//! Compute "magic numbers" for division-by-constants transformations. //! //! Math helpers for division by (non-power-of-2) constants. This is based //! on the presentation in "Hacker's Delight" by Henry Warren, 2003. There //! are four cases: {unsigned, signed} x {32 bit, 64 bit}. The word size //! makes little difference, but the signed-vs-unsigned aspect has a large //! effect. Therefore everything is presented in the order U32 U64 S32 S64 //! so as to emphasise the similarity of the U32 and U64 cases and the S32 //! and S64 cases. #![allow(non_snake_case)] // Structures to hold the "magic numbers" computed. #[derive(PartialEq, Debug)] pub struct MU32 { pub mulBy: u32, pub doAdd: bool, pub shiftBy: i32, } #[derive(PartialEq, Debug)] pub struct MU64 { pub mulBy: u64, pub doAdd: bool, pub shiftBy: i32, } #[derive(PartialEq, Debug)] pub struct MS32 { pub mulBy: i32, pub shiftBy: i32, } #[derive(PartialEq, Debug)] pub struct MS64 { pub mulBy: i64, pub shiftBy: i32, } // The actual "magic number" generators follow. pub fn magicU32(d: u32) -> MU32 { debug_assert_ne!(d, 0); debug_assert_ne!(d, 1); // d==1 generates out of range shifts. let mut do_add: bool = false; let mut p: i32 = 31; let nc: u32 = 0xFFFFFFFFu32 - u32::wrapping_neg(d) % d; let mut q1: u32 = 0x80000000u32 / nc; let mut r1: u32 = 0x80000000u32 - q1 * nc; let mut q2: u32 = 0x7FFFFFFFu32 / d; let mut r2: u32 = 0x7FFFFFFFu32 - q2 * d; loop { p = p + 1; if r1 >= nc - r1 { q1 = u32::wrapping_add(u32::wrapping_mul(2, q1), 1); r1 = u32::wrapping_sub(u32::wrapping_mul(2, r1), nc); } else { q1 = 2 * q1; r1 = 2 * r1; } if r2 + 1 >= d - r2 { if q2 >= 0x7FFFFFFFu32 { do_add = true; } q2 = 2 * q2 + 1; r2 = u32::wrapping_sub(u32::wrapping_add(u32::wrapping_mul(2, r2), 1), d); } else { if q2 >= 0x80000000u32 { do_add = true; } q2 = u32::wrapping_mul(2, q2); r2 = 2 * r2 + 1; } let delta: u32 = d - 1 - r2; if !(p < 64 && (q1 < delta || (q1 == delta && r1 == 0))) { break; } } MU32 { mulBy: q2 + 1, doAdd: do_add, shiftBy: p - 32, } } pub fn magicU64(d: u64) -> MU64 { debug_assert_ne!(d, 0); debug_assert_ne!(d, 1); // d==1 generates out of range shifts. let mut do_add: bool = false; let mut p: i32 = 63; let nc: u64 = 0xFFFFFFFFFFFFFFFFu64 - u64::wrapping_neg(d) % d; let mut q1: u64 = 0x8000000000000000u64 / nc; let mut r1: u64 = 0x8000000000000000u64 - q1 * nc; let mut q2: u64 = 0x7FFFFFFFFFFFFFFFu64 / d; let mut r2: u64 = 0x7FFFFFFFFFFFFFFFu64 - q2 * d; loop { p = p + 1; if r1 >= nc - r1 { q1 = u64::wrapping_add(u64::wrapping_mul(2, q1), 1); r1 = u64::wrapping_sub(u64::wrapping_mul(2, r1), nc); } else { q1 = 2 * q1; r1 = 2 * r1; } if r2 + 1 >= d - r2 { if q2 >= 0x7FFFFFFFFFFFFFFFu64 { do_add = true; } q2 = 2 * q2 + 1; r2 = u64::wrapping_sub(u64::wrapping_add(u64::wrapping_mul(2, r2), 1), d); } else { if q2 >= 0x8000000000000000u64 { do_add = true; } q2 = u64::wrapping_mul(2, q2); r2 = 2 * r2 + 1; } let delta: u64 = d - 1 - r2; if !(p < 128 && (q1 < delta || (q1 == delta && r1 == 0))) { break; } } MU64 { mulBy: q2 + 1, doAdd: do_add, shiftBy: p - 64, } } pub fn magicS32(d: i32) -> MS32 { debug_assert_ne!(d, -1); debug_assert_ne!(d, 0); debug_assert_ne!(d, 1); let two31: u32 = 0x80000000u32; let mut p: i32 = 31; let ad: u32 = i32::wrapping_abs(d) as u32; let t: u32 = two31 + ((d as u32) >> 31); let anc: u32 = u32::wrapping_sub(t - 1, t % ad); let mut q1: u32 = two31 / anc; let mut r1: u32 = two31 - q1 * anc; let mut q2: u32 = two31 / ad; let mut r2: u32 = two31 - q2 * ad; loop { p = p + 1; q1 = 2 * q1; r1 = 2 * r1; if r1 >= anc { q1 = q1 + 1; r1 = r1 - anc; } q2 = 2 * q2; r2 = 2 * r2; if r2 >= ad { q2 = q2 + 1; r2 = r2 - ad; } let delta: u32 = ad - r2; if !(q1 < delta || (q1 == delta && r1 == 0)) { break; } } MS32 { mulBy: (if d < 0 { u32::wrapping_neg(q2 + 1) } else { q2 + 1 }) as i32, shiftBy: p - 32, } } pub fn magicS64(d: i64) -> MS64 { debug_assert_ne!(d, -1); debug_assert_ne!(d, 0); debug_assert_ne!(d, 1); let two63: u64 = 0x8000000000000000u64; let mut p: i32 = 63; let ad: u64 = i64::wrapping_abs(d) as u64; let t: u64 = two63 + ((d as u64) >> 63); let anc: u64 = u64::wrapping_sub(t - 1, t % ad); let mut q1: u64 = two63 / anc; let mut r1: u64 = two63 - q1 * anc; let mut q2: u64 = two63 / ad; let mut r2: u64 = two63 - q2 * ad; loop { p = p + 1; q1 = 2 * q1; r1 = 2 * r1; if r1 >= anc { q1 = q1 + 1; r1 = r1 - anc; } q2 = 2 * q2; r2 = 2 * r2; if r2 >= ad { q2 = q2 + 1; r2 = r2 - ad; } let delta: u64 = ad - r2; if !(q1 < delta || (q1 == delta && r1 == 0)) { break; } } MS64 { mulBy: (if d < 0 { u64::wrapping_neg(q2 + 1) } else { q2 + 1 }) as i64, shiftBy: p - 64, } } #[cfg(test)] mod tests { use super::{magicS32, magicS64, magicU32, magicU64}; use super::{MS32, MS64, MU32, MU64}; fn mkMU32(mulBy: u32, doAdd: bool, shiftBy: i32) -> MU32 { MU32 { mulBy, doAdd, shiftBy, } } fn mkMU64(mulBy: u64, doAdd: bool, shiftBy: i32) -> MU64 { MU64 { mulBy, doAdd, shiftBy, } } fn mkMS32(mulBy: i32, shiftBy: i32) -> MS32 { MS32 { mulBy, shiftBy } } fn mkMS64(mulBy: i64, shiftBy: i32) -> MS64 { MS64 { mulBy, shiftBy } } #[test] fn test_magicU32() { assert_eq!(magicU32(2u32), mkMU32(0x80000000u32, false, 0)); assert_eq!(magicU32(3u32), mkMU32(0xaaaaaaabu32, false, 1)); assert_eq!(magicU32(4u32), mkMU32(0x40000000u32, false, 0)); assert_eq!(magicU32(5u32), mkMU32(0xcccccccdu32, false, 2)); assert_eq!(magicU32(6u32), mkMU32(0xaaaaaaabu32, false, 2)); assert_eq!(magicU32(7u32), mkMU32(0x24924925u32, true, 3)); assert_eq!(magicU32(9u32), mkMU32(0x38e38e39u32, false, 1)); assert_eq!(magicU32(10u32), mkMU32(0xcccccccdu32, false, 3)); assert_eq!(magicU32(11u32), mkMU32(0xba2e8ba3u32, false, 3)); assert_eq!(magicU32(12u32), mkMU32(0xaaaaaaabu32, false, 3)); assert_eq!(magicU32(25u32), mkMU32(0x51eb851fu32, false, 3)); assert_eq!(magicU32(125u32), mkMU32(0x10624dd3u32, false, 3)); assert_eq!(magicU32(625u32), mkMU32(0xd1b71759u32, false, 9)); assert_eq!(magicU32(1337u32), mkMU32(0x88233b2bu32, true, 11)); assert_eq!(magicU32(65535u32), mkMU32(0x80008001u32, false, 15)); assert_eq!(magicU32(65536u32), mkMU32(0x00010000u32, false, 0)); assert_eq!(magicU32(65537u32), mkMU32(0xffff0001u32, false, 16)); assert_eq!(magicU32(31415927u32), mkMU32(0x445b4553u32, false, 23)); assert_eq!(magicU32(0xdeadbeefu32), mkMU32(0x93275ab3u32, false, 31)); assert_eq!(magicU32(0xfffffffdu32), mkMU32(0x40000001u32, false, 30)); assert_eq!(magicU32(0xfffffffeu32), mkMU32(0x00000003u32, true, 32)); assert_eq!(magicU32(0xffffffffu32), mkMU32(0x80000001u32, false, 31)); } #[test] fn test_magicU64() { assert_eq!(magicU64(2u64), mkMU64(0x8000000000000000u64, false, 0)); assert_eq!(magicU64(3u64), mkMU64(0xaaaaaaaaaaaaaaabu64, false, 1)); assert_eq!(magicU64(4u64), mkMU64(0x4000000000000000u64, false, 0)); assert_eq!(magicU64(5u64), mkMU64(0xcccccccccccccccdu64, false, 2)); assert_eq!(magicU64(6u64), mkMU64(0xaaaaaaaaaaaaaaabu64, false, 2)); assert_eq!(magicU64(7u64), mkMU64(0x2492492492492493u64, true, 3)); assert_eq!(magicU64(9u64), mkMU64(0xe38e38e38e38e38fu64, false, 3)); assert_eq!(magicU64(10u64), mkMU64(0xcccccccccccccccdu64, false, 3)); assert_eq!(magicU64(11u64), mkMU64(0x2e8ba2e8ba2e8ba3u64, false, 1)); assert_eq!(magicU64(12u64), mkMU64(0xaaaaaaaaaaaaaaabu64, false, 3)); assert_eq!(magicU64(25u64), mkMU64(0x47ae147ae147ae15u64, true, 5)); assert_eq!(magicU64(125u64), mkMU64(0x0624dd2f1a9fbe77u64, true, 7)); assert_eq!(magicU64(625u64), mkMU64(0x346dc5d63886594bu64, false, 7)); assert_eq!(magicU64(1337u64), mkMU64(0xc4119d952866a139u64, false, 10)); assert_eq!( magicU64(31415927u64), mkMU64(0x116d154b9c3d2f85u64, true, 25) ); assert_eq!( magicU64(0x00000000deadbeefu64), mkMU64(0x93275ab2dfc9094bu64, false, 31) ); assert_eq!( magicU64(0x00000000fffffffdu64), mkMU64(0x8000000180000005u64, false, 31) ); assert_eq!( magicU64(0x00000000fffffffeu64), mkMU64(0x0000000200000005u64, true, 32) ); assert_eq!( magicU64(0x00000000ffffffffu64), mkMU64(0x8000000080000001u64, false, 31) ); assert_eq!( magicU64(0x0000000100000000u64), mkMU64(0x0000000100000000u64, false, 0) ); assert_eq!( magicU64(0x0000000100000001u64), mkMU64(0xffffffff00000001u64, false, 32) ); assert_eq!( magicU64(0x0ddc0ffeebadf00du64), mkMU64(0x2788e9d394b77da1u64, true, 60) ); assert_eq!( magicU64(0xfffffffffffffffdu64), mkMU64(0x4000000000000001u64, false, 62) ); assert_eq!( magicU64(0xfffffffffffffffeu64), mkMU64(0x0000000000000003u64, true, 64) ); assert_eq!( magicU64(0xffffffffffffffffu64), mkMU64(0x8000000000000001u64, false, 63) ); } #[test] fn test_magicS32() { assert_eq!(magicS32(-0x80000000i32), mkMS32(0x7fffffffu32 as i32, 30)); assert_eq!(magicS32(-0x7FFFFFFFi32), mkMS32(0xbfffffffu32 as i32, 29)); assert_eq!(magicS32(-0x7FFFFFFEi32), mkMS32(0x7ffffffdu32 as i32, 30)); assert_eq!(magicS32(-31415927i32), mkMS32(0xbba4baadu32 as i32, 23)); assert_eq!(magicS32(-1337i32), mkMS32(0x9df73135u32 as i32, 9)); assert_eq!(magicS32(-256i32), mkMS32(0x7fffffffu32 as i32, 7)); assert_eq!(magicS32(-5i32), mkMS32(0x99999999u32 as i32, 1)); assert_eq!(magicS32(-3i32), mkMS32(0x55555555u32 as i32, 1)); assert_eq!(magicS32(-2i32), mkMS32(0x7fffffffu32 as i32, 0)); assert_eq!(magicS32(2i32), mkMS32(0x80000001u32 as i32, 0)); assert_eq!(magicS32(3i32), mkMS32(0x55555556u32 as i32, 0)); assert_eq!(magicS32(4i32), mkMS32(0x80000001u32 as i32, 1)); assert_eq!(magicS32(5i32), mkMS32(0x66666667u32 as i32, 1)); assert_eq!(magicS32(6i32), mkMS32(0x2aaaaaabu32 as i32, 0)); assert_eq!(magicS32(7i32), mkMS32(0x92492493u32 as i32, 2)); assert_eq!(magicS32(9i32), mkMS32(0x38e38e39u32 as i32, 1)); assert_eq!(magicS32(10i32), mkMS32(0x66666667u32 as i32, 2)); assert_eq!(magicS32(11i32), mkMS32(0x2e8ba2e9u32 as i32, 1)); assert_eq!(magicS32(12i32), mkMS32(0x2aaaaaabu32 as i32, 1)); assert_eq!(magicS32(25i32), mkMS32(0x51eb851fu32 as i32, 3)); assert_eq!(magicS32(125i32), mkMS32(0x10624dd3u32 as i32, 3)); assert_eq!(magicS32(625i32), mkMS32(0x68db8badu32 as i32, 8)); assert_eq!(magicS32(1337i32), mkMS32(0x6208cecbu32 as i32, 9)); assert_eq!(magicS32(31415927i32), mkMS32(0x445b4553u32 as i32, 23)); assert_eq!(magicS32(0x7ffffffei32), mkMS32(0x80000003u32 as i32, 30)); assert_eq!(magicS32(0x7fffffffi32), mkMS32(0x40000001u32 as i32, 29)); } #[test] fn test_magicS64() { assert_eq!( magicS64(-0x8000000000000000i64), mkMS64(0x7fffffffffffffffu64 as i64, 62) ); assert_eq!( magicS64(-0x7FFFFFFFFFFFFFFFi64), mkMS64(0xbfffffffffffffffu64 as i64, 61) ); assert_eq!( magicS64(-0x7FFFFFFFFFFFFFFEi64), mkMS64(0x7ffffffffffffffdu64 as i64, 62) ); assert_eq!( magicS64(-0x0ddC0ffeeBadF00di64), mkMS64(0x6c3b8b1635a4412fu64 as i64, 59) ); assert_eq!( magicS64(-0x100000001i64), mkMS64(0x800000007fffffffu64 as i64, 31) ); assert_eq!( magicS64(-0x100000000i64), mkMS64(0x7fffffffffffffffu64 as i64, 31) ); assert_eq!( magicS64(-0xFFFFFFFFi64), mkMS64(0x7fffffff7fffffffu64 as i64, 31) ); assert_eq!( magicS64(-0xFFFFFFFEi64), mkMS64(0x7ffffffefffffffdu64 as i64, 31) ); assert_eq!( magicS64(-0xFFFFFFFDi64), mkMS64(0x7ffffffe7ffffffbu64 as i64, 31) ); assert_eq!( magicS64(-0xDeadBeefi64), mkMS64(0x6cd8a54d2036f6b5u64 as i64, 31) ); assert_eq!( magicS64(-31415927i64), mkMS64(0x7749755a31e1683du64 as i64, 24) ); assert_eq!(magicS64(-1337i64), mkMS64(0x9df731356bccaf63u64 as i64, 9)); assert_eq!(magicS64(-256i64), mkMS64(0x7fffffffffffffffu64 as i64, 7)); assert_eq!(magicS64(-5i64), mkMS64(0x9999999999999999u64 as i64, 1)); assert_eq!(magicS64(-3i64), mkMS64(0x5555555555555555u64 as i64, 1)); assert_eq!(magicS64(-2i64), mkMS64(0x7fffffffffffffffu64 as i64, 0)); assert_eq!(magicS64(2i64), mkMS64(0x8000000000000001u64 as i64, 0)); assert_eq!(magicS64(3i64), mkMS64(0x5555555555555556u64 as i64, 0)); assert_eq!(magicS64(4i64), mkMS64(0x8000000000000001u64 as i64, 1)); assert_eq!(magicS64(5i64), mkMS64(0x6666666666666667u64 as i64, 1)); assert_eq!(magicS64(6i64), mkMS64(0x2aaaaaaaaaaaaaabu64 as i64, 0)); assert_eq!(magicS64(7i64), mkMS64(0x4924924924924925u64 as i64, 1)); assert_eq!(magicS64(9i64), mkMS64(0x1c71c71c71c71c72u64 as i64, 0)); assert_eq!(magicS64(10i64), mkMS64(0x6666666666666667u64 as i64, 2)); assert_eq!(magicS64(11i64), mkMS64(0x2e8ba2e8ba2e8ba3u64 as i64, 1)); assert_eq!(magicS64(12i64), mkMS64(0x2aaaaaaaaaaaaaabu64 as i64, 1)); assert_eq!(magicS64(25i64), mkMS64(0xa3d70a3d70a3d70bu64 as i64, 4)); assert_eq!(magicS64(125i64), mkMS64(0x20c49ba5e353f7cfu64 as i64, 4)); assert_eq!(magicS64(625i64), mkMS64(0x346dc5d63886594bu64 as i64, 7)); assert_eq!(magicS64(1337i64), mkMS64(0x6208ceca9433509du64 as i64, 9)); assert_eq!( magicS64(31415927i64), mkMS64(0x88b68aa5ce1e97c3u64 as i64, 24) ); assert_eq!( magicS64(0x00000000deadbeefi64), mkMS64(0x93275ab2dfc9094bu64 as i64, 31) ); assert_eq!( magicS64(0x00000000fffffffdi64), mkMS64(0x8000000180000005u64 as i64, 31) ); assert_eq!( magicS64(0x00000000fffffffei64), mkMS64(0x8000000100000003u64 as i64, 31) ); assert_eq!( magicS64(0x00000000ffffffffi64), mkMS64(0x8000000080000001u64 as i64, 31) ); assert_eq!( magicS64(0x0000000100000000i64), mkMS64(0x8000000000000001u64 as i64, 31) ); assert_eq!( magicS64(0x0000000100000001i64), mkMS64(0x7fffffff80000001u64 as i64, 31) ); assert_eq!( magicS64(0x0ddc0ffeebadf00di64), mkMS64(0x93c474e9ca5bbed1u64 as i64, 59) ); assert_eq!( magicS64(0x7ffffffffffffffdi64), mkMS64(0x2000000000000001u64 as i64, 60) ); assert_eq!( magicS64(0x7ffffffffffffffei64), mkMS64(0x8000000000000003u64 as i64, 62) ); assert_eq!( magicS64(0x7fffffffffffffffi64), mkMS64(0x4000000000000001u64 as i64, 61) ); } #[test] fn test_magic_generators_dont_panic() { // The point of this is to check that the magic number generators // don't panic with integer wraparounds, especially at boundary // cases for their arguments. The actual results are thrown away. let mut total: u64 = 0; // Testing UP magicU32 for x in 2..(200 * 1000u32) { let m = magicU32(x); total = total ^ (m.mulBy as u64); total = total + (m.shiftBy as u64); total = total - (if m.doAdd { 123 } else { 456 }); } assert_eq!(total, 1747815691); // Testing DOWN magicU32 for x in 0..(200 * 1000u32) { let m = magicU32(0xFFFF_FFFFu32 - x); total = total ^ (m.mulBy as u64); total = total + (m.shiftBy as u64); total = total - (if m.doAdd { 123 } else { 456 }); } assert_eq!(total, 2210292772); // Testing UP magicU64 for x in 2..(200 * 1000u64) { let m = magicU64(x); total = total ^ m.mulBy; total = total + (m.shiftBy as u64); total = total - (if m.doAdd { 123 } else { 456 }); } assert_eq!(total, 7430004084791260605); // Testing DOWN magicU64 for x in 0..(200 * 1000u64) { let m = magicU64(0xFFFF_FFFF_FFFF_FFFFu64 - x); total = total ^ m.mulBy; total = total + (m.shiftBy as u64); total = total - (if m.doAdd { 123 } else { 456 }); } assert_eq!(total, 7547519887519825919); // Testing UP magicS32 for x in 0..(200 * 1000i32) { let m = magicS32(-0x8000_0000i32 + x); total = total ^ (m.mulBy as u64); total = total + (m.shiftBy as u64); } assert_eq!(total, 10899224186731671235); // Testing DOWN magicS32 for x in 0..(200 * 1000i32) { let m = magicS32(0x7FFF_FFFFi32 - x); total = total ^ (m.mulBy as u64); total = total + (m.shiftBy as u64); } assert_eq!(total, 7547519887517897369); // Testing UP magicS64 for x in 0..(200 * 1000i64) { let m = magicS64(-0x8000_0000_0000_0000i64 + x); total = total ^ (m.mulBy as u64); total = total + (m.shiftBy as u64); } assert_eq!(total, 8029756891368555163); // Testing DOWN magicS64 for x in 0..(200 * 1000i64) { let m = magicS64(0x7FFF_FFFF_FFFF_FFFFi64 - x); total = total ^ (m.mulBy as u64); total = total + (m.shiftBy as u64); } // Force `total` -- and hence, the entire computation -- to // be used, so that rustc can't optimise it out. assert_eq!(total, 7547519887532559585u64); } }