(..).rev() { tuple.loc = loc; self.bb_insts.push(tuple); } } fn finish_bb(&mut self) { let start = self.block_insts.len(); for tuple in self.bb_insts.drain(..).rev() { self.block_insts.push(tuple); } let end = self.block_insts.len(); self.block_ranges.push((start, end)); } fn copy_bbs_to_vcode(&mut self) { for &(start, end) in self.block_ranges.iter().rev() { for &InstTuple { loc, is_safepoint, ref inst, } in &self.block_insts[start..end] { self.vcode.set_srcloc(loc); self.vcode.push(inst.clone(), is_safepoint); } self.vcode.end_bb(); } } fn lower_clif_branches>( &mut self, backend: &B, block: Block, branches: &SmallVec<[Inst; 2]>, targets: &SmallVec<[MachLabel; 2]>, maybe_fallthrough: Option, ) -> CodegenResult<()> { debug!( "lower_clif_branches: block {} branches {:?} targets {:?} maybe_fallthrough {:?}", block, branches, targets, maybe_fallthrough ); backend.lower_branch_group(self, branches, targets, maybe_fallthrough)?; let loc = self.srcloc(branches[0]); self.finish_ir_inst(loc); Ok(()) } fn collect_branches_and_targets( &self, bindex: BlockIndex, _bb: Block, branches: &mut SmallVec<[Inst; 2]>, targets: &mut SmallVec<[MachLabel; 2]>, ) { branches.clear(); targets.clear(); let mut last_inst = None; for &(inst, succ) in self.vcode.block_order().succ_indices(bindex) { // Avoid duplicates: this ensures a br_table is only inserted once. if last_inst != Some(inst) { branches.push(inst); } else { debug_assert!(self.f.dfg[inst].opcode() == Opcode::BrTable); debug_assert!(branches.len() == 1); } last_inst = Some(inst); targets.push(MachLabel::from_block(succ)); } } /// Lower the function. pub fn lower>( mut self, backend: &B, ) -> CodegenResult<(VCode, StackmapRequestInfo)> { debug!("about to lower function: {:?}", self.f); // Initialize the ABI object, giving it a temp if requested. let maybe_tmp = if self.vcode.abi().temp_needed() { Some(self.alloc_tmp(RegClass::I64, I64)) } else { None }; self.vcode.abi().init(maybe_tmp); // Get the pinned reg here (we only parameterize this function on `B`, // not the whole `Lower` impl). self.pinned_reg = backend.maybe_pinned_reg(); self.vcode.set_entry(0); // Reused vectors for branch lowering. let mut branches: SmallVec<[Inst; 2]> = SmallVec::new(); let mut targets: SmallVec<[MachLabel; 2]> = SmallVec::new(); // get a copy of the lowered order; we hold this separately because we // need a mut ref to the vcode to mutate it below. let lowered_order: SmallVec<[LoweredBlock; 64]> = self .vcode .block_order() .lowered_order() .iter() .cloned() .collect(); // Main lowering loop over lowered blocks. for (bindex, lb) in lowered_order.iter().enumerate().rev() { let bindex = bindex as BlockIndex; // Lower the block body in reverse order (see comment in // `lower_clif_block()` for rationale). // End branches. if let Some(bb) = lb.orig_block() { self.collect_branches_and_targets(bindex, bb, &mut branches, &mut targets); if branches.len() > 0 { let maybe_fallthrough = if (bindex + 1) < (lowered_order.len() as BlockIndex) { Some(MachLabel::from_block(bindex + 1)) } else { None }; self.lower_clif_branches(backend, bb, &branches, &targets, maybe_fallthrough)?; self.finish_ir_inst(self.srcloc(branches[0])); } } else { // If no orig block, this must be a pure edge block; get the successor and // emit a jump. let (_, succ) = self.vcode.block_order().succ_indices(bindex)[0]; self.emit(I::gen_jump(MachLabel::from_block(succ))); self.finish_ir_inst(SourceLoc::default()); } // Out-edge phi moves. if let Some((pred, inst, succ)) = lb.out_edge() { self.lower_edge(pred, inst, succ)?; self.finish_ir_inst(SourceLoc::default()); } // Original block body. if let Some(bb) = lb.orig_block() { self.lower_clif_block(backend, bb)?; } // In-edge phi moves. if let Some((pred, inst, succ)) = lb.in_edge() { self.lower_edge(pred, inst, succ)?; self.finish_ir_inst(SourceLoc::default()); } if bindex == 0 { // Set up the function with arg vreg inits. self.gen_arg_setup(); self.finish_ir_inst(SourceLoc::default()); } self.finish_bb(); } self.copy_bbs_to_vcode(); // Now that we've emitted all instructions into the VCodeBuilder, let's build the VCode. let (vcode, stackmap_info) = self.vcode.build(); debug!("built vcode: {:?}", vcode); Ok((vcode, stackmap_info)) } /// Get the actual inputs for a value. This is the implementation for /// `get_input()` but starting from the SSA value, which is not exposed to /// the backend. fn get_input_for_val(&self, at_inst: Inst, val: Value) -> LowerInput { debug!("get_input_for_val: val {} at inst {}", val, at_inst); let mut reg = self.value_regs[val]; debug!(" -> reg {:?}", reg); assert!(reg.is_valid()); let mut inst = match self.f.dfg.value_def(val) { // OK to merge source instruction if (i) we have a source // instruction, and either (ii-a) it has no side effects, or (ii-b) // it has the same color as this instruction. ValueDef::Result(src_inst, result_idx) => { debug!(" -> src inst {}", src_inst); debug!( " -> has side effect: {}", has_side_effect_or_load(self.f, src_inst) ); debug!( " -> our color is {:?}, src inst is {:?}", self.inst_color(at_inst), self.inst_color(src_inst) ); if !has_side_effect_or_load(self.f, src_inst) || self.inst_color(at_inst) == self.inst_color(src_inst) { Some((src_inst, result_idx)) } else { None } } _ => None, }; let constant = inst.and_then(|(inst, _)| self.get_constant(inst)); // Pinned-reg hack: if backend specifies a fixed pinned register, use it // directly when we encounter a GetPinnedReg op, rather than lowering // the actual op, and do not return the source inst to the caller; the // value comes "out of the ether" and we will not force generation of // the superfluous move. if let Some((i, _)) = inst { if self.f.dfg[i].opcode() == Opcode::GetPinnedReg { if let Some(pr) = self.pinned_reg { reg = pr; } inst = None; } } LowerInput { reg, inst, constant, } } } impl<'func, I: VCodeInst> LowerCtx for Lower<'func, I> { type I = I; fn abi(&mut self) -> &dyn ABIBody { self.vcode.abi() } fn retval(&self, idx: usize) -> Writable { Writable::from_reg(self.retval_regs[idx].0) } fn data(&self, ir_inst: Inst) -> &InstructionData { &self.f.dfg[ir_inst] } fn ty(&self, ir_inst: Inst) -> Type { self.f.dfg.ctrl_typevar(ir_inst) } fn call_target<'b>(&'b self, ir_inst: Inst) -> Option<(&'b ExternalName, RelocDistance)> { match &self.f.dfg[ir_inst] { &InstructionData::Call { func_ref, .. } | &InstructionData::FuncAddr { func_ref, .. } => { let funcdata = &self.f.dfg.ext_funcs[func_ref]; let dist = funcdata.reloc_distance(); Some((&funcdata.name, dist)) } _ => None, } } fn call_sig<'b>(&'b self, ir_inst: Inst) -> Option<&'b Signature> { match &self.f.dfg[ir_inst] { &InstructionData::Call { func_ref, .. } => { let funcdata = &self.f.dfg.ext_funcs[func_ref]; Some(&self.f.dfg.signatures[funcdata.signature]) } &InstructionData::CallIndirect { sig_ref, .. } => Some(&self.f.dfg.signatures[sig_ref]), _ => None, } } fn symbol_value<'b>(&'b self, ir_inst: Inst) -> Option<(&'b ExternalName, RelocDistance, i64)> { match &self.f.dfg[ir_inst] { &InstructionData::UnaryGlobalValue { global_value, .. } => { let gvdata = &self.f.global_values[global_value]; match gvdata { &GlobalValueData::Symbol { ref name, ref offset, .. } => { let offset = offset.bits(); let dist = gvdata.maybe_reloc_distance().unwrap(); Some((name, dist, offset)) } _ => None, } } _ => None, } } fn memflags(&self, ir_inst: Inst) -> Option { match &self.f.dfg[ir_inst] { &InstructionData::Load { flags, .. } | &InstructionData::LoadComplex { flags, .. } | &InstructionData::Store { flags, .. } | &InstructionData::StoreComplex { flags, .. } => Some(flags), _ => None, } } fn srcloc(&self, ir_inst: Inst) -> SourceLoc { self.f.srclocs[ir_inst] } fn inst_color(&self, ir_inst: Inst) -> InstColor { self.inst_colors[ir_inst] } fn num_inputs(&self, ir_inst: Inst) -> usize { self.f.dfg.inst_args(ir_inst).len() } fn num_outputs(&self, ir_inst: Inst) -> usize { self.f.dfg.inst_results(ir_inst).len() } fn input_ty(&self, ir_inst: Inst, idx: usize) -> Type { let val = self.f.dfg.inst_args(ir_inst)[idx]; let val = self.f.dfg.resolve_aliases(val); self.f.dfg.value_type(val) } fn output_ty(&self, ir_inst: Inst, idx: usize) -> Type { self.f.dfg.value_type(self.f.dfg.inst_results(ir_inst)[idx]) } fn get_constant(&self, ir_inst: Inst) -> Option { self.inst_constants.get(&ir_inst).cloned() } fn get_input(&self, ir_inst: Inst, idx: usize) -> LowerInput { let val = self.f.dfg.inst_args(ir_inst)[idx]; let val = self.f.dfg.resolve_aliases(val); self.get_input_for_val(ir_inst, val) } fn get_output(&self, ir_inst: Inst, idx: usize) -> Writable { let val = self.f.dfg.inst_results(ir_inst)[idx]; Writable::from_reg(self.value_regs[val]) } fn alloc_tmp(&mut self, rc: RegClass, ty: Type) -> Writable { let v = self.next_vreg; self.next_vreg += 1; let vreg = Reg::new_virtual(rc, v); self.vcode.set_vreg_type(vreg.as_virtual_reg().unwrap(), ty); Writable::from_reg(vreg) } fn emit(&mut self, mach_inst: I) { self.ir_insts.push(InstTuple { loc: SourceLoc::default(), is_safepoint: false, inst: mach_inst, }); } fn emit_safepoint(&mut self, mach_inst: I) { self.ir_insts.push(InstTuple { loc: SourceLoc::default(), is_safepoint: true, inst: mach_inst, }); } fn use_input_reg(&mut self, input: LowerInput) { debug!("use_input_reg: vreg {:?} is needed", input.reg); self.vreg_needed[input.reg.get_index()] = true; } fn is_reg_needed(&self, ir_inst: Inst, reg: Reg) -> bool { self.inst_needed[ir_inst] || self.vreg_needed[reg.get_index()] } fn get_constant_data(&self, constant_handle: Constant) -> &ConstantData { self.f.dfg.constants.get(constant_handle) } } /// Visit all successors of a block with a given visitor closure. pub(crate) fn visit_block_succs(f: &Function, block: Block, mut visit: F) { for inst in f.layout.block_likely_branches(block) { if f.dfg[inst].opcode().is_branch() { visit_branch_targets(f, block, inst, &mut visit); } } } fn visit_branch_targets( f: &Function, block: Block, inst: Inst, visit: &mut F, ) { if f.dfg[inst].opcode() == Opcode::Fallthrough { visit(inst, f.layout.next_block(block).unwrap()); } else { match f.dfg[inst].analyze_branch(&f.dfg.value_lists) { BranchInfo::NotABranch => {} BranchInfo::SingleDest(dest, _) => { visit(inst, dest); } BranchInfo::Table(table, maybe_dest) => { if let Some(dest) = maybe_dest { visit(inst, dest); } for &dest in f.jump_tables[table].as_slice() { visit(inst, dest); } } } } }