""" The cretonne.formats defines all instruction formats. Every instruction format has a corresponding `InstructionData` variant in the Rust representation of cretonne IL, so all instruction formats must be defined in this module. """ from __future__ import absolute_import from cdsl.formats import InstructionFormat from cdsl.operands import VALUE, VARIABLE_ARGS from .immediates import imm64, uimm8, ieee32, ieee64, offset32, uoffset32 from .immediates import intcc, floatcc from .entities import ebb, sig_ref, func_ref, jump_table, stack_slot Nullary = InstructionFormat() Unary = InstructionFormat(VALUE) UnaryImm = InstructionFormat(imm64) UnaryIeee32 = InstructionFormat(ieee32) UnaryIeee64 = InstructionFormat(ieee64) UnarySplit = InstructionFormat(VALUE, multiple_results=True) Binary = InstructionFormat(VALUE, VALUE) BinaryImm = InstructionFormat(VALUE, imm64) # Generate result + overflow flag. BinaryOverflow = InstructionFormat(VALUE, VALUE, multiple_results=True) # The select instructions are controlled by the second VALUE operand. # The first VALUE operand is the controlling flag which has a derived type. # The fma instruction has the same constraint on all inputs. Ternary = InstructionFormat(VALUE, VALUE, VALUE, typevar_operand=1) # Catch-all for instructions with many outputs and inputs and no immediate # operands. MultiAry = InstructionFormat(VARIABLE_ARGS, multiple_results=True) InsertLane = InstructionFormat(VALUE, ('lane', uimm8), VALUE) ExtractLane = InstructionFormat(VALUE, ('lane', uimm8)) IntCompare = InstructionFormat(intcc, VALUE, VALUE) IntCompareImm = InstructionFormat(intcc, VALUE, imm64) FloatCompare = InstructionFormat(floatcc, VALUE, VALUE) Jump = InstructionFormat(ebb, VARIABLE_ARGS) Branch = InstructionFormat(VALUE, ebb, VARIABLE_ARGS) BranchIcmp = InstructionFormat(intcc, VALUE, VALUE, ebb, VARIABLE_ARGS) BranchTable = InstructionFormat(VALUE, jump_table) Call = InstructionFormat( func_ref, VARIABLE_ARGS, multiple_results=True) IndirectCall = InstructionFormat( sig_ref, VALUE, VARIABLE_ARGS, multiple_results=True) StackLoad = InstructionFormat(stack_slot, offset32) StackStore = InstructionFormat(VALUE, stack_slot, offset32) # Accessing a WebAssembly heap. # TODO: Add a reference to a `heap` declared in the preamble. HeapLoad = InstructionFormat(VALUE, uoffset32) HeapStore = InstructionFormat(VALUE, VALUE, uoffset32) # Finally extract the names of global variables in this module. InstructionFormat.extract_names(globals())