//! A verifier for ensuring that functions are well formed. //! It verifies: //! //! EBB integrity //! //! - All instructions reached from the ebb_insts iterator must belong to //! the EBB as reported by inst_ebb(). //! - Every EBB must end in a terminator instruction, and no other instruction //! can be a terminator. //! - Every value in the ebb_args iterator belongs to the EBB as reported by value_ebb. //! //! Instruction integrity //! //! - The instruction format must match the opcode. //! TODO: //! - All result values must be created for multi-valued instructions. //! - Instructions with no results must have a VOID first_type(). //! - All referenced entities must exist. (Values, EBBs, stack slots, ...) //! //! SSA form //! //! - Values must be defined by an instruction that exists and that is inserted in //! an EBB, or be an argument of an existing EBB. //! - Values used by an instruction must dominate the instruction. //! Control flow graph and dominator tree integrity: //! //! - All predecessors in the CFG must be branches to the EBB. //! - All branches to an EBB must be present in the CFG. //! - A recomputed dominator tree is identical to the existing one. //! //! Type checking //! //! - Compare input and output values against the opcode's type constraints. //! For polymorphic opcodes, determine the controlling type variable first. //! - Branches and jumps must pass arguments to destination EBBs that match the //! expected types excatly. The number of arguments must match. //! - All EBBs in a jump_table must take no arguments. //! - Function calls are type checked against their signature. //! - The entry block must take arguments that match the signature of the current //! function. //! - All return instructions must have return value operands matching the current //! function signature. //! //! Ad hoc checking //! //! - Stack slot loads and stores must be in-bounds. //! - Immediate constraints for certain opcodes, like udiv_imm v3, 0. //! - Extend / truncate instructions have more type constraints: Source type can't be //! larger / smaller than result type. //! - Insertlane and extractlane instructions have immediate lane numbers that must be in //! range for their polymorphic type. //! - Swizzle and shuffle instructions take a variable number of lane arguments. The number //! of arguments must match the destination type, and the lane indexes must be in range. use ir::{Function, ValueDef, Ebb, Inst}; use ir::instructions::InstructionFormat; pub struct Verifier<'a> { func: &'a Function, } impl<'a> Verifier<'a> { pub fn new(func: &'a Function) -> Verifier { Verifier { func: func } } fn ebb_integrity(&self, ebb: Ebb, inst: Inst) -> Result<(), String> { let is_terminator = self.func.dfg[inst].is_terminating(); let is_last_inst = self.func.layout.last_inst(ebb) == inst; if is_terminator && !is_last_inst { // Terminating instructions only occur at the end of blocks. return Err(format!("A terminating instruction was encountered before the \ end of ebb {:?}!", ebb)); } if is_last_inst && !is_terminator { return Err(format!("Block {:?} does not end in a terminating instruction!", ebb)); } // Instructions belong to the correct ebb. let inst_ebb = self.func.layout.inst_ebb(inst); if inst_ebb != Some(ebb) { return Err(format!("{:?} should belong to {:?} not {:?}", inst, ebb, inst_ebb)); } // Arguments belong to the correct ebb. for arg in self.func.dfg.ebb_args(ebb) { match self.func.dfg.value_def(arg) { ValueDef::Arg(arg_ebb, _) => { if ebb != arg_ebb { return Err(format!("{:?} does not belong to {:?}", arg, ebb)); } } _ => { return Err("Expected an argument, found a result!".to_string()); } } } Ok(()) } fn instruction_integrity(&self, inst: Inst) -> Result<(), String> { let inst_data = &self.func.dfg[inst]; // The instruction format matches the opcode if inst_data.opcode().format() != Some(InstructionFormat::from(inst_data)) { return Err("Instruction opcode doesn't match instruction format!".to_string()); } Ok(()) } pub fn run(&self) -> Result<(), String> { for ebb in self.func.layout.ebbs() { for inst in self.func.layout.ebb_insts(ebb) { try!(self.ebb_integrity(ebb, inst)); try!(self.instruction_integrity(inst)); } } Ok(()) } } #[cfg(test)] mod tests { extern crate regex; use super::*; use ir::Function; use ir::instructions::{InstructionData, Opcode}; use ir::types; use self::regex::Regex; macro_rules! assert_err_with_msg { ($e:expr, $msg:expr) => ( let err_re = Regex::new($msg).unwrap(); match $e { Ok(_) => { panic!("Expected an error!") }, Err(err_msg) => { if !err_re.is_match(&err_msg) { panic!(format!("'{}' did not contain the pattern '{}'", err_msg, $msg)); } } } ) } #[test] fn empty() { let func = Function::new(); let verifier = Verifier::new(&func); assert_eq!(verifier.run(), Ok(())); } #[test] fn bad_instruction_format() { let mut func = Function::new(); let ebb0 = func.dfg.make_ebb(); func.layout.append_ebb(ebb0); let nullary_with_bad_opcode = func.dfg.make_inst(InstructionData::Nullary { opcode: Opcode::Jump, ty: types::VOID, }); func.layout.append_inst(nullary_with_bad_opcode, ebb0); let verifier = Verifier::new(&func); assert_err_with_msg!(verifier.run(), "instruction format"); } }