//! Instruction Set Architectures. //! //! The `isa` module provides a `TargetIsa` trait which provides the behavior specialization needed //! by the ISA-independent code generator. The sub-modules of this module provide definitions for //! the instruction sets that Cretonne can target. Each sub-module has it's own implementation of //! `TargetIsa`. //! //! # Constructing a `TargetIsa` instance //! //! The target ISA is built from the following information: //! //! - The name of the target ISA as a string. Cretonne is a cross-compiler, so the ISA to target //! can be selected dynamically. Individual ISAs can be left out when Cretonne is compiled, so a //! string is used to identify the proper sub-module. //! - Values for settings that apply to all ISAs. This is represented by a `settings::Flags` //! instance. //! - Values for ISA-specific settings. //! //! The `isa::lookup()` function is the main entry point which returns an `isa::Builder` //! appropriate for the requested ISA: //! //! ``` //! use cretonne_codegen::settings::{self, Configurable}; //! use cretonne_codegen::isa; //! //! let shared_builder = settings::builder(); //! let shared_flags = settings::Flags::new(shared_builder); //! //! match isa::lookup("riscv") { //! Err(_) => { //! // The RISC-V target ISA is not available. //! } //! Ok(mut isa_builder) => { //! isa_builder.set("supports_m", "on"); //! let isa = isa_builder.finish(shared_flags); //! } //! } //! ``` //! //! The configured target ISA trait object is a `Box` which can be used for multiple //! concurrent function compilations. pub use isa::constraints::{BranchRange, ConstraintKind, OperandConstraint, RecipeConstraints}; pub use isa::encoding::{EncInfo, Encoding}; pub use isa::registers::{regs_overlap, RegClass, RegClassIndex, RegInfo, RegUnit}; pub use isa::stack::{StackBase, StackBaseMask, StackRef}; use binemit; use flowgraph; use ir; use isa::enc_tables::Encodings; use regalloc; use result; use settings; use settings::CallConv; use std::boxed::Box; use std::fmt; use timing; #[cfg(build_riscv)] mod riscv; #[cfg(build_x86)] mod x86; #[cfg(build_arm32)] mod arm32; #[cfg(build_arm64)] mod arm64; mod constraints; mod enc_tables; mod encoding; pub mod registers; mod stack; /// Returns a builder that can create a corresponding `TargetIsa` /// or `Err(LookupError::Unsupported)` if not enabled. macro_rules! isa_builder { ($module:ident, $name:ident) => {{ #[cfg($name)] fn $name() -> Result { Ok($module::isa_builder()) }; #[cfg(not($name))] fn $name() -> Result { Err(LookupError::Unsupported) } $name() }}; } /// Look for a supported ISA with the given `name`. /// Return a builder that can create a corresponding `TargetIsa`. pub fn lookup(name: &str) -> Result { match name { "riscv" => isa_builder!(riscv, build_riscv), "x86" => isa_builder!(x86, build_x86), "arm32" => isa_builder!(arm32, build_arm32), "arm64" => isa_builder!(arm64, build_arm64), _ => Err(LookupError::Unknown), } } /// Describes reason for target lookup failure #[derive(PartialEq, Eq, Copy, Clone, Debug)] pub enum LookupError { /// Unknown Target Unknown, /// Target known but not built and thus not supported Unsupported, } /// Builder for a `TargetIsa`. /// Modify the ISA-specific settings before creating the `TargetIsa` trait object with `finish`. pub struct Builder { setup: settings::Builder, constructor: fn(settings::Flags, settings::Builder) -> Box, } impl Builder { /// Combine the ISA-specific settings with the provided ISA-independent settings and allocate a /// fully configured `TargetIsa` trait object. pub fn finish(self, shared_flags: settings::Flags) -> Box { (self.constructor)(shared_flags, self.setup) } } impl settings::Configurable for Builder { fn set(&mut self, name: &str, value: &str) -> settings::Result<()> { self.setup.set(name, value) } fn enable(&mut self, name: &str) -> settings::Result<()> { self.setup.enable(name) } } /// After determining that an instruction doesn't have an encoding, how should we proceed to /// legalize it? /// /// The `Encodings` iterator returns a legalization function to call. pub type Legalize = fn(ir::Inst, &mut ir::Function, &mut flowgraph::ControlFlowGraph, &TargetIsa) -> bool; /// Methods that are specialized to a target ISA. Implies a Display trait that shows the /// shared flags, as well as any isa-specific flags. pub trait TargetIsa: fmt::Display { /// Get the name of this ISA. fn name(&self) -> &'static str; /// Get the ISA-independent flags that were used to make this trait object. fn flags(&self) -> &settings::Flags; /// Does the CPU implement scalar comparisons using a CPU flags register? fn uses_cpu_flags(&self) -> bool { false } /// Does the CPU implement multi-register addressing? fn uses_complex_addresses(&self) -> bool { false } /// Get a data structure describing the registers in this ISA. fn register_info(&self) -> RegInfo; /// Returns an iterartor over legal encodings for the instruction. fn legal_encodings<'a>( &'a self, func: &'a ir::Function, inst: &'a ir::InstructionData, ctrl_typevar: ir::Type, ) -> Encodings<'a>; /// Encode an instruction after determining it is legal. /// /// If `inst` can legally be encoded in this ISA, produce the corresponding `Encoding` object. /// Otherwise, return `Legalize` action. /// /// This is also the main entry point for determining if an instruction is legal. fn encode( &self, func: &ir::Function, inst: &ir::InstructionData, ctrl_typevar: ir::Type, ) -> Result { let mut iter = self.legal_encodings(func, inst, ctrl_typevar); iter.next().ok_or_else(|| iter.legalize()) } /// Get a data structure describing the instruction encodings in this ISA. fn encoding_info(&self) -> EncInfo; /// Legalize a function signature. /// /// This is used to legalize both the signature of the function being compiled and any called /// functions. The signature should be modified by adding `ArgumentLoc` annotations to all /// arguments and return values. /// /// Arguments with types that are not supported by the ABI can be expanded into multiple /// arguments: /// /// - Integer types that are too large to fit in a register can be broken into multiple /// arguments of a smaller integer type. /// - Floating point types can be bit-cast to an integer type of the same size, and possible /// broken into smaller integer types. /// - Vector types can be bit-cast and broken down into smaller vectors or scalars. /// /// The legalizer will adapt argument and return values as necessary at all ABI boundaries. /// /// When this function is called to legalize the signature of the function currently begin /// compiler, `current` is true. The legalized signature can then also contain special purpose /// arguments and return values such as: /// /// - A `link` argument representing the link registers on RISC architectures that don't push /// the return address on the stack. /// - A `link` return value which will receive the value that was passed to the `link` /// argument. /// - An `sret` argument can be added if one wasn't present already. This is necessary if the /// signature returns more values than registers are available for returning values. /// - An `sret` return value can be added if the ABI requires a function to return its `sret` /// argument in a register. /// /// Arguments and return values for the caller's frame pointer and other callee-saved registers /// should not be added by this function. These arguments are not added until after register /// allocation. fn legalize_signature(&self, sig: &mut ir::Signature, current: bool); /// Get the register class that should be used to represent an ABI argument or return value of /// type `ty`. This should be the top-level register class that contains the argument /// registers. /// /// This function can assume that it will only be asked to provide register classes for types /// that `legalize_signature()` produces in `ArgumentLoc::Reg` entries. fn regclass_for_abi_type(&self, ty: ir::Type) -> RegClass; /// Get the set of allocatable registers that can be used when compiling `func`. /// /// This set excludes reserved registers like the stack pointer and other special-purpose /// registers. fn allocatable_registers(&self, func: &ir::Function) -> regalloc::RegisterSet; /// Compute the stack layout and insert prologue and epilogue code into `func`. /// /// Return an error if the stack frame is too large. fn prologue_epilogue(&self, func: &mut ir::Function) -> result::CtonResult { let _tt = timing::prologue_epilogue(); // This default implementation is unlikely to be good enough. use ir::stackslot::{StackOffset, StackSize}; use stack_layout::layout_stack; let word_size = if self.flags().is_64bit() { 8 } else { 4 }; // Account for the SpiderMonkey standard prologue pushes. if func.signature.call_conv == CallConv::Baldrdash { let bytes = StackSize::from(self.flags().baldrdash_prologue_words()) * word_size; let mut ss = ir::StackSlotData::new(ir::StackSlotKind::IncomingArg, bytes); ss.offset = Some(-(bytes as StackOffset)); func.stack_slots.push(ss); } layout_stack(&mut func.stack_slots, word_size)?; Ok(()) } /// Emit binary machine code for a single instruction into the `sink` trait object. /// /// Note that this will call `put*` methods on the trait object via its vtable which is not the /// fastest way of emitting code. fn emit_inst( &self, func: &ir::Function, inst: ir::Inst, divert: &mut regalloc::RegDiversions, sink: &mut binemit::CodeSink, ); /// Emit a whole function into memory. /// /// This is more performant than calling `emit_inst` for each instruction. fn emit_function(&self, func: &ir::Function, sink: &mut binemit::MemoryCodeSink); }