""" Generate sources for instruction encoding. The tables and functions generated here support the `TargetISA::encode()` function which determines if a given instruction is legal, and if so, it's `Encoding` data which consists of a *recipe* and some *encoding* bits. The `encode` function doesn't actually generate the binary machine bits. Each recipe has a corresponding hand-written function to do that after registers are allocated. This is the information available to us: - The instruction to be encoded as an `Inst` reference. - The data-flow graph containing the instruction, giving us access to the `InstructionData` representation and the types of all values involved. - A target ISA instance with shared and ISA-specific settings for evaluating ISA predicates. - The currently active CPU mode is determined by the ISA. ## Level 1 table lookup The CPU mode provides the first table. The key is the instruction's controlling type variable. If the instruction is not polymorphic, use `VOID` for the type variable. The table values are level 2 tables. ## Level 2 table lookup The level 2 table is keyed by the instruction's opcode. The table values are *encoding lists*. The two-level table lookup allows the level 2 tables to be much smaller with good locality. Code in any given function usually only uses a few different types, so many of the level 2 tables will be cold. ## Encoding lists An encoding list is a non-empty sequence of list entries. Each entry has one of these forms: 1. Instruction predicate, encoding recipe, and encoding bits. If the instruction predicate is true, use this recipe and bits. 2. ISA predicate and skip-count. If the ISA predicate is false, skip the next *skip-count* entries in the list. If the skip count is zero, stop completely. 3. Stop. End of list marker. If this is reached, the instruction does not have a legal encoding. The instruction predicate is also used to distinguish between polymorphic instructions with different types for secondary type variables. """ from __future__ import absolute_import import srcgen from constant_hash import compute_quadratic from unique_table import UniqueSeqTable from collections import OrderedDict, defaultdict import math import itertools from cdsl.registers import RegClass, Register from cdsl.predicates import FieldPredicate try: from typing import Sequence, Set, Tuple, List, Iterable, DefaultDict, TYPE_CHECKING # noqa if TYPE_CHECKING: from cdsl.isa import TargetISA, OperandConstraint, Encoding, CPUMode # noqa from cdsl.predicates import PredNode, PredLeaf # noqa from cdsl.types import ValueType # noqa from cdsl.instructions import Instruction # noqa except ImportError: pass def emit_instp(instp, fmt): # type: (PredNode, srcgen.Formatter) -> None """ Emit code for matching an instruction predicate against an `InstructionData` reference called `inst`. The generated code is a pattern match that falls through if the instruction has an unexpected format. This should lead to a panic. """ iform = instp.predicate_context() # Which fields do we need in the InstructionData pattern match? # Collect the leaf predicates. leafs = set() # type: Set[PredLeaf] instp.predicate_leafs(leafs) # All the leafs are FieldPredicate instances. Here we just care about # the field names. fnames = set() # type: Set[str] for p in leafs: assert isinstance(p, FieldPredicate) fnames.add(p.field.rust_name()) fields = ', '.join(sorted(fnames)) with fmt.indented('{} => {{'.format(instp.number), '}'): with fmt.indented( 'if let InstructionData::{} {{ {}, .. }} = *inst {{' .format(iform.name, fields), '}'): fmt.line('return {};'.format(instp.rust_predicate(0))) def emit_instps(instps, fmt): # type: (Sequence[PredNode], srcgen.Formatter) -> None """ Emit a function for matching instruction predicates. """ if not instps: # If the ISA has no predicates, just emit a stub. with fmt.indented( 'pub fn check_instp(_: &InstructionData, _: u16) ' + '-> bool {', '}'): fmt.line('unimplemented!()') return with fmt.indented( 'pub fn check_instp(inst: &InstructionData, instp_idx: u16) ' + '-> bool {', '}'): # The matches emitted by `emit_instp` need this. fmt.line('use ir::instructions::InstructionFormat;') with fmt.indented('match instp_idx {', '}'): for instp in instps: emit_instp(instp, fmt) fmt.line('_ => panic!("Invalid instruction predicate")') # The match cases will fall through if the instruction format is wrong. fmt.line('panic!("Bad format {:?}/{} for instp {}",') fmt.line(' InstructionFormat::from(inst),') fmt.line(' inst.opcode(),') fmt.line(' instp_idx);') # Encoding lists are represented as u16 arrays. CODE_BITS = 16 PRED_BITS = 12 PRED_MASK = (1 << PRED_BITS) - 1 # 0..CODE_ALWAYS means: Check instruction predicate and use the next two # entries as a (recipe, encbits) pair if true. CODE_ALWAYS is the always-true # predicate, smaller numbers refer to instruction predicates. CODE_ALWAYS = PRED_MASK # Codes above CODE_ALWAYS indicate an ISA predicate to be tested. # `x & PRED_MASK` is the ISA predicate number to test. # `(x >> PRED_BITS)*3` is the number of u16 table entries to skip if the ISA # predicate is false. (The factor of three corresponds to the (inst-pred, # recipe, encbits) triples. # # Finally, CODE_FAIL indicates the end of the list. CODE_FAIL = (1 << CODE_BITS) - 1 def seq_doc(enc): # type: (Encoding) -> Tuple[Tuple[int, int, int], str] """ Return a tuple containing u16 representations of the instruction predicate an recipe / encbits. Also return a doc string. """ if enc.instp: p = enc.instp.number doc = '--> {} when {}'.format(enc, enc.instp) else: p = CODE_ALWAYS doc = '--> {}'.format(enc) assert p <= CODE_ALWAYS return ((p, enc.recipe.number, enc.encbits), doc) class EncList(object): """ List of instructions for encoding a given type + opcode pair. An encoding list contains a sequence of predicates and encoding recipes, all encoded as u16 values. :param inst: The instruction opcode being encoded. :param ty: Value of the controlling type variable, or `None`. """ def __init__(self, inst, ty): # type: (Instruction, ValueType) -> None self.inst = inst self.ty = ty # List of applicable Encoding instances. # These will have different predicates. self.encodings = [] # type: List[Encoding] def name(self): # type: () -> str name = self.inst.name if self.ty: name = '{}.{}'.format(name, self.ty.name) if self.encodings: name += ' ({})'.format(self.encodings[0].cpumode) return name def by_isap(self): # type: () -> Iterable[Tuple[PredNode, Tuple[Encoding, ...]]] """ Group the encodings by ISA predicate without reordering them. Yield a sequence of `(isap, (encs...))` tuples where `isap` is the ISA predicate or `None`, and `(encs...)` is a tuple of encodings that all have the same ISA predicate. """ maxlen = CODE_FAIL >> PRED_BITS for isap, groupi in itertools.groupby( self.encodings, lambda enc: enc.isap): group = tuple(groupi) # This probably never happens, but we can't express more than # maxlen encodings per isap. while len(group) > maxlen: yield (isap, group[0:maxlen]) group = group[maxlen:] yield (isap, group) def encode(self, seq_table, doc_table, isa): # type: (UniqueSeqTable, DefaultDict[int, List[str]], TargetISA) -> None # noqa """ Encode this list as a sequence of u16 numbers. Adds the sequence to `seq_table` and records the returned offset as `self.offset`. Adds comment lines to `doc_table` keyed by seq_table offsets. """ words = list() # type: List[int] docs = list() # type: List[Tuple[int, str]] # Group our encodings by isap. for isap, group in self.by_isap(): if isap: # We have an ISA predicate covering `glen` encodings. pnum = isa.settings.predicate_number[isap] glen = len(group) doc = 'skip {}x3 unless {}'.format(glen, isap) docs.append((len(words), doc)) words.append((glen << PRED_BITS) | pnum) for enc in group: seq, doc = seq_doc(enc) docs.append((len(words), doc)) words.extend(seq) # Terminate the list. words.append(CODE_FAIL) self.offset = seq_table.add(words) # Add doc comments. doc_table[self.offset].append( '{:06x}: {}'.format(self.offset, self.name())) for pos, doc in docs: doc_table[self.offset + pos].append(doc) class Level2Table(object): """ Level 2 table mapping instruction opcodes to `EncList` objects. :param ty: Controlling type variable of all entries, or `None`. """ def __init__(self, ty): # type: (ValueType) -> None self.ty = ty # Maps inst -> EncList self.lists = OrderedDict() # type: OrderedDict[Instruction, EncList] def __getitem__(self, inst): # type: (Instruction) -> EncList ls = self.lists.get(inst) if not ls: ls = EncList(inst, self.ty) self.lists[inst] = ls return ls def enclists(self): # type: () -> Iterable[EncList] return iter(self.lists.values()) def layout_hashtable(self, level2_hashtables, level2_doc): # type: (List[EncList], DefaultDict[int, List[str]]) -> None """ Compute the hash table mapping opcode -> enclist. Append the hash table to `level2_hashtables` and record the offset. """ def hash_func(enclist): # type: (EncList) -> int return enclist.inst.number hash_table = compute_quadratic(self.lists.values(), hash_func) self.hash_table_offset = len(level2_hashtables) self.hash_table_len = len(hash_table) level2_doc[self.hash_table_offset].append( '{:06x}: {}, {} entries'.format( self.hash_table_offset, self.ty, self.hash_table_len)) level2_hashtables.extend(hash_table) class Level1Table(object): """ Level 1 table mapping types to `Level2` objects. """ def __init__(self): # type: () -> None self.tables = OrderedDict() # type: OrderedDict[ValueType, Level2Table] # noqa def __getitem__(self, ty): # type: (ValueType) -> Level2Table tbl = self.tables.get(ty) if not tbl: tbl = Level2Table(ty) self.tables[ty] = tbl return tbl def l2tables(self): # type: () -> Iterable[Level2Table] return iter(self.tables.values()) def make_tables(cpumode): # type: (CPUMode) -> Level1Table """ Generate tables for `cpumode` as described above. """ table = Level1Table() for enc in cpumode.encodings: ty = enc.ctrl_typevar() inst = enc.inst table[ty][inst].encodings.append(enc) return table def encode_enclists(level1, seq_table, doc_table, isa): # type: (Level1Table, UniqueSeqTable, DefaultDict[int, List[str]], TargetISA) -> None # noqa """ Compute encodings and doc comments for encoding lists in `level1`. """ for level2 in level1.l2tables(): for enclist in level2.enclists(): enclist.encode(seq_table, doc_table, isa) def emit_enclists(seq_table, doc_table, fmt): # type: (UniqueSeqTable, DefaultDict[int, List[str]], srcgen.Formatter) -> None # noqa with fmt.indented( 'pub static ENCLISTS: [u16; {}] = ['.format(len(seq_table.table)), '];'): line = '' for idx, entry in enumerate(seq_table.table): if idx in doc_table: if line: fmt.line(line) line = '' for doc in doc_table[idx]: fmt.comment(doc) line += '{:#06x}, '.format(entry) if line: fmt.line(line) def encode_level2_hashtables(level1, level2_hashtables, level2_doc): # type: (Level1Table, List[EncList], DefaultDict[int, List[str]]) -> None for level2 in level1.l2tables(): level2.layout_hashtable(level2_hashtables, level2_doc) def emit_level2_hashtables(level2_hashtables, offt, level2_doc, fmt): # type: (List[EncList], str, DefaultDict[int, List[str]], srcgen.Formatter) -> None # noqa """ Emit the big concatenation of level 2 hash tables. """ with fmt.indented( 'pub static LEVEL2: [Level2Entry<{}>; {}] = [' .format(offt, len(level2_hashtables)), '];'): for offset, entry in enumerate(level2_hashtables): if offset in level2_doc: for doc in level2_doc[offset]: fmt.comment(doc) if entry: fmt.line( 'Level2Entry ' + '{{ opcode: Some(Opcode::{}), offset: {:#08x} }},' .format(entry.inst.camel_name, entry.offset)) else: fmt.line( 'Level2Entry ' + '{ opcode: None, offset: 0 },') def emit_level1_hashtable(cpumode, level1, offt, fmt): # type: (CPUMode, Level1Table, str, srcgen.Formatter) -> None # noqa """ Emit a level 1 hash table for `cpumode`. """ def hash_func(level2): # type: (Level2Table) -> int return level2.ty.number if level2.ty is not None else 0 hash_table = compute_quadratic(level1.tables.values(), hash_func) with fmt.indented( 'pub static LEVEL1_{}: [Level1Entry<{}>; {}] = [' .format(cpumode.name.upper(), offt, len(hash_table)), '];'): for level2 in hash_table: if level2: l2l = int(math.log(level2.hash_table_len, 2)) assert l2l > 0, "Hash table too small" tyname = level2.ty.name if level2.ty is not None else 'void' fmt.line( 'Level1Entry ' + '{{ ty: types::{}, log2len: {}, offset: {:#08x} }},' .format( tyname.upper(), l2l, level2.hash_table_offset)) else: # Empty entry. fmt.line( 'Level1Entry ' + '{ ty: types::VOID, log2len: 0, offset: 0 },') def offset_type(length): # type: (int) -> str """ Compute an appropriate Rust integer type to use for offsets into a table of the given length. """ if length <= 0x10000: return 'u16' else: assert length <= 0x100000000, "Table too big" return 'u32' def emit_recipe_names(isa, fmt): # type: (TargetISA, srcgen.Formatter) -> None """ Emit a table of encoding recipe names keyed by recipe number. This is used for pretty-printing encodings. """ with fmt.indented( 'static RECIPE_NAMES: [&\'static str; {}] = [' .format(len(isa.all_recipes)), '];'): for r in isa.all_recipes: fmt.line('"{}",'.format(r.name)) def emit_recipe_constraints(isa, fmt): # type: (TargetISA, srcgen.Formatter) -> None """ Emit a table of encoding recipe operand constraints keyed by recipe number. These are used by the register allocator to pick registers that can be properly encoded. """ with fmt.indented( 'static RECIPE_CONSTRAINTS: [RecipeConstraints; {}] = [' .format(len(isa.all_recipes)), '];'): for r in isa.all_recipes: fmt.comment(r.name) with fmt.indented('RecipeConstraints {', '},'): emit_operand_constraints(r.ins, 'ins', fmt) emit_operand_constraints(r.outs, 'outs', fmt) def emit_operand_constraints(seq, field, fmt): # type: (Sequence[OperandConstraint], str, srcgen.Formatter) -> None """ Emit a struct field initializer for an array of operand constraints. """ if len(seq) == 0: fmt.line('{}: &[],'.format(field)) return with fmt.indented('{}: &['.format(field), '],'): for cons in seq: with fmt.indented('OperandConstraint {', '},'): if isinstance(cons, RegClass): fmt.line('kind: ConstraintKind::Reg,') fmt.line('regclass: {},'.format(cons)) elif isinstance(cons, Register): fmt.line( 'kind: ConstraintKind::FixedReg({}),' .format(cons.unit)) fmt.line('regclass: {},'.format(cons.regclass)) else: raise AssertionError( 'Unsupported constraint {}'.format(cons)) def emit_recipe_sizing(isa, fmt): # type: (TargetISA, srcgen.Formatter) -> None """ Emit a table of encoding recipe code size information. """ with fmt.indented( 'static RECIPE_SIZING: [RecipeSizing; {}] = [' .format(len(isa.all_recipes)), '];'): for r in isa.all_recipes: fmt.comment(r.name) with fmt.indented('RecipeSizing {', '},'): fmt.format('bytes: {},', r.size) if r.branch_range: fmt.format( 'branch_range: ' 'Some(BranchRange {{ origin: {}, bits: {} }}),', *r.branch_range) else: fmt.line('branch_range: None,') def gen_isa(isa, fmt): # type: (TargetISA, srcgen.Formatter) -> None # First assign numbers to relevant instruction predicates and generate the # check_instp() function.. emit_instps(isa.all_instps, fmt) # Level1 tables, one per CPU mode level1_tables = dict() # Tables for enclists with comments. seq_table = UniqueSeqTable() doc_table = defaultdict(list) # type: DefaultDict[int, List[str]] # Single table containing all the level2 hash tables. level2_hashtables = list() # type: List[EncList] level2_doc = defaultdict(list) # type: DefaultDict[int, List[str]] for cpumode in isa.cpumodes: level2_doc[len(level2_hashtables)].append(cpumode.name) level1 = make_tables(cpumode) level1_tables[cpumode] = level1 encode_enclists(level1, seq_table, doc_table, isa) encode_level2_hashtables(level1, level2_hashtables, level2_doc) # Level 1 table encodes offsets into the level 2 table. level1_offt = offset_type(len(level2_hashtables)) # Level 2 tables encodes offsets into seq_table. level2_offt = offset_type(len(seq_table.table)) emit_enclists(seq_table, doc_table, fmt) emit_level2_hashtables(level2_hashtables, level2_offt, level2_doc, fmt) for cpumode in isa.cpumodes: emit_level1_hashtable( cpumode, level1_tables[cpumode], level1_offt, fmt) emit_recipe_names(isa, fmt) emit_recipe_constraints(isa, fmt) emit_recipe_sizing(isa, fmt) # Finally, tie it all together in an `EncInfo`. with fmt.indented('pub static INFO: EncInfo = EncInfo {', '};'): fmt.line('constraints: &RECIPE_CONSTRAINTS,') fmt.line('sizing: &RECIPE_SIZING,') fmt.line('names: &RECIPE_NAMES,') def generate(isas, out_dir): # type: (Sequence[TargetISA], str) -> None for isa in isas: fmt = srcgen.Formatter() gen_isa(isa, fmt) fmt.update_file('encoding-{}.rs'.format(isa.name), out_dir)