//! Defines `SimpleJITBackend`. use cretonne_codegen::binemit::{Addend, CodeOffset, NullTrapSink, Reloc, RelocSink}; use cretonne_codegen::isa::TargetIsa; use cretonne_codegen::{self, ir, settings}; use cretonne_module::{Backend, DataContext, DataDescription, Init, Linkage, ModuleError, ModuleNamespace, Writability}; use cretonne_native; use libc; use memory::Memory; use std::ffi::CString; use std::ptr; use target_lexicon::PointerWidth; #[cfg(windows)] use winapi; /// A builder for `SimpleJITBackend`. pub struct SimpleJITBuilder { isa: Box, } impl SimpleJITBuilder { /// Create a new `SimpleJITBuilder`. pub fn new() -> Self { let (flag_builder, isa_builder) = cretonne_native::builders().unwrap_or_else(|_| { panic!("host machine is not a supported target"); }); let isa = isa_builder.finish(settings::Flags::new(flag_builder)); Self::with_isa(isa) } /// Create a new `SimpleJITBuilder` with an arbitrary target. This is mainly /// useful for testing. /// /// SimpleJIT requires a `TargetIsa` configured for non-PIC. /// /// To create a `SimpleJITBuilder` for native use, use the `new` constructor /// instead. pub fn with_isa(isa: Box) -> Self { debug_assert!(!isa.flags().is_pic(), "SimpleJIT requires non-PIC code"); Self { isa } } } /// A `SimpleJITBackend` implements `Backend` and emits code and data into memory where it can be /// directly called and accessed. pub struct SimpleJITBackend { isa: Box, code_memory: Memory, readonly_memory: Memory, writable_memory: Memory, } /// A record of a relocation to perform. struct RelocRecord { offset: CodeOffset, reloc: Reloc, name: ir::ExternalName, addend: Addend, } pub struct SimpleJITCompiledFunction { code: *mut u8, size: usize, relocs: Vec, } pub struct SimpleJITCompiledData { storage: *mut u8, size: usize, relocs: Vec, } impl<'simple_jit_backend> Backend for SimpleJITBackend { type Builder = SimpleJITBuilder; /// SimpleJIT compiled function and data objects may have outstanding /// relocations that need to be performed before the memory can be used. /// These relocations are performed within `finalize_function` and /// `finalize_data`. type CompiledFunction = SimpleJITCompiledFunction; type CompiledData = SimpleJITCompiledData; /// SimpleJIT emits code and data into memory, and provides raw pointers /// to them. type FinalizedFunction = *const u8; type FinalizedData = (*mut u8, usize); /// SimpleJIT emits code and data into memory as it processes them, so it /// doesn't need to provide anything after the `Module` is complete. type Product = (); /// Create a new `SimpleJITBackend`. fn new(builder: SimpleJITBuilder) -> Self { Self { isa: builder.isa, code_memory: Memory::new(), readonly_memory: Memory::new(), writable_memory: Memory::new(), } } fn isa(&self) -> &TargetIsa { &*self.isa } fn declare_function(&mut self, _name: &str, _linkage: Linkage) { // Nothing to do. } fn declare_data(&mut self, _name: &str, _linkage: Linkage, _writable: bool) { // Nothing to do. } fn define_function( &mut self, _name: &str, ctx: &cretonne_codegen::Context, _namespace: &ModuleNamespace, code_size: u32, ) -> Result { let size = code_size as usize; let ptr = self.code_memory .allocate(size) .expect("TODO: handle OOM etc."); let mut reloc_sink = SimpleJITRelocSink::new(); // Ignore traps for now. For now, frontends should just avoid generating code // that traps. let mut trap_sink = NullTrapSink {}; unsafe { ctx.emit_to_memory(&*self.isa, ptr, &mut reloc_sink, &mut trap_sink) }; Ok(Self::CompiledFunction { code: ptr, size, relocs: reloc_sink.relocs, }) } fn define_data( &mut self, _name: &str, data: &DataContext, _namespace: &ModuleNamespace, ) -> Result { let &DataDescription { writable, ref init, ref function_decls, ref data_decls, ref function_relocs, ref data_relocs, } = data.description(); let size = init.size(); let storage = match writable { Writability::Readonly => self.writable_memory .allocate(size) .expect("TODO: handle OOM etc."), Writability::Writable => self.writable_memory .allocate(size) .expect("TODO: handle OOM etc."), }; match *init { Init::Uninitialized => { panic!("data is not initialized yet"); } Init::Zeros { .. } => { unsafe { ptr::write_bytes(storage, 0, size) }; } Init::Bytes { ref contents } => { let src = contents.as_ptr(); unsafe { ptr::copy_nonoverlapping(src, storage, size) }; } } let reloc = match self.isa.triple().pointer_width().unwrap() { PointerWidth::U16 => panic!(), PointerWidth::U32 => Reloc::Abs4, PointerWidth::U64 => Reloc::Abs8, }; let mut relocs = Vec::new(); for &(offset, id) in function_relocs { relocs.push(RelocRecord { reloc, offset, name: function_decls[id].clone(), addend: 0, }); } for &(offset, id, addend) in data_relocs { relocs.push(RelocRecord { reloc, offset, name: data_decls[id].clone(), addend, }); } Ok(Self::CompiledData { storage, size, relocs, }) } fn write_data_funcaddr( &mut self, _data: &mut Self::CompiledData, _offset: usize, _what: ir::FuncRef, ) { unimplemented!(); } fn write_data_dataaddr( &mut self, _data: &mut Self::CompiledData, _offset: usize, _what: ir::GlobalVar, _usize: Addend, ) { unimplemented!(); } fn finalize_function( &mut self, func: &Self::CompiledFunction, namespace: &ModuleNamespace, ) -> Self::FinalizedFunction { use std::ptr::write_unaligned; for &RelocRecord { reloc, offset, ref name, addend, } in &func.relocs { let ptr = func.code; debug_assert!((offset as usize) < func.size); let at = unsafe { ptr.offset(offset as isize) }; let base = if namespace.is_function(name) { let (def, name_str, _signature) = namespace.get_function_definition(&name); match def { Some(compiled) => compiled.code, None => lookup_with_dlsym(name_str), } } else { let (def, name_str, _writable) = namespace.get_data_definition(&name); match def { Some(compiled) => compiled.storage, None => lookup_with_dlsym(name_str), } }; // TODO: Handle overflow. let what = unsafe { base.offset(addend as isize) }; match reloc { Reloc::Abs4 => { // TODO: Handle overflow. #[cfg_attr(feature = "cargo-clippy", allow(cast_ptr_alignment))] unsafe { write_unaligned(at as *mut u32, what as u32) }; } Reloc::Abs8 => { #[cfg_attr(feature = "cargo-clippy", allow(cast_ptr_alignment))] unsafe { write_unaligned(at as *mut u64, what as u64) }; } Reloc::X86PCRel4 => { // TODO: Handle overflow. let pcrel = ((what as isize) - (at as isize)) as i32; #[cfg_attr(feature = "cargo-clippy", allow(cast_ptr_alignment))] unsafe { write_unaligned(at as *mut i32, pcrel) }; } Reloc::X86GOTPCRel4 | Reloc::X86PLTRel4 => panic!("unexpected PIC relocation"), _ => unimplemented!(), } } // Now that we're done patching, make the memory executable. self.code_memory.set_executable(); func.code } fn finalize_data( &mut self, data: &Self::CompiledData, namespace: &ModuleNamespace, ) -> Self::FinalizedData { use std::ptr::write_unaligned; for record in &data.relocs { match *record { RelocRecord { reloc, offset, ref name, addend, } => { let ptr = data.storage; debug_assert!((offset as usize) < data.size); let at = unsafe { ptr.offset(offset as isize) }; let base = if namespace.is_function(name) { let (def, name_str, _signature) = namespace.get_function_definition(&name); match def { Some(compiled) => compiled.code, None => lookup_with_dlsym(name_str), } } else { let (def, name_str, _writable) = namespace.get_data_definition(&name); match def { Some(compiled) => compiled.storage, None => lookup_with_dlsym(name_str), } }; // TODO: Handle overflow. let what = unsafe { base.offset(addend as isize) }; match reloc { Reloc::Abs4 => { // TODO: Handle overflow. #[cfg_attr(feature = "cargo-clippy", allow(cast_ptr_alignment))] unsafe { write_unaligned(at as *mut u32, what as u32) }; } Reloc::Abs8 => { #[cfg_attr(feature = "cargo-clippy", allow(cast_ptr_alignment))] unsafe { write_unaligned(at as *mut u64, what as u64) }; } Reloc::X86PCRel4 | Reloc::X86GOTPCRel4 | Reloc::X86PLTRel4 => { panic!("unexpected text relocation in data") } _ => unimplemented!(), } } } } self.readonly_memory.set_readonly(); (data.storage, data.size) } /// SimpleJIT emits code and data into memory as it processes them, so it /// doesn't need to provide anything after the `Module` is complete. fn finish(self) -> () {} } #[cfg(not(windows))] fn lookup_with_dlsym(name: &str) -> *const u8 { let c_str = CString::new(name).unwrap(); let c_str_ptr = c_str.as_ptr(); let sym = unsafe { libc::dlsym(libc::RTLD_DEFAULT, c_str_ptr) }; if sym.is_null() { panic!("can't resolve symbol {}", name); } sym as *const u8 } #[cfg(windows)] fn lookup_with_dlsym(name: &str) -> *const u8 { const MSVCRT_DLL: &[u8] = b"msvcrt.dll\0"; let c_str = CString::new(name).unwrap(); let c_str_ptr = c_str.as_ptr(); unsafe { let handles = [ // try to find the searched symbol in the currently running executable ptr::null_mut(), // try to find the searched symbol in local c runtime winapi::um::libloaderapi::GetModuleHandleA(MSVCRT_DLL.as_ptr() as *const i8), ]; for handle in &handles { let addr = winapi::um::libloaderapi::GetProcAddress(*handle, c_str_ptr); if addr.is_null() { continue; } return addr as *const u8; } let msg = if handles[1].is_null() { "(msvcrt not loaded)" } else { "" }; panic!("cannot resolve address of symbol {} {}", name, msg); } } struct SimpleJITRelocSink { pub relocs: Vec, } impl SimpleJITRelocSink { pub fn new() -> Self { Self { relocs: Vec::new() } } } impl RelocSink for SimpleJITRelocSink { fn reloc_ebb(&mut self, _offset: CodeOffset, _reloc: Reloc, _ebb_offset: CodeOffset) { unimplemented!(); } fn reloc_external( &mut self, offset: CodeOffset, reloc: Reloc, name: &ir::ExternalName, addend: Addend, ) { self.relocs.push(RelocRecord { offset, reloc, name: name.clone(), addend, }); } fn reloc_jt(&mut self, _offset: CodeOffset, _reloc: Reloc, _jt: ir::JumpTable) { unimplemented!(); } }