//! ISLE integration glue code for x64 lowering. // Pull in the ISLE generated code. pub(crate) mod generated_code; use crate::machinst::{InputSourceInst, Reg, Writable}; use generated_code::MInst; // Types that the generated ISLE code uses via `use super::*`. use super::{is_int_or_ref_ty, is_mergeable_load, lower_to_amode}; use crate::{ ir::{ condcodes::{FloatCC, IntCC}, immediates::*, types::*, Inst, InstructionData, MemFlags, Opcode, TrapCode, Value, ValueList, }, isa::{ settings::Flags, unwind::UnwindInst, x64::{ inst::{args::*, regs}, settings::Flags as IsaFlags, }, }, machinst::{ isle::*, AtomicRmwOp, InsnInput, InsnOutput, LowerCtx, VCodeConstant, VCodeConstantData, }, }; use std::convert::TryFrom; pub struct SinkableLoad { inst: Inst, addr_input: InsnInput, offset: i32, } /// The main entry point for lowering with ISLE. pub(crate) fn lower( lower_ctx: &mut C, flags: &Flags, isa_flags: &IsaFlags, outputs: &[InsnOutput], inst: Inst, ) -> Result<(), ()> where C: LowerCtx, { lower_common(lower_ctx, flags, isa_flags, outputs, inst, |cx, insn| { generated_code::constructor_lower(cx, insn) }) } impl generated_code::Context for IsleContext<'_, C, Flags, IsaFlags, 6> where C: LowerCtx, { isle_prelude_methods!(); #[inline] fn operand_size_of_type_32_64(&mut self, ty: Type) -> OperandSize { if ty.bits() == 64 { OperandSize::Size64 } else { OperandSize::Size32 } } #[inline] fn raw_operand_size_of_type(&mut self, ty: Type) -> OperandSize { OperandSize::from_ty(ty) } fn put_in_reg_mem_imm(&mut self, val: Value) -> RegMemImm { let inputs = self.lower_ctx.get_value_as_source_or_const(val); if let Some(c) = inputs.constant { if let Some(imm) = to_simm32(c as i64) { return imm.to_reg_mem_imm(); } // A load from the constant pool is better than a // rematerialization into a register, because it reduces // register pressure. let vcode_constant = self.emit_u64_le_const(c); return RegMemImm::mem(SyntheticAmode::ConstantOffset(vcode_constant)); } if let InputSourceInst::UniqueUse(src_insn, 0) = inputs.inst { if let Some((addr_input, offset)) = is_mergeable_load(self.lower_ctx, src_insn) { self.lower_ctx.sink_inst(src_insn); let amode = lower_to_amode(self.lower_ctx, addr_input, offset); return RegMemImm::mem(amode); } } RegMemImm::reg(self.put_in_reg(val)) } fn put_in_reg_mem(&mut self, val: Value) -> RegMem { let inputs = self.lower_ctx.get_value_as_source_or_const(val); if let Some(c) = inputs.constant { // A load from the constant pool is better than a // rematerialization into a register, because it reduces // register pressure. let vcode_constant = self.emit_u64_le_const(c); return RegMem::mem(SyntheticAmode::ConstantOffset(vcode_constant)); } if let InputSourceInst::UniqueUse(src_insn, 0) = inputs.inst { if let Some((addr_input, offset)) = is_mergeable_load(self.lower_ctx, src_insn) { self.lower_ctx.sink_inst(src_insn); let amode = lower_to_amode(self.lower_ctx, addr_input, offset); return RegMem::mem(amode); } } RegMem::reg(self.put_in_reg(val)) } fn put_masked_in_imm8_gpr(&mut self, val: Value, ty: Type) -> Imm8Gpr { let inputs = self.lower_ctx.get_value_as_source_or_const(val); if let Some(c) = inputs.constant { let mask = 1_u64 .checked_shl(ty.bits() as u32) .map_or(u64::MAX, |x| x - 1); return Imm8Gpr::new(Imm8Reg::Imm8 { imm: (c & mask) as u8, }) .unwrap(); } Imm8Gpr::new(Imm8Reg::Reg { reg: self.put_in_regs(val).regs()[0], }) .unwrap() } #[inline] fn encode_fcmp_imm(&mut self, imm: &FcmpImm) -> u8 { imm.encode() } #[inline] fn avx512vl_enabled(&mut self, _: Type) -> Option<()> { if self.isa_flags.use_avx512vl_simd() { Some(()) } else { None } } #[inline] fn avx512dq_enabled(&mut self, _: Type) -> Option<()> { if self.isa_flags.use_avx512dq_simd() { Some(()) } else { None } } #[inline] fn avx512f_enabled(&mut self, _: Type) -> Option<()> { if self.isa_flags.use_avx512f_simd() { Some(()) } else { None } } #[inline] fn avx512bitalg_enabled(&mut self, _: Type) -> Option<()> { if self.isa_flags.use_avx512bitalg_simd() { Some(()) } else { None } } #[inline] fn use_lzcnt(&mut self, _: Type) -> Option<()> { if self.isa_flags.use_lzcnt() { Some(()) } else { None } } #[inline] fn use_bmi1(&mut self, _: Type) -> Option<()> { if self.isa_flags.use_bmi1() { Some(()) } else { None } } #[inline] fn use_popcnt(&mut self, _: Type) -> Option<()> { if self.isa_flags.use_popcnt() { Some(()) } else { None } } #[inline] fn imm8_from_value(&mut self, val: Value) -> Option { let inst = self.lower_ctx.dfg().value_def(val).inst()?; let constant = self.lower_ctx.get_constant(inst)?; let imm = u8::try_from(constant).ok()?; Some(Imm8Reg::Imm8 { imm }) } #[inline] fn const_to_type_masked_imm8(&mut self, c: u64, ty: Type) -> Imm8Gpr { let mask = 1_u64 .checked_shl(ty.bits() as u32) .map_or(u64::MAX, |x| x - 1); Imm8Gpr::new(Imm8Reg::Imm8 { imm: (c & mask) as u8, }) .unwrap() } #[inline] fn simm32_from_value(&mut self, val: Value) -> Option { let inst = self.lower_ctx.dfg().value_def(val).inst()?; let constant: u64 = self.lower_ctx.get_constant(inst)?; let constant = constant as i64; to_simm32(constant) } #[inline] fn simm32_from_imm64(&mut self, imm: Imm64) -> Option { to_simm32(imm.bits()) } fn sinkable_load(&mut self, val: Value) -> Option { let input = self.lower_ctx.get_value_as_source_or_const(val); if let InputSourceInst::UniqueUse(inst, 0) = input.inst { if let Some((addr_input, offset)) = is_mergeable_load(self.lower_ctx, inst) { return Some(SinkableLoad { inst, addr_input, offset, }); } } None } fn sink_load(&mut self, load: &SinkableLoad) -> RegMemImm { self.lower_ctx.sink_inst(load.inst); let addr = lower_to_amode(self.lower_ctx, load.addr_input, load.offset); RegMemImm::Mem { addr: SyntheticAmode::Real(addr), } } #[inline] fn ext_mode(&mut self, from_bits: u16, to_bits: u16) -> ExtMode { ExtMode::new(from_bits, to_bits).unwrap() } fn emit(&mut self, inst: &MInst) -> Unit { self.lower_ctx.emit(inst.clone()); } #[inline] fn nonzero_u64_fits_in_u32(&mut self, x: u64) -> Option { if x != 0 && x < u64::from(u32::MAX) { Some(x) } else { None } } #[inline] fn sse_insertps_lane_imm(&mut self, lane: u8) -> u8 { // Insert 32-bits from replacement (at index 00, bits 7:8) to vector (lane // shifted into bits 5:6). 0b00_00_00_00 | lane << 4 } #[inline] fn xmm0(&mut self) -> WritableXmm { WritableXmm::from_reg(Xmm::new(regs::xmm0()).unwrap()) } #[inline] fn synthetic_amode_to_reg_mem(&mut self, addr: &SyntheticAmode) -> RegMem { RegMem::mem(addr.clone()) } #[inline] fn amode_imm_reg_reg_shift(&mut self, simm32: u32, base: Gpr, index: Gpr, shift: u8) -> Amode { Amode::imm_reg_reg_shift(simm32, base, index, shift) } #[inline] fn amode_imm_reg(&mut self, simm32: u32, base: Gpr) -> Amode { Amode::imm_reg(simm32, base.to_reg()) } #[inline] fn amode_with_flags(&mut self, amode: &Amode, flags: MemFlags) -> Amode { amode.with_flags(flags) } #[inline] fn amode_to_synthetic_amode(&mut self, amode: &Amode) -> SyntheticAmode { amode.clone().into() } #[inline] fn writable_gpr_to_reg(&mut self, r: WritableGpr) -> WritableReg { r.to_writable_reg() } #[inline] fn writable_xmm_to_reg(&mut self, r: WritableXmm) -> WritableReg { r.to_writable_reg() } fn ishl_i8x16_mask_for_const(&mut self, amt: u32) -> SyntheticAmode { // When the shift amount is known, we can statically (i.e. at compile // time) determine the mask to use and only emit that. debug_assert!(amt < 8); let mask_offset = amt as usize * 16; let mask_constant = self.lower_ctx.use_constant(VCodeConstantData::WellKnown( &I8X16_ISHL_MASKS[mask_offset..mask_offset + 16], )); SyntheticAmode::ConstantOffset(mask_constant) } fn ishl_i8x16_mask_table(&mut self) -> SyntheticAmode { let mask_table = self .lower_ctx .use_constant(VCodeConstantData::WellKnown(&I8X16_ISHL_MASKS)); SyntheticAmode::ConstantOffset(mask_table) } fn ushr_i8x16_mask_for_const(&mut self, amt: u32) -> SyntheticAmode { // When the shift amount is known, we can statically (i.e. at compile // time) determine the mask to use and only emit that. debug_assert!(amt < 8); let mask_offset = amt as usize * 16; let mask_constant = self.lower_ctx.use_constant(VCodeConstantData::WellKnown( &I8X16_USHR_MASKS[mask_offset..mask_offset + 16], )); SyntheticAmode::ConstantOffset(mask_constant) } fn ushr_i8x16_mask_table(&mut self) -> SyntheticAmode { let mask_table = self .lower_ctx .use_constant(VCodeConstantData::WellKnown(&I8X16_USHR_MASKS)); SyntheticAmode::ConstantOffset(mask_table) } fn popcount_4bit_table(&mut self) -> VCodeConstant { self.lower_ctx .use_constant(VCodeConstantData::WellKnown(&POPCOUNT_4BIT_TABLE)) } fn popcount_low_mask(&mut self) -> VCodeConstant { self.lower_ctx .use_constant(VCodeConstantData::WellKnown(&POPCOUNT_LOW_MASK)) } #[inline] fn writable_reg_to_xmm(&mut self, r: WritableReg) -> WritableXmm { Writable::from_reg(Xmm::new(r.to_reg()).unwrap()) } #[inline] fn writable_xmm_to_xmm(&mut self, r: WritableXmm) -> Xmm { r.to_reg() } #[inline] fn writable_gpr_to_gpr(&mut self, r: WritableGpr) -> Gpr { r.to_reg() } #[inline] fn gpr_to_reg(&mut self, r: Gpr) -> Reg { r.into() } #[inline] fn xmm_to_reg(&mut self, r: Xmm) -> Reg { r.into() } #[inline] fn xmm_to_xmm_mem_imm(&mut self, r: Xmm) -> XmmMemImm { r.into() } #[inline] fn temp_writable_gpr(&mut self) -> WritableGpr { Writable::from_reg(Gpr::new(self.temp_writable_reg(I64).to_reg()).unwrap()) } #[inline] fn temp_writable_xmm(&mut self) -> WritableXmm { Writable::from_reg(Xmm::new(self.temp_writable_reg(I8X16).to_reg()).unwrap()) } #[inline] fn reg_mem_to_xmm_mem(&mut self, rm: &RegMem) -> XmmMem { XmmMem::new(rm.clone()).unwrap() } #[inline] fn gpr_mem_imm_new(&mut self, rmi: &RegMemImm) -> GprMemImm { GprMemImm::new(rmi.clone()).unwrap() } #[inline] fn xmm_mem_imm_new(&mut self, rmi: &RegMemImm) -> XmmMemImm { XmmMemImm::new(rmi.clone()).unwrap() } #[inline] fn xmm_to_xmm_mem(&mut self, r: Xmm) -> XmmMem { r.into() } #[inline] fn xmm_mem_to_reg_mem(&mut self, xm: &XmmMem) -> RegMem { xm.clone().into() } #[inline] fn gpr_mem_to_reg_mem(&mut self, gm: &GprMem) -> RegMem { gm.clone().into() } #[inline] fn xmm_new(&mut self, r: Reg) -> Xmm { Xmm::new(r).unwrap() } #[inline] fn gpr_new(&mut self, r: Reg) -> Gpr { Gpr::new(r).unwrap() } #[inline] fn reg_mem_to_gpr_mem(&mut self, rm: &RegMem) -> GprMem { GprMem::new(rm.clone()).unwrap() } #[inline] fn reg_to_gpr_mem(&mut self, r: Reg) -> GprMem { GprMem::new(RegMem::reg(r)).unwrap() } #[inline] fn imm8_reg_to_imm8_gpr(&mut self, ir: &Imm8Reg) -> Imm8Gpr { Imm8Gpr::new(ir.clone()).unwrap() } #[inline] fn gpr_to_gpr_mem(&mut self, gpr: Gpr) -> GprMem { GprMem::from(gpr) } #[inline] fn gpr_to_gpr_mem_imm(&mut self, gpr: Gpr) -> GprMemImm { GprMemImm::from(gpr) } #[inline] fn gpr_to_imm8_gpr(&mut self, gpr: Gpr) -> Imm8Gpr { Imm8Gpr::from(gpr) } #[inline] fn imm8_to_imm8_gpr(&mut self, imm: u8) -> Imm8Gpr { Imm8Gpr::new(Imm8Reg::Imm8 { imm }).unwrap() } fn is_gpr_type(&mut self, ty: Type) -> Option { if is_int_or_ref_ty(ty) || ty == I128 || ty == B128 { Some(ty) } else { None } } #[inline] fn is_xmm_type(&mut self, ty: Type) -> Option { if ty == F32 || ty == F64 || (ty.is_vector() && ty.bits() == 128) { Some(ty) } else { None } } #[inline] fn is_single_register_type(&mut self, ty: Type) -> Option { if ty != I128 { Some(ty) } else { None } } #[inline] fn intcc_to_cc(&mut self, intcc: &IntCC) -> CC { CC::from_intcc(*intcc) } #[inline] fn sum_extend_fits_in_32_bits( &mut self, extend_from_ty: Type, constant_value: Imm64, offset: Offset32, ) -> Option { let offset: i64 = offset.into(); let constant_value: u64 = constant_value.bits() as u64; // If necessary, zero extend `constant_value` up to 64 bits. let shift = 64 - extend_from_ty.bits(); let zero_extended_constant_value = (constant_value << shift) >> shift; // Sum up the two operands. let sum = offset.wrapping_add(zero_extended_constant_value as i64); // Check that the sum will fit in 32-bits. if sum == ((sum << 32) >> 32) { Some(sum as u32) } else { None } } #[inline] fn amode_offset(&mut self, addr: &Amode, offset: u32) -> Amode { addr.offset(offset) } #[inline] fn zero_offset(&mut self) -> Offset32 { Offset32::new(0) } #[inline] fn rax(&mut self) -> WritableGpr { let gpr = Gpr::new(regs::rax()).unwrap(); WritableGpr::from_reg(gpr) } } // Since x64 doesn't have 8x16 shifts and we must use a 16x8 shift instead, we // need to fix up the bits that migrate from one half of the lane to the // other. Each 16-byte mask is indexed by the shift amount: e.g. if we shift // right by 0 (no movement), we want to retain all the bits so we mask with // `0xff`; if we shift right by 1, we want to retain all bits except the MSB so // we mask with `0x7f`; etc. #[rustfmt::skip] // Preserve 16 bytes (i.e. one mask) per row. const I8X16_ISHL_MASKS: [u8; 128] = [ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfc, 0xfc, 0xfc, 0xfc, 0xfc, 0xfc, 0xfc, 0xfc, 0xfc, 0xfc, 0xfc, 0xfc, 0xfc, 0xfc, 0xfc, 0xfc, 0xf8, 0xf8, 0xf8, 0xf8, 0xf8, 0xf8, 0xf8, 0xf8, 0xf8, 0xf8, 0xf8, 0xf8, 0xf8, 0xf8, 0xf8, 0xf8, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xf0, 0xe0, 0xe0, 0xe0, 0xe0, 0xe0, 0xe0, 0xe0, 0xe0, 0xe0, 0xe0, 0xe0, 0xe0, 0xe0, 0xe0, 0xe0, 0xe0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, ]; #[rustfmt::skip] // Preserve 16 bytes (i.e. one mask) per row. const I8X16_USHR_MASKS: [u8; 128] = [ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x7f, 0x3f, 0x3f, 0x3f, 0x3f, 0x3f, 0x3f, 0x3f, 0x3f, 0x3f, 0x3f, 0x3f, 0x3f, 0x3f, 0x3f, 0x3f, 0x3f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x0f, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, ]; /// Number of bits set in a given nibble (4-bit value). Used in the /// vector implementation of popcount. #[rustfmt::skip] // Preserve 4x4 layout. const POPCOUNT_4BIT_TABLE: [u8; 16] = [ 0x00, 0x01, 0x01, 0x02, 0x01, 0x02, 0x02, 0x03, 0x01, 0x02, 0x02, 0x03, 0x02, 0x03, 0x03, 0x04, ]; const POPCOUNT_LOW_MASK: [u8; 16] = [0x0f; 16]; #[inline] fn to_simm32(constant: i64) -> Option { if constant == ((constant << 32) >> 32) { Some( GprMemImm::new(RegMemImm::Imm { simm32: constant as u32, }) .unwrap(), ) } else { None } }