//! Generate Rust code from a series of Sequences. use crate::error::Error; use crate::ir::{lower_rule, ExprSequence, PatternInst, PatternSequence}; use crate::sema::{RuleId, TermEnv, TermId, TermKind, Type, TypeEnv, TypeId}; use std::collections::HashMap; use std::fmt::Write; /// One "input symbol" for the decision tree that handles matching on /// a term. Each symbol represents one step: we either run a match op, /// or we get a result from it. /// /// Note that in the original Peepmatic scheme, the problem that this /// solves was handled slightly differently. The automaton responded /// to alphabet symbols that corresponded only to match results, and /// the "extra state" was used at each automaton node to represent the /// op to run next. This extra state differentiated nodes that would /// otherwise be merged together by deduplication. That scheme works /// well enough, but the "extra state" is slightly confusing and /// diverges slightly from a pure automaton. /// /// Instead, here, we imagine that the user of the automaton can query /// the possible transition edges out of the current state. Each of /// these edges corresponds to one possible match op to run. After /// running a match op, we reach a new state corresponding to /// successful matches up to that point. /// /// However, it's a bit more subtle than this; we add one additional /// dimension to each match op, and an additional alphabet symbol. /// /// First, consider the prioritization problem. We want to give the /// DSL user the ability to change the order in which rules apply, for /// example to have a tier of "fallback rules" that apply only if more /// custom rules do not match. /// /// A somewhat simplistic answer to this problem is "more specific /// rule wins". However, this implies the existence of a total /// ordering of linearized match sequences that may not fully capture /// the intuitive meaning of "more specific". Consider four left-hand /// sides: /// /// - (A _ _) /// - (A (B _) _) /// - (A _ (B _)) /// /// Intuitively, the first is the least specific. Given the input `(A /// (B 1) (B 2)`, we can say for sure that the first should not be /// chosen, because either the second or third would match "more" of /// the input tree. But which of the second and third should be /// chosen? A "lexicographic ordering" rule would say that we sort /// left-hand sides such that the `(B _)` sub-pattern comes before the /// wildcard `_`, so the second rule wins. But that is arbitrarily /// privileging one over the other based on the order of the /// arguments. /// /// Instead, we need a data structure that can associate matching /// inputs *with priorities* to outputs, and provide us with a /// decision tree as output. /// /// Why a tree and not a fully general FSM? Because we're compiling /// to a structured language, Rust, and states become *program points* /// rather than *data*, we cannot easily support a DAG structure. In /// other words, we are not producing a FSM that we can interpret at /// runtime; rather we are compiling code in which each state /// corresponds to a sequence of statements and control-flow that /// branches to a next state, we naturally need nesting; we cannot /// codegen arbitrary state transitions in an efficient manner. We /// could support a limited form of DAG that reifies "diamonds" (two /// alternate paths that reconverge), but supporting this in a way /// that lets the output refer to values from either side is very /// complex (we need to invent phi-nodes), and the cases where we want /// to do this rather than invoke a sub-term (that is compiled to a /// separate function) are rare. Finally, note that one reason to /// deduplicate nodes and turn a tree back into a DAG -- /// "output-suffix sharing" as some other instruction-rewriter /// engines, such as Peepmatic, do -- is not done. However, /// "output-prefix sharing" is more important to deduplicate code and /// we do do this.) /// /// We prepare for codegen by building a "prioritized trie", where the /// trie associates input strings with priorities to output values. /// Each input string is a sequence of match operators followed by an /// "end of match" token, and each output is a sequence of ops that /// build the output expression. Each input-output mapping is /// associated with a priority. The goal of the trie is to generate a /// decision-tree procedure that lets us execute match ops in a /// deterministic way, eventually landing at a state that corresponds /// to the highest-priority matching rule and can produce the output. /// /// To build this trie, we construct nodes with edges to child nodes; /// each edge consists of (i) one input token (a `PatternInst` or /// EOM), and (ii) the minimum and maximum priorities of rules along /// this edge. In a way this resembles an interval tree, though the /// intervals of children need not be disjoint. /// /// To add a rule to this trie, we perform the usual trie-insertion /// logic, creating edges and subnodes where necessary, and updating /// the priority-range of each edge that we traverse to include the /// priority of the inserted rule. /// /// However, we need to be a little bit careful, because with only /// priority ranges in place and the potential for overlap, we have /// something that resembles an NFA. For example, consider the case /// where we reach a node in the trie and have two edges with two /// match ops, one corresponding to a rule with priority 10, and the /// other corresponding to two rules, with priorities 20 and 0. The /// final match could lie along *either* path, so we have to traverse /// both. /// /// So, to avoid this, we perform a sort of NFA-to-DFA conversion "on /// the fly" as we insert nodes by duplicating subtrees. At any node, /// when inserting with a priority P and when outgoing edges lie in a /// range [P_lo, P_hi] such that P >= P_lo and P <= P_hi, we /// "priority-split the edges" at priority P. /// /// To priority-split the edges in a node at priority P: /// /// - For each out-edge with priority [P_lo, P_hi] s.g. P \in [P_lo, /// P_hi], and token T: /// - Trim the subnode at P, yielding children C_lo and C_hi. /// - Both children must be non-empty (have at least one leaf) /// because the original node must have had a leaf at P_lo /// and a leaf at P_hi. /// - Replace the one edge with two edges, one for each child, with /// the original match op, and with ranges calculated according to /// the trimmed children. /// /// To trim a node into range [P_lo, P_hi]: /// /// - For a decision node: /// - If any edges have a range outside the bounds of the trimming /// range, trim the bounds of the edge, and trim the subtree under the /// edge into the trimmed edge's range. If the subtree is trimmed /// to `None`, remove the edge. /// - If all edges are removed, the decision node becomes `None`. /// - For a leaf node: /// - If the priority is outside the range, the node becomes `None`. /// /// As we descend a path to insert a leaf node, we (i) priority-split /// if any edges' priority ranges overlap the insertion priority /// range, and (ii) expand priority ranges on edges to include the new /// leaf node's priority. /// /// As long as we do this, we ensure the two key priority-trie /// invariants: /// /// 1. At a given node, no two edges exist with priority ranges R_1, /// R_2 such that R_1 ∩ R_2 ≠ ∅, unless R_1 and R_2 are unit ranges /// ([x, x]) and are on edges with different match-ops. /// 2. Along the path from the root to any leaf node with priority P, /// each edge has a priority range R such that P ∈ R. /// /// Note that this means that multiple edges with a single match-op /// may exist, with different priorities. #[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord)] enum TrieSymbol { Match { op: PatternInst }, EndOfMatch, } impl TrieSymbol { fn is_eom(&self) -> bool { match self { TrieSymbol::EndOfMatch => true, _ => false, } } } type Prio = i64; #[derive(Clone, Copy, Debug)] struct PrioRange(Prio, Prio); impl PrioRange { fn contains(&self, prio: Prio) -> bool { prio >= self.0 && prio <= self.1 } fn is_unit(&self) -> bool { self.0 == self.1 } fn overlaps(&self, other: PrioRange) -> bool { // This can be derived via DeMorgan: !(self.begin > other.end // OR other.begin > self.end). self.0 <= other.1 && other.0 <= self.1 } fn intersect(&self, other: PrioRange) -> PrioRange { PrioRange( std::cmp::max(self.0, other.0), std::cmp::min(self.1, other.1), ) } fn union(&self, other: PrioRange) -> PrioRange { PrioRange( std::cmp::min(self.0, other.0), std::cmp::max(self.1, other.1), ) } fn split_at(&self, prio: Prio) -> (PrioRange, PrioRange) { assert!(self.contains(prio)); assert!(!self.is_unit()); if prio == self.0 { (PrioRange(self.0, self.0), PrioRange(self.0 + 1, self.1)) } else { (PrioRange(self.0, prio - 1), PrioRange(prio, self.1)) } } } #[derive(Clone, Debug)] struct TrieEdge { range: PrioRange, symbol: TrieSymbol, node: TrieNode, } #[derive(Clone, Debug)] enum TrieNode { Decision { edges: Vec }, Leaf { prio: Prio, output: ExprSequence }, Empty, } impl TrieNode { fn is_empty(&self) -> bool { match self { &TrieNode::Empty => true, _ => false, } } fn insert( &mut self, prio: Prio, mut input: impl Iterator, output: ExprSequence, ) -> bool { // Take one input symbol. There must be *at least* one, EOM if // nothing else. let op = input .next() .expect("Cannot insert into trie with empty input sequence"); let is_last = op.is_eom(); // If we are empty, turn into a decision node. if self.is_empty() { *self = TrieNode::Decision { edges: vec![] }; } // We must be a decision node. let edges = match self { &mut TrieNode::Decision { ref mut edges } => edges, _ => panic!("insert on leaf node!"), }; // Do we need to split? let needs_split = edges .iter() .any(|edge| edge.range.contains(prio) && !edge.range.is_unit()); // If so, pass over all edges/subnodes and split each. if needs_split { let mut new_edges = vec![]; for edge in std::mem::take(edges) { if !edge.range.contains(prio) || edge.range.is_unit() { new_edges.push(edge); continue; } let (lo_range, hi_range) = edge.range.split_at(prio); let lo = edge.node.trim(lo_range); let hi = edge.node.trim(hi_range); if let Some((node, range)) = lo { new_edges.push(TrieEdge { range, symbol: edge.symbol.clone(), node, }); } if let Some((node, range)) = hi { new_edges.push(TrieEdge { range, symbol: edge.symbol, node, }); } } *edges = new_edges; } // Now find or insert the appropriate edge. let mut edge: Option = None; for i in 0..edges.len() { if edges[i].range.contains(prio) && edges[i].symbol == op { edge = Some(i); break; } if prio > edges[i].range.1 { edges.insert( i, TrieEdge { range: PrioRange(prio, prio), symbol: op.clone(), node: TrieNode::Empty, }, ); edge = Some(i); break; } } let edge = edge.unwrap_or_else(|| { edges.push(TrieEdge { range: PrioRange(prio, prio), symbol: op.clone(), node: TrieNode::Empty, }); edges.len() - 1 }); let edge = &mut edges[edge]; if is_last { if !edge.node.is_empty() { // If a leaf node already exists at an overlapping // prio for this op, there are two competing rules, so // we can't insert this one. return false; } edge.node = TrieNode::Leaf { prio, output }; true } else { edge.node.insert(prio, input, output) } } fn trim(&self, range: PrioRange) -> Option<(TrieNode, PrioRange)> { match self { &TrieNode::Empty => None, &TrieNode::Leaf { prio, ref output } => { if range.contains(prio) { Some(( TrieNode::Leaf { prio, output: output.clone(), }, PrioRange(prio, prio), )) } else { None } } &TrieNode::Decision { ref edges } => { let edges = edges .iter() .filter_map(|edge| { if !edge.range.overlaps(range) { None } else { let range = range.intersect(edge.range); if let Some((node, range)) = edge.node.trim(range) { Some(TrieEdge { range, symbol: edge.symbol.clone(), node, }) } else { None } } }) .collect::>(); if edges.is_empty() { None } else { let range = edges .iter() .map(|edge| edge.range) .reduce(|a, b| a.union(b)) .expect("reduce on non-empty vec must not return None"); Some((TrieNode::Decision { edges }, range)) } } } } } /// Builder context for one function in generated code corresponding /// to one root input term. /// /// A `TermFunctionBuilder` can correspond to the matching /// control-flow and operations that we execute either when evaluating /// *forward* on a term, trying to match left-hand sides against it /// and transforming it into another term; or *backward* on a term, /// trying to match another rule's left-hand side against an input to /// produce the term in question (when the term is used in the LHS of /// the calling term). #[derive(Debug)] struct TermFunctionBuilder { root_term: TermId, trie: TrieNode, } impl TermFunctionBuilder { fn new(root_term: TermId) -> Self { TermFunctionBuilder { root_term, trie: TrieNode::Empty, } } fn add_rule(&mut self, prio: Prio, pattern_seq: PatternSequence, expr_seq: ExprSequence) { let symbols = pattern_seq .insts .into_iter() .map(|op| TrieSymbol::Match { op }) .chain(std::iter::once(TrieSymbol::EndOfMatch)); self.trie.insert(prio, symbols, expr_seq); } } #[derive(Debug)] struct TermFunctionsBuilder<'a> { typeenv: &'a TypeEnv, termenv: &'a TermEnv, builders_by_input: HashMap, builders_by_output: HashMap, } impl<'a> TermFunctionsBuilder<'a> { fn new(typeenv: &'a TypeEnv, termenv: &'a TermEnv) -> Self { log::trace!("typeenv: {:?}", typeenv); log::trace!("termenv: {:?}", termenv); Self { builders_by_input: HashMap::new(), builders_by_output: HashMap::new(), typeenv, termenv, } } fn build(&mut self) { for rule in 0..self.termenv.rules.len() { let rule = RuleId(rule); let prio = self.termenv.rules[rule.index()].prio.unwrap_or(0); let (lhs_root, pattern, rhs_root, expr) = lower_rule(self.typeenv, self.termenv, rule); log::trace!( "build:\n- rule {:?}\n- lhs_root {:?} rhs_root {:?}\n- pattern {:?}\n- expr {:?}", self.termenv.rules[rule.index()], lhs_root, rhs_root, pattern, expr ); if let Some(input_root_term) = lhs_root { self.builders_by_input .entry(input_root_term) .or_insert_with(|| TermFunctionBuilder::new(input_root_term)) .add_rule(prio, pattern.clone(), expr.clone()); } if let Some(output_root_term) = rhs_root { self.builders_by_output .entry(output_root_term) .or_insert_with(|| TermFunctionBuilder::new(output_root_term)) .add_rule(prio, pattern, expr); } } } fn finalize(self) -> (HashMap, HashMap) { let functions_by_input = self .builders_by_input .into_iter() .map(|(term, builder)| (term, builder.trie)) .collect::>(); let functions_by_output = self .builders_by_output .into_iter() .map(|(term, builder)| (term, builder.trie)) .collect::>(); (functions_by_input, functions_by_output) } } #[derive(Clone, Debug)] pub struct Codegen<'a> { typeenv: &'a TypeEnv, termenv: &'a TermEnv, functions_by_input: HashMap, functions_by_output: HashMap, } impl<'a> Codegen<'a> { pub fn compile(typeenv: &'a TypeEnv, termenv: &'a TermEnv) -> Result, Error> { let mut builder = TermFunctionsBuilder::new(typeenv, termenv); builder.build(); log::trace!("builder: {:?}", builder); let (functions_by_input, functions_by_output) = builder.finalize(); Ok(Codegen { typeenv, termenv, functions_by_input, functions_by_output, }) } pub fn generate_rust(&self) -> Result { let mut code = String::new(); self.generate_header(&mut code)?; self.generate_internal_types(&mut code)?; self.generate_internal_term_constructors(&mut code)?; self.generate_internal_term_extractors(&mut code)?; Ok(code) } fn generate_header(&self, code: &mut dyn Write) -> Result<(), Error> { writeln!(code, "// GENERATED BY ISLE. DO NOT EDIT!")?; writeln!(code, "//")?; writeln!( code, "// Generated automatically from the instruction-selection DSL code in:", )?; for file in &self.typeenv.filenames { writeln!(code, "// - {}", file)?; } writeln!( code, "\nuse super::*; // Pulls in all external types and ctors/etors" )?; Ok(()) } fn generate_internal_types(&self, code: &mut dyn Write) -> Result<(), Error> { for ty in &self.typeenv.types { match ty { &Type::Enum { name, is_extern, ref variants, pos, .. } if !is_extern => { let name = &self.typeenv.syms[name.index()]; writeln!( code, "\n/// Internal type {}: defined at {}.", name, pos.pretty_print_line(&self.typeenv.filenames[..]) )?; writeln!(code, "#[derive(Clone, Debug)]")?; writeln!(code, "enum {} {{", name)?; for variant in variants { let name = &self.typeenv.syms[variant.name.index()]; writeln!(code, " {} {{", name)?; for field in &variant.fields { let name = &self.typeenv.syms[field.name.index()]; let ty_name = self.typeenv.types[field.ty.index()].name(&self.typeenv); writeln!(code, " {}: {},", name, ty_name)?; } writeln!(code, " }},")?; } writeln!(code, "}}")?; } _ => {} } } Ok(()) } fn constructor_name(&self, term: TermId) -> String { let termdata = &self.termenv.terms[term.index()]; match &termdata.kind { &TermKind::EnumVariant { .. } => panic!("using enum variant as constructor"), &TermKind::Regular { constructor: Some(sym), .. } => self.typeenv.syms[sym.index()].clone(), &TermKind::Regular { constructor: None, .. } => { format!("constructor_{}", self.typeenv.syms[termdata.name.index()]) } } } fn type_name(&self, typeid: TypeId, by_ref: bool) -> String { match &self.typeenv.types[typeid.index()] { &Type::Primitive(_, sym) => self.typeenv.syms[sym.index()].clone(), &Type::Enum { name, .. } => { let r = if by_ref { "&" } else { "" }; format!("{}{}", r, self.typeenv.syms[name.index()]) } } } fn generate_internal_term_constructors(&self, code: &mut dyn Write) -> Result<(), Error> { for (&termid, trie) in &self.functions_by_input { let termdata = &self.termenv.terms[termid.index()]; // Skip terms that are enum variants or that have external constructors. match &termdata.kind { &TermKind::EnumVariant { .. } => continue, &TermKind::Regular { constructor, .. } if constructor.is_some() => continue, _ => {} } // Get the name of the term and build up the signature. let func_name = self.constructor_name(termid); let args = termdata .arg_tys .iter() .enumerate() .map(|(i, &arg_ty)| { format!("arg{}: {}", i, self.type_name(arg_ty, /* by_ref = */ true)) }) .collect::>(); writeln!( code, "\n// Generated as internal constructor for term {}.", self.typeenv.syms[termdata.name.index()], )?; writeln!( code, "fn {}(ctx: &mut C, {}) -> Option<{}> {{", func_name, args.join(", "), self.type_name(termdata.ret_ty, /* by_ref = */ false) )?; self.generate_body(code, termid, trie)?; writeln!(code, "}}")?; } Ok(()) } fn generate_internal_term_extractors(&self, _code: &mut dyn Write) -> Result<(), Error> { Ok(()) } fn generate_body( &self, _code: &mut dyn Write, _termid: TermId, _trie: &TrieNode, ) -> Result<(), Error> { Ok(()) } }