//! This implements the VCode container: a CFG of Insts that have been lowered. //! //! VCode is virtual-register code. An instruction in VCode is almost a machine //! instruction; however, its register slots can refer to virtual registers in //! addition to real machine registers. //! //! VCode is structured with traditional basic blocks, and //! each block must be terminated by an unconditional branch (one target), a //! conditional branch (two targets), or a return (no targets). Note that this //! slightly differs from the machine code of most ISAs: in most ISAs, a //! conditional branch has one target (and the not-taken case falls through). //! However, we expect that machine backends will elide branches to the following //! block (i.e., zero-offset jumps), and will be able to codegen a branch-cond / //! branch-uncond pair if *both* targets are not fallthrough. This allows us to //! play with layout prior to final binary emission, as well, if we want. //! //! See the main module comment in `mod.rs` for more details on the VCode-based //! backend pipeline. use crate::ir::{self, SourceLoc}; use crate::machinst::*; use crate::settings; use regalloc::Function as RegallocFunction; use regalloc::Set as RegallocSet; use regalloc::{ BlockIx, InstIx, Range, RegAllocResult, RegClass, RegUsageCollector, RegUsageMapper, }; use alloc::boxed::Box; use alloc::{borrow::Cow, vec::Vec}; use std::fmt; use std::iter; use std::string::String; /// Index referring to an instruction in VCode. pub type InsnIndex = u32; /// Index referring to a basic block in VCode. pub type BlockIndex = u32; /// VCodeInst wraps all requirements for a MachInst to be in VCode: it must be /// a `MachInst` and it must be able to emit itself at least to a `SizeCodeSink`. pub trait VCodeInst: MachInst + MachInstEmit {} impl VCodeInst for I {} /// A function in "VCode" (virtualized-register code) form, after lowering. /// This is essentially a standard CFG of basic blocks, where each basic block /// consists of lowered instructions produced by the machine-specific backend. pub struct VCode { /// Function liveins. liveins: RegallocSet, /// Function liveouts. liveouts: RegallocSet, /// VReg IR-level types. vreg_types: Vec, /// Lowered machine instructions in order corresponding to the original IR. insts: Vec, /// Source locations for each instruction. (`SourceLoc` is a `u32`, so it is /// reasonable to keep one of these per instruction.) srclocs: Vec, /// Entry block. entry: BlockIndex, /// Block instruction indices. block_ranges: Vec<(InsnIndex, InsnIndex)>, /// Block successors: index range in the successor-list below. block_succ_range: Vec<(usize, usize)>, /// Block successor lists, concatenated into one Vec. The `block_succ_range` /// list of tuples above gives (start, end) ranges within this list that /// correspond to each basic block's successors. block_succs: Vec, /// Block-order information. block_order: BlockLoweringOrder, /// ABI object. abi: Box>, } /// A builder for a VCode function body. This builder is designed for the /// lowering approach that we take: we traverse basic blocks in forward /// (original IR) order, but within each basic block, we generate code from /// bottom to top; and within each IR instruction that we visit in this reverse /// order, we emit machine instructions in *forward* order again. /// /// Hence, to produce the final instructions in proper order, we perform two /// swaps. First, the machine instructions (`I` instances) are produced in /// forward order for an individual IR instruction. Then these are *reversed* /// and concatenated to `bb_insns` at the end of the IR instruction lowering. /// The `bb_insns` vec will thus contain all machine instructions for a basic /// block, in reverse order. Finally, when we're done with a basic block, we /// reverse the whole block's vec of instructions again, and concatenate onto /// the VCode's insts. pub struct VCodeBuilder { /// In-progress VCode. vcode: VCode, /// Index of the last block-start in the vcode. block_start: InsnIndex, /// Start of succs for the current block in the concatenated succs list. succ_start: usize, /// Current source location. cur_srcloc: SourceLoc, } impl VCodeBuilder { /// Create a new VCodeBuilder. pub fn new(abi: Box>, block_order: BlockLoweringOrder) -> VCodeBuilder { let vcode = VCode::new(abi, block_order); VCodeBuilder { vcode, block_start: 0, succ_start: 0, cur_srcloc: SourceLoc::default(), } } /// Access the ABI object. pub fn abi(&mut self) -> &mut dyn ABIBody { &mut *self.vcode.abi } /// Access to the BlockLoweringOrder object. pub fn block_order(&self) -> &BlockLoweringOrder { &self.vcode.block_order } /// Set the type of a VReg. pub fn set_vreg_type(&mut self, vreg: VirtualReg, ty: Type) { while self.vcode.vreg_types.len() <= vreg.get_index() { self.vcode.vreg_types.push(ir::types::I8); // Default type. } self.vcode.vreg_types[vreg.get_index()] = ty; } /// Set the current block as the entry block. pub fn set_entry(&mut self, block: BlockIndex) { self.vcode.entry = block; } /// End the current basic block. Must be called after emitting vcode insts /// for IR insts and prior to ending the function (building the VCode). pub fn end_bb(&mut self) { let start_idx = self.block_start; let end_idx = self.vcode.insts.len() as InsnIndex; self.block_start = end_idx; // Add the instruction index range to the list of blocks. self.vcode.block_ranges.push((start_idx, end_idx)); // End the successors list. let succ_end = self.vcode.block_succs.len(); self.vcode .block_succ_range .push((self.succ_start, succ_end)); self.succ_start = succ_end; } /// Push an instruction for the current BB and current IR inst within the BB. pub fn push(&mut self, insn: I) { match insn.is_term() { MachTerminator::None | MachTerminator::Ret => {} MachTerminator::Uncond(target) => { self.vcode.block_succs.push(BlockIx::new(target.get())); } MachTerminator::Cond(true_branch, false_branch) => { self.vcode.block_succs.push(BlockIx::new(true_branch.get())); self.vcode .block_succs .push(BlockIx::new(false_branch.get())); } MachTerminator::Indirect(targets) => { for target in targets { self.vcode.block_succs.push(BlockIx::new(target.get())); } } } self.vcode.insts.push(insn); self.vcode.srclocs.push(self.cur_srcloc); } /// Get the current source location. pub fn get_srcloc(&self) -> SourceLoc { self.cur_srcloc } /// Set the current source location. pub fn set_srcloc(&mut self, srcloc: SourceLoc) { self.cur_srcloc = srcloc; } /// Build the final VCode. pub fn build(self) -> VCode { self.vcode } } fn block_ranges(indices: &[InstIx], len: usize) -> Vec<(usize, usize)> { let v = indices .iter() .map(|iix| iix.get() as usize) .chain(iter::once(len)) .collect::>(); v.windows(2).map(|p| (p[0], p[1])).collect() } fn is_redundant_move(insn: &I) -> bool { if let Some((to, from)) = insn.is_move() { to.to_reg() == from } else { false } } impl VCode { /// New empty VCode. fn new(abi: Box>, block_order: BlockLoweringOrder) -> VCode { VCode { liveins: abi.liveins(), liveouts: abi.liveouts(), vreg_types: vec![], insts: vec![], srclocs: vec![], entry: 0, block_ranges: vec![], block_succ_range: vec![], block_succs: vec![], block_order, abi, } } /// Returns the flags controlling this function's compilation. pub fn flags(&self) -> &settings::Flags { self.abi.flags() } /// Get the IR-level type of a VReg. pub fn vreg_type(&self, vreg: VirtualReg) -> Type { self.vreg_types[vreg.get_index()] } /// Get the entry block. pub fn entry(&self) -> BlockIndex { self.entry } /// Get the number of blocks. Block indices will be in the range `0 .. /// (self.num_blocks() - 1)`. pub fn num_blocks(&self) -> usize { self.block_ranges.len() } /// Stack frame size for the full function's body. pub fn frame_size(&self) -> u32 { self.abi.frame_size() } /// Get the successors for a block. pub fn succs(&self, block: BlockIndex) -> &[BlockIx] { let (start, end) = self.block_succ_range[block as usize]; &self.block_succs[start..end] } /// Take the results of register allocation, with a sequence of /// instructions including spliced fill/reload/move instructions, and replace /// the VCode with them. pub fn replace_insns_from_regalloc(&mut self, result: RegAllocResult) { // Record the spillslot count and clobbered registers for the ABI/stack // setup code. self.abi.set_num_spillslots(result.num_spill_slots as usize); self.abi .set_clobbered(result.clobbered_registers.map(|r| Writable::from_reg(*r))); // We want to move instructions over in final block order, using the new // block-start map given by the regalloc. let block_ranges: Vec<(usize, usize)> = block_ranges(result.target_map.elems(), result.insns.len()); let mut final_insns = vec![]; let mut final_block_ranges = vec![(0, 0); self.num_blocks()]; let mut final_srclocs = vec![]; for block in 0..self.num_blocks() { let block = block as BlockIndex; let (start, end) = block_ranges[block as usize]; let final_start = final_insns.len() as InsnIndex; if block == self.entry { // Start with the prologue. let prologue = self.abi.gen_prologue(); let len = prologue.len(); final_insns.extend(prologue.into_iter()); final_srclocs.extend(iter::repeat(SourceLoc::default()).take(len)); } for i in start..end { let insn = &result.insns[i]; // Elide redundant moves at this point (we only know what is // redundant once registers are allocated). if is_redundant_move(insn) { continue; } // Is there a srcloc associated with this insn? Look it up based on original // instruction index (if new insn corresponds to some original insn, i.e., is not // an inserted load/spill/move). let orig_iix = result.orig_insn_map[InstIx::new(i as u32)]; let srcloc = if orig_iix.is_invalid() { SourceLoc::default() } else { self.srclocs[orig_iix.get() as usize] }; // Whenever encountering a return instruction, replace it // with the epilogue. let is_ret = insn.is_term() == MachTerminator::Ret; if is_ret { let epilogue = self.abi.gen_epilogue(); let len = epilogue.len(); final_insns.extend(epilogue.into_iter()); final_srclocs.extend(iter::repeat(srcloc).take(len)); } else { final_insns.push(insn.clone()); final_srclocs.push(srcloc); } } let final_end = final_insns.len() as InsnIndex; final_block_ranges[block as usize] = (final_start, final_end); } debug_assert!(final_insns.len() == final_srclocs.len()); self.insts = final_insns; self.srclocs = final_srclocs; self.block_ranges = final_block_ranges; } /// Emit the instructions to a `MachBuffer`, containing fixed-up code and external /// reloc/trap/etc. records ready for use. pub fn emit(&self) -> MachBuffer where I: MachInstEmit, { let mut buffer = MachBuffer::new(); let mut state = Default::default(); buffer.reserve_labels_for_blocks(self.num_blocks() as BlockIndex); // first N MachLabels are simply block indices. let flags = self.abi.flags(); let mut cur_srcloc = None; for block in 0..self.num_blocks() { let block = block as BlockIndex; let new_offset = I::align_basic_block(buffer.cur_offset()); while new_offset > buffer.cur_offset() { // Pad with NOPs up to the aligned block offset. let nop = I::gen_nop((new_offset - buffer.cur_offset()) as usize); nop.emit(&mut buffer, flags, &mut Default::default()); } assert_eq!(buffer.cur_offset(), new_offset); let (start, end) = self.block_ranges[block as usize]; buffer.bind_label(MachLabel::from_block(block)); for iix in start..end { let srcloc = self.srclocs[iix as usize]; if cur_srcloc != Some(srcloc) { if cur_srcloc.is_some() { buffer.end_srcloc(); } buffer.start_srcloc(srcloc); cur_srcloc = Some(srcloc); } self.insts[iix as usize].emit(&mut buffer, flags, &mut state); } if cur_srcloc.is_some() { buffer.end_srcloc(); cur_srcloc = None; } // Do we need an island? Get the worst-case size of the next BB and see if, having // emitted that many bytes, we will be beyond the deadline. if block < (self.num_blocks() - 1) as BlockIndex { let next_block = block + 1; let next_block_range = self.block_ranges[next_block as usize]; let next_block_size = next_block_range.1 - next_block_range.0; let worst_case_next_bb = I::worst_case_size() * next_block_size; if buffer.island_needed(worst_case_next_bb) { buffer.emit_island(); } } } buffer } /// Get the IR block for a BlockIndex, if one exists. pub fn bindex_to_bb(&self, block: BlockIndex) -> Option { self.block_order.lowered_order()[block as usize].orig_block() } } impl RegallocFunction for VCode { type Inst = I; fn insns(&self) -> &[I] { &self.insts[..] } fn insns_mut(&mut self) -> &mut [I] { &mut self.insts[..] } fn get_insn(&self, insn: InstIx) -> &I { &self.insts[insn.get() as usize] } fn get_insn_mut(&mut self, insn: InstIx) -> &mut I { &mut self.insts[insn.get() as usize] } fn blocks(&self) -> Range { Range::new(BlockIx::new(0), self.block_ranges.len()) } fn entry_block(&self) -> BlockIx { BlockIx::new(self.entry) } fn block_insns(&self, block: BlockIx) -> Range { let (start, end) = self.block_ranges[block.get() as usize]; Range::new(InstIx::new(start), (end - start) as usize) } fn block_succs(&self, block: BlockIx) -> Cow<[BlockIx]> { let (start, end) = self.block_succ_range[block.get() as usize]; Cow::Borrowed(&self.block_succs[start..end]) } fn is_ret(&self, insn: InstIx) -> bool { match self.insts[insn.get() as usize].is_term() { MachTerminator::Ret => true, _ => false, } } fn get_regs(insn: &I, collector: &mut RegUsageCollector) { insn.get_regs(collector) } fn map_regs(insn: &mut I, mapper: &RegUsageMapper) { insn.map_regs(mapper); } fn is_move(&self, insn: &I) -> Option<(Writable, Reg)> { insn.is_move() } fn get_vreg_count_estimate(&self) -> Option { Some(self.vreg_types.len()) } fn get_spillslot_size(&self, regclass: RegClass, vreg: VirtualReg) -> u32 { let ty = self.vreg_type(vreg); self.abi.get_spillslot_size(regclass, ty) } fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg, vreg: VirtualReg) -> I { let ty = self.vreg_type(vreg); self.abi.gen_spill(to_slot, from_reg, ty) } fn gen_reload(&self, to_reg: Writable, from_slot: SpillSlot, vreg: VirtualReg) -> I { let ty = self.vreg_type(vreg); self.abi.gen_reload(to_reg, from_slot, ty) } fn gen_move(&self, to_reg: Writable, from_reg: RealReg, vreg: VirtualReg) -> I { let ty = self.vreg_type(vreg); I::gen_move(to_reg.map(|r| r.to_reg()), from_reg.to_reg(), ty) } fn gen_zero_len_nop(&self) -> I { I::gen_zero_len_nop() } fn maybe_direct_reload(&self, insn: &I, reg: VirtualReg, slot: SpillSlot) -> Option { insn.maybe_direct_reload(reg, slot) } fn func_liveins(&self) -> RegallocSet { self.liveins.clone() } fn func_liveouts(&self) -> RegallocSet { self.liveouts.clone() } } impl fmt::Debug for VCode { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { writeln!(f, "VCode_Debug {{")?; writeln!(f, " Entry block: {}", self.entry)?; for block in 0..self.num_blocks() { writeln!(f, "Block {}:", block,)?; for succ in self.succs(block as BlockIndex) { writeln!(f, " (successor: Block {})", succ.get())?; } let (start, end) = self.block_ranges[block]; writeln!(f, " (instruction range: {} .. {})", start, end)?; for inst in start..end { writeln!(f, " Inst {}: {:?}", inst, self.insts[inst as usize])?; } } writeln!(f, "}}")?; Ok(()) } } /// Pretty-printing with `RealRegUniverse` context. impl ShowWithRRU for VCode { fn show_rru(&self, mb_rru: Option<&RealRegUniverse>) -> String { use std::fmt::Write; let mut s = String::new(); write!(&mut s, "VCode_ShowWithRRU {{{{\n").unwrap(); write!(&mut s, " Entry block: {}\n", self.entry).unwrap(); for i in 0..self.num_blocks() { let block = i as BlockIndex; write!(&mut s, "Block {}:\n", block).unwrap(); if let Some(bb) = self.bindex_to_bb(block) { write!(&mut s, " (original IR block: {})\n", bb).unwrap(); } for succ in self.succs(block) { write!(&mut s, " (successor: Block {})\n", succ.get()).unwrap(); } let (start, end) = self.block_ranges[block as usize]; write!(&mut s, " (instruction range: {} .. {})\n", start, end).unwrap(); for inst in start..end { write!( &mut s, " Inst {}: {}\n", inst, self.insts[inst as usize].show_rru(mb_rru) ) .unwrap(); } } write!(&mut s, "}}}}\n").unwrap(); s } }